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Introduction 

The transformation of organic compounds by microbial 

cultures has long been of interest to the pharmaceutical, chemical 

and food industries because of numerous advantages compared to 

chemical synthesis (Pandey et al., 2000; Parshikov et al., 1994; 

2010; Parshikov, 2015; Silva et al., 2014). 

Terpenoids are components of the essential oils of plants; 

they are derivatives of terpene hydrocarbons, which are 

combinations of five-carbon isoprene units (Newman, 1972; 

Dewick, 2001). They have been classified into monoterpenoids, 

sesquiterpenoids, diterpenoids, sesterterpenoids, triterpenoids, 

tetraterpenoids, and polyterpenoids. Several of these groups of 

terpenoids are found in the essential oils of plants that are used in 

traditional medicine to treat malaria and other fevers (Titanji et al., 

2008; Kaur et al., 2009; Khamsan et al., 2011). The large variety 

of terpenoids, mostly derived from plants, that have been purified 

and shown to have antiplasmodial activity in vitro has been 

discussed extensively in recent review articles (Batista et al., 2009; 

Bero et al., 2009; Kaur et al., 2009; Chaturvedi, 2011; Harinasuta 

et al., 1965; Kain, 1995; Klassen, 2009; Nogueira and Lopes, 

2011; Snow et al., 2005). Information about the comparative 

activities of most of these natural terpenoids and their derivatives 

in different Plasmodium spp., however, is difficult to obtain 

because of data security practices for potential commercial drugs. 
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Among the sesquiterpenoids, artemisinin and its derivatives 

are useful and effective drugs against most chloroquine-resistant 

strains of P. falciparum (Klayman, 1985). However, problems 

associated with artemisinin, including low solubility in water and 

even in oil (Luo and Shen, 1987; Hien and White, 1993; Vroman 

et al., 1999), have prompted scientists to seek new artemisinin 

derivatives. Some of these artemisinin-derived drugs have been 

reported to be neurotoxic to animals when injected (Vroman et al., 

1999; Gordi and Lepist, 2004; Liao, 2009; Medhi et al., 2009; 

Mannan et al., 2010). There is also evidence of reproductive 

toxicity of artemisinin derivatives at high doses in animals (Medhi 

et al., 2009; Clark, 2011). Increasing resistance of malaria 

parasites to currently used drugs, including P. vivax resistance to 

chloroquine and primaquine in parts of New Guinea, Asia, and 

Africa (Price et al., 2011) and P. falciparum resistance to 

artemisinin in western Cambodia, eastern Thailand, and some 

nearby areas (Noedl et al., 2008; Wongsrichanalai and Meshnick, 

2008; Dondorp et al., 2010; O’Brien et al., 2011), is another 

important reason for developing new antimalarial drugs.  

Some artemisinin analogs may be obtained by 

semisynthetic processes; for example, artemisinin can be easily 

reduced chemically to the more effective, but neurotoxic, 

dihydroartemisinin (Klayman, 1985; Vroman et al., 1999; Avery et 

al., 2002). Other structural changes in artemisinin remain a 
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challenge for chemists because of the difficulty of introducing 

specific functional groups by conventional synthetic methods. 

Many microorganisms, especially certain fungi, have the 

ability to transform terpenoids regioselectively and 

stereoselectively (Sutherland, 2004; Carvalho and Fonseca, 2006; 

Simeó and Sinisterra, 2009; Parshikov, 2012). In this book to 

outline some of the great variety of modifications, that can be 

expected from the use of microorganisms for the transformation of 

terpenoids. The biochemical mechanisms have scarcely been 

investigated, but it seems likely that cytochromes P450 and 

perhaps dioxygenases will be found to be involved in many of the 

transformations (Martin et al., 2008; Krings et al., 2009). It is our 

hope that further developments in microbial biotechnology, 

including the discovery of new strains with unique enzyme 

systems for the transformation of terpenoids, may make it possible 

to derive a variety of newer and more useful drugs from those now 

available. 
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1. Transformation of monoterpenoids 

In the leaves of lemon grass, Cymbopogon citratus, there is 

an essential oil that inhibits the growth of Plasmodium berghei, a 

species which does not infect humans, with 86.6% of the activity 

of chloroquine (Tchoumbougnang et al., 2005). This oil contains 

several monoterpenoids, with citral (geranial and neral), β-

myrcene, geraniol, nerol, citronellal and limonene as the main 

components (Schaneberg and Khan, 2002). Limonene has been 

shown to have antimalarial activity because it inhibits the 

isoprenylation of proteins in P. falciparum (Moura et al., 2001). 

(+)-α-Pinene (I) is a monoterpene, produced by pine trees 

and many other plants, that acts as an insect repellent. The (+)-

isomer is oxidized by a strain of A. niger to the floral fragrances 

(+)-cis-verbenol (II, yield 20-25%) and (+)-verbenone (III, yield 

2-3%) and the mucolytic agent (+)-trans-sobrerol (IV, yield 2-

3%), in 4-8 h (Bhattacharyya et al., 1960): 

 

I IV

OH

II III

OH O
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Another strain of A. niger produces nonadecanol from (+)-

α-pinene and also metabolizes the enantiomer (−)-α-pinene 

(Divyashree et al., 2006). A different natural isomer, (−)-β-pinene 

(V), is oxidized by A. niger ATCC 9642 in liquid cultures to 

produce the fragrance and flavoring agent α-terpineol (VI, yield 

about 4%) in 3 days (Toniazzo et al., 2005): 

 

V VI

OH

 

 

Fungi of the genera Aspergillus and Penicillium may 

transform citral and other monoterpenoids to various products 

(Demyttenaere and De Pooter, 1998; Demyttenaere et al., 2000; 

Esmaeili and Tavassoli, 2010). For example, a Penicillium sp. 

transformed citral (VII) in 21 days to a mixture of six different 

monoterpenoids with a total yield of 67.4%, including thymol 

(VIII, 21.5%), limonene (IX, 3.1%), α-pinene (I, 3.7%), geraniol 

(X, 6.8%), geranial (XI, 18.6%) and nerol (XII, 13.7%) (Esmaeili 

and Tavassoli, 2010): 
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O OH

OH O

OH

VII VIII IX

X XI XII  

Geranyl acetate (XIII) is metabolized by A. niger to 

geraniol (X) and 8-hydroxygeraniol, with 50% and 40% yield, 

respectively (Madyastha et al., 1988): 

XIII

O

O

2
34

5 6

7 8

 

The transformation of citral benzamide (XIV) during 72 

hours by fungi Cunninghamella verticillata VKPM F-430 and 

Beauveria bassiana VKM F-3111D showed formation of 5-

hydroxycitral benzamide (XV) in 20% yield (Parshikov et al., 

1990a,b): 
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XIV

CH2NHCOC6H51

234

5
6

7

8
109

XV

CH2NHCOC6H5HO

 

In same time the transformation of citral benzamide (XIV) 

by fungus Scopulariopsis brevicaulis VKM F-406 showed 

formation of 7-hydroxymethyl derivative (XVI) in 20% yield and 

5-oxo- derivative (XVII) in 30% yield (Parshikov et al., 1993): 

XXVI

CH2NHCOC6H5

CH2OH

XXVII

CH2NHCOC6H5O

 

In the transformation of myrcene (XVIII) by the bacterium 

Pseudomonas aeruginosa PTCC 1074, formation of the products 

depended on the time of transformation. After 1.5 days the 

products found were dihydrolinalool (XIX, 79.5%) and 2,6-

dimethyloctane (XX, 9.3%), whereas after 3 days they were α-

terpineol (VI, 7.7%) and 2,6-dimethyloctane (XX, 90.0%) 

(Esmaeili and Hashemi, 2011): 
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OH

XVIII

XIX XX

VI   +  XX

1.5 days

3 days

 

 β-Myrcene (XXI), an acyclic monoterpene from plant 

essential oils, is transformed by A. niger JTS 191 at each of the 

three double bonds to produce three fragrant isomeric diols: 2-

methyl-6-methylene-7-octene-2,3-diol (XXII), 6-methyl-2-

ethenyl-5-heptene-1,2-diol (XXIII), and 7-methyl-3-methylene-6-

octene-1,2-diol (XXIV) (Yamazaki al., 1988): 

XXI XXII XXIII XXIV

OH
OH

OH
OH

OH
OH

 

It has been observed that a suspension of non-multiplying 

Penicillium simplicissimum selectively converted myrcenal 

semicarbazone (XXV) into 4-hydroxy-5-isopropyl-5-methoxy-2-
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oxo-2,5-dihydrofuran (XXVI) with 84% yield (Parshikov et al., 

1994, 2010): 

H3C

CH2

2

3 4

5

6

7

8

9

OO

CH

OCH3

OH CH3

CH3

NNHCONH2

CH2

XXV XXVI  

(−)-Carvone (XXVII) from spearmint oil is transformed 

stereoselectively to (+)-dihydrocarvone (XXVIII) and (+)-

neodihydrocarveol (XXIX) by a strain of A. niger (Noma and 

Nonomura, 1974); similar products are produced from (+)-carvone 

(Noma and Nonomura, 1974): 

XXVII

O

XXVIII

O

XXIX

OH

 

(+)-Limonene (XXX), a cyclic monoterpene obtained from 

citrus fruits and many other plants, is metabolized by an A. niger 

strain to perillyl alcohol (XXXI) and organic acids (Menéndez et 

al., 2002). Using two different cultivation systems and two 

different media, the products include fragrant isomers of trans-



 

12 

carveol (XXXII), cis-carveol (XXXIII), cis-p-mentha-2,8-dien-1-

ol (XXXIV), trans-p-mentha-2,8-dien-1-ol (XXXV), racemic 

carvone (XXVII), perillyl alcohol (XXXI), propanoic acid, 

isobutyric acid, isovaleric acid, the tea tree oil component 

terpinen-4-ol (XXXVI), α-terpineol (VI), cis-β-terpineol 

(XXXVII), trans-β-terpineol (XXXVIII), and the floral scent 

linalool (XXXIX; the (R)-(−)-enantiomer is shown) (García-

Carnelli et al., 2014): 

XXXI

OH

XXX XXXII

OH

XXXIII

OH

XXXIV

OH

XXXV

HO

XXXVI

OH

XXXVII

HO

XXXVIII

HO

XXXIX

OH

 

The monoterpenoid alcohol geraniol (X), from plant 

essential oils, is biotransformed by sporulated surface cultures of 

A. niger AN2, mostly to an isomer of linalool (XXXIX) with some 

6-methyl-5-hepten-2-one. The same strain can also convert the cis 

isomer, nerol (XII), or citral, a mixture of the aldehydes geranial 
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(XI) and neral (XL), to produce linalool (XXXIX) and α-terpineol 

(VI) (Demyttenaere et al., 2000): 

O
XL  

Geranylacetol (XLI) is converted by a strain of A. niger to 

11-hydroxygeranylacetol (XLII) and 9,10-

dihydroxygeranylacetol, whereas geranylacetone (XLIII) is 

converted to (S)-(+)-geranylacetol, 11-hydroxygeranylacetone, and 

(S)-(−)-9,10-dihydroxygeranylacetone, some of which are useful 

for the synthesis of optically active compounds (Madyastha et al., 

1993): 

OH

XLI

OH

XLII

1
2

3

4

5

6

7

8

9

10
11

O

XLIII

HO
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The mycelium of A. niger LCP 521 hydrolyzes geranyl N-

phenylcarbamate (XLIV) to form (6R)-geranyl N-

phenylcarbamate diol (XLV) with an enantiomeric excess over 

95% (Fourneron et al., 1989): 

 

XLIV

O NH

O

2
34

5 6

7 8

1

XLV

O NH

O

OH
OH

 

 

The bacterium Rhodococcus sp. GR3 regioselectively 

transformed geraniol (X) to geranic acid (XLVI) in 12.5 h 

(Chatterjee, 2004): 

COOH

XLVI  

The yeast Rhodotorula minuta in only 8 h reduced L-(−)-

citronellal (XLVII) to L-(−)-citronellol (XLVIII) with a yield of 

78.3% (Velankar and Heble, 2003): 
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CHO CH2OH

XLVII XLVIII  

The fungus Fusarium verticillioides in 12 h converted R-

(+)-limonene (XLIX) to R-(+)-perillyl alcohol (XXXI) with a 

yield of 12% (Oliveira and Strapasson, 2000): 

XLIX
 

Of the microbial transformations of monoterpenoids, those 

of greatest interest are those producing hydroxylated derivatives 

(Abraham and Arfmann, 1992; Khor and Uzir, 2011) that can be 

used in the stereospecific synthesis of valuable compounds, 

including potential antimalarial drugs. 

Cinerone (L), a cyclopentenone monoterpenoid, is 

hydroxylated at the 4-position by A. niger ATCC 9142 to produce 

cinerolone (LI), an intermediate in the synthesis of insecticides 

(Tabenkin et al., 1969): 
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L

1 2

34

5

O

LI

O

HO

 

 

The cyclic ether 1,4-cineole (LII) from lime juice is 

transformed by A. niger UI 172 to (±)-2-exo-hydroxy-1,4-cineole 

(LIII), a key precursor in herbicide synthesis, and (±)-2-oxo-1,4-

cineole (LIV) (Rosazza et al., 1987): 

LII

O

LIII

O

1
2

3
4

5

6

7

8 910

HO

LIV

O
O

 

1,8-Cineole (LV), also known as eucalyptol, has many uses 

as a flavoring, fragrance, and insecticide. It is transformed by a 

strain of A. niger to five metabolites, (±)-2-endo-hydroxycineole 

(LVI), (±)-2-oxocineole (LVII), (±)-3-endo-hydroxycineole 

(LVIII), (±)-3-exo-hydroxycineole LIX), and (±)-3-oxocineole 

(LX). Two of these metabolites, 3-exo-hydroxycineole and 3-

endo-hydroxycineole, are used to synthesize mosquito repellents 

(Nishimura et al., 1996): 
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LVIII

O

OH

LIX

O

H

H OH

LX

O
O

LV

O

LVI

O

LVII

O
1

2

3

4

5

6
7

89 10

OH

H
O

 

(−)-Menthol (LXI), a monoterpenoid flavoring compound 

from peppermint, is also used as a local anesthetic. It can be 

biotransformed with a strain of A. niger to produce the 1-, 2-, 6-, 

7-, 8-, and 9-hydroxymenthols (Asakawa et al., 1991). 8-

Hydroxymenthol (LXII), also known as p-menthane-3,8-diol, is a 

mosquito repellent. The same strain transforms another isomer, 

(+)-menthol (LXIII), mostly to the 7-hydroxy derivative but also 

to the 1-, 6-, 8-, and 9-hydroxymenthols (Asakawa et al., 1991): 

LXI

OH

LXII

OH

HO

LXIII

OH

1 2

3
4

5

6

7

8
10 9
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Terpinolene (δ-terpinene, LXIV), a monoterpene used for 

making plastics and resins, is transformed to 1,8-dihydroxy-p-

menth-3-ene-2-one (LXV) and two minor metabolites by the same 

strain of A. niger, which also metabolizes (−)-carvotanacetone 

(LXVI) to p-menthane-2,9-diol (LXVII) (Asakawa et al., 1991): 

 

LXIV LXV

HO

LXVI

1 2

3
4

5

6

7

8
10 9

HO
O O

LXVII

OH

OH
H

 

(+)-Fenchone (LXVIII), from the essential oil of fennel, is 

transformed to (+)-5α-hydroxyfenchone (LXIX) and (+)-6α-

hydroxyfenchone (LXX) by a strain of A. niger (Noma et al., 

1995): 

LXVIII LXIX

1

2
3

4

5
6

7

8 9

10

O O

HO

H

LXX

OH

HO

 

(+)-Camphorquinone (LXXI), used in dental composite 

resins, is transformed by a strain of A. niger mostly to (+)-(2R)-

exo-hydroxyepicamphor (LXXII), and (−)-camphorquinone 
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(LXXIII) is transformed mostly to (+)-(2R)-endo-

hydroxycamphor (LXXIV) (Miyazawa et al., 1995a): 

LXXI

1

2

34

5

6

7
8

9
10

O

LXXII

OH

OO

LXXIII LXXIV

O

O O

HO

H

H

1
2

3

 

Karahanaenone (LXXV), derived from the hop plant, is 

transformed to a mint aroma compound, (S)-karahanaenol 

(LXXVI), by a strain of A. niger (Miyazawa et al., 1995b): 

LXXV

O

LXXVI

OH

 

The other enantiomer, (−)-limonene, is also metabolized to 

carveols and other products by a strain of A. niger (Divyashree et 

al., 2006). The (8R) enantiomers in (4S,8RS)-limonene epoxides 
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(LXVII) and (4R,8RS)-limonene epoxides, which have two chiral 

carbons, are hydrolyzed by A. niger LCP 521, producing the 

(4S,8R) and (4R,8R) diols, respectively. The (8S)-limonene 

epoxide enantiomers are unchanged by the fungus, so the two 

epoxides and the two diols can be used in processes to synthesize 

all four stereoisomers of the sesquiterpenoid alcohol α-bisabolol, 

including the high-value product (−)-(4S,8S)-α-bisabolol 

(LXVIII), for different uses in cosmetics and fragrances (Chen et 

al., 1993): 

O

LXVII

H
HO

LXVIII  

 

 (R)-(+)-Citronellol (LXIX), an enantiomerically pure 

monoterpenoid alcohol, is transformed by A. niger ANA, mostly 

to the optical isomers (+)-cis-rose oxide (LXX) and (+)-trans-rose 

oxide (LXXI). In contrast, the isomer (S)-(−)-citronellol (LXXII) 

is transformed to (−)-cis-rose oxide (LXXIII) and (−)-trans-rose 

oxide (LXXIV), with 6-methyl-5-hepten-2-one and nerol oxide 

(LXXV) produced as minor metabolites (Demyttenaere et al., 

2004): 



 

   21 

LXXII

HO

LXXIII

O

LXXIV

O

LXIX

HO

LXX

O

LXXI

O

LXXV

O
1 2

3
4

5
6

7

8
9 10

1

2 3 4

5
6

7
8

 

A fragrance ingredient, citronellyl acetate (LXXVI), 

incubated with a strain of A. niger produces citronellol (LXIX) 

and 8-hydroxycitronellol, with 38 and 60% yield, respectively, in 

72 h (Madyastha et al., 1988):  

LXXVI

O

O

2
34

5 6

7 8

1

 

(3R)-(+)-Citronellyl N-phenylcarbamate (LXXVII) is 

converted by a strain of A. niger to either (3R,6R)-citronellyl N-

phenylcarbamate diol (LXXVIII) or the (3R,6S)-diol, depending 
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on the pH; the corresponding (3S)-(−)-enantiomer also undergoes 

similar pH-dependent reactions (Zhang et al., 1992): 

LXXVII

O NH

O

2
34

5 6

7 8

1

LXXVIII

O NH

O

OH
OH

 

(−)-cis-Rose oxide (LXX), a component of the fragrance of 

roses, is hydroxylated regiospecifically by A. niger IFO 4414 in 5 

days to (−)-cis-9-hydroxy-7E-rose oxide, the major product, which 

may be further oxidized to (−)-cis-7E-rose oxide-8-carboxylic 

acid. The analogous (−)-trans-metabolites are produced from (−)-

trans-rose oxide (LXXI) (Miyazawa et al., 1995). 

(S)-(+)-Linalool (LXXIX), one of the isomers of linalool 

produced by plants, is transformed by A. niger DSM 821 to the 

fragrance ingredients cis-(2S,5R)-furanoid linalool oxide (LXXX, 

yield 30%), trans-(2S,5S)-furanoid linalool oxide (LXXXI, yield 

5%), and cis-(3S,6S)-pyranoid linalool oxide (LXXXII, yield 

14%) (Demyttenaere et al., 2001). The other isomer, (R)-(−)-

linalool (XXXIX), is transformed to trans-(2R,5R)-furanoid 

linalool oxide (LXXXIII) and trans-(3S,6R)-pyranoid linalool 

oxide (LXXXIV), but the yields are only 3.3 and 1.1%, 

respectively (Demyttenaere et al., 2001):   
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LXXX

O

H

HO

LXXXI

O

H

HO

LXXXII

O

H

HO O

HO

LXXXIII LXXXIV

O

HO

LXXIX

HO

 

Linalyl acetate (LXXXV) is metabolized to linalool 

(LXXIX) and 8-hydroxylinalool with 25% and 45% yield, 

respectively, by a strain of A. niger, plus small amounts of 

geraniol (X) and α-terpineol (VI) (Madyastha et al., 1988):  

LXXXV

OO

 

 

2. Transformation of sesquiterpenoids 

Artemisinin (LXXXVI) is the most important antimalarial 

sesquiterpenoid obtained from plants (Klayman, 1985; Luo and 
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Shen, 1987; Liao, 2009), although several others have been 

described (Elmarakby et al., 1987; Chaturvedi et al., 2010; 

Rustaiyan et al., 2011). Biotransformation of artemisin has been 

aided by studies of QSAR (quantitative structure-activity 

relationships), which suggest modifications of artemisinin that are 

likely to increase antimalarial activity (Avery et al., 2002). 

Although many terpenoid biotransformations produce metabolites 

with less antimalarial activity, the products nevertheless may be 

useful for further modification (Liu et al., 2006). Occasionally, 

inactive compounds may be transformed to active metabolites by 

microbial processes (Musharraf et al., 2010). 

The bacterium Nocardia corallina ATCC 19070 

transformed artemisinin to deoxyartemisinin (LXXXVII, yield 

24%), which lacks antimalarial activity, in 14 days (Lee et al., 

1989). Cultures of Aspergillus flavus in 48 h transformed 

artemisinin to deoxyartemisinin (LXXXVII) with a yield of 30.5% 

(Srivastava et al., 2009): 

 

O CH3

H H

CH3

O

H
H3C

LXXXVII

O
OH

H

CH3

O
O
O

H
H3C

LXXXVI

O
CH3

7

9

1

23
4 5

14

6
5a

12a
88a

1011

13

15

12

O
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The fungus Cunninghamella elegans ATCC 9245 

transformed artemisinin to four different hydroxylated derivatives, 

7β-hydroxy-9α-artemisinin (LXXXVIII, yield 6.0%), 4α-

hydroxydeoxyartemisinin (LXXXIX, yield 5.4%), 7β-

hydroxyartemisinin (XC, yield 21.0%) and 6β-hydroxyartemisinin 

(XCI, yield 6.5%). The 7β-hydroxyartemisinin product (XC), 

which cannot be produced chemically, is valuable for further 

synthesis of candidate antimalarial compounds (Parshikov et al., 

2004a, b):  

 

O CH3

H H

CH3

O

H
H3C

LXXXIX

O
OH

H

CH3

O
O
O

H
H3C

LXXXVIII

O
CH3

7

9

O
OH

HO

O
H H

CH3

O
O
O

H
H3C

XC

O
CH3

OH

O
H H

CH3

O
O
O

H
H3C

XCI

O
CH3

OH
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Penicillium chrysogenum ATCC 9480 transformed 

artemisinin to two inactive compounds, deoxyartemisinin 

(LXXXVII, yield 1.0%) and 4α-hydroxydeoxyartemisinin 

(LXXXIX, yield 3.6%) in 13 days (Lee et al., 1989). 

Cunninghamella echinulata AS 3.3400 and Aspergillus niger AS 

3.795 in four days transformed artemisinin to 6β-

hydroxyartemisinin (XCI, yield 50%) and 4α-

hydroxydeoxyartemisinin (LXXXIX, yield 15%), respectively 

(Zhan et al., 2002a), and Mucor polymorphosporus AS 3.3443 

produced 7β-hydroxyartemisinin (XC) and two other 

hydroxylated products (Zhan et al., 2002b).  

Three strains of Umbelopsis ramanniana (Mucor 

ramannianus) hydroxylated artemisinin in 14 days to 7β-

hydroxyartemisinin (XC, yield 51–88%), 6β-hydroxyartemisinin 

(XCI, yield 1–51%), and two other isomers (Parshikov et al., 

2005a, b). Aspergillus niger VKM F-1119 hydroxylated 

artemisinin to 5β-hydroxyartemisinin (yield 80%) and 7β-

hydroxyartemisinin (XC, yield 19%) (Muraleedharan et al., 2003; 

Parshikov et al., 2003; 2005c; 2006a, b).  

The bacterium Streptomyces griseus ATCC 13273 oxidized 

artemisinin to a less active ketone, artemisitone (XCII, yield 

12.5%), in 3.5 days (Liu et al., 2006). Penicillium simplicissimum 

modified artemisinin to produce 4β-acetoxy and 4α-hydroxy 

derivatives (Goswami et al., 2010). 
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A few other natural sesquiterpenoids have been investigated 

for possible biotransformations. Arteannuin B (XCIII), another 

terpenoid produced by Artemisia annua, is transformed by the 

fungi Aspergillus flavipes and Beauveria bassiana to three 

different products (Elmarakby et al., 1987). A Microbacterium 

trichotecenolyticum extract transformed arteannuin B to 

artemisinin (Tatineni et al., 2006). Artediffusin (XCIV), a recently 

discovered sesquiterpene lactone produced by Artemisia diffusa 

(Rustaiyan et al., 2011), has antimalarial activity and may also be 

amenable to biotransformation: 
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Semisynthetic derivatives of artemisinin also have 

interested researchers seeking possible microbiological 

modifications. For example, U. ramanniana 1839 transformed the 

semisynthetic antimalarial drug 10-deoxoartemisinin (XCV) to the 

inactive 4α-hydroxydeoxy-10-deoxoartemisinin (XCVI, yield 

7.0%) and the partially active 7β-hydroxy-10-deoxoartemisinin 

(XCVII, yield 10.9%) in 14 days (Khalifa et al., 1995). Medeiros 

et al. (2002) optimized the conditions and obtained a 45% yield of 
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XCVII, which despite its lower antimalarial activity may be useful 

for further transformations, in 14 days. Aspergillus niger 

hydroxylated 10-deoxoartemisinin (XCV) to 7β-hydroxy-10-

deoxoartemisinin (XCVII, yield 69%) and 15-hydroxy-10-

deoxoartemisinin (yield 26%) (Parshikov et al., 2004a). 

Cunninghamella elegans ATCC 9245 transformed 10-

deoxoartemisinin (XCV) to three hydroxylated derivatives, 5β-

hydroxy-10-deoxoartemisinin (XCVIII, yield 8.8%), 4α-

hydroxydeoxy-10-deoxoartemisinin (XCVI, yield 4.6%) and 7β-

hydroxy-10-deoxoartemisinin (XCVII, yield 83.9%) (Parshikov et 

al., 2004c): 
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A minor sesquiterpene of Artemisia annua, artemisitene 

(XCIX), can also be produced chemically from artemisinin 

(Chaturvedi et al., 2010). Artemisitene was transformed by A. 
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niger NRRL 599 to 9α-artemisinin (C), 7β-hydroxydeoxy-9α-

artemisinin (CI) and 7β-hydroxy-9α-artemisinin (LXXXVIII), 

which has antimalarial activity (Orabi et al., 1999):  

O CH3
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Three isoprene units are used to make up the 

sesquiterpenoids, many of which have anti-inflammatory and other 

medicinal properties. Sesquiterpenoid drugs have been used in the 

treatment of diseases including cancer, cardiovascular disease, and 

malaria (Bhatti et al., 2009; Huang et al., 2012). 

α-Santalene (CII), a fragrant sesquiterpene from 

sandalwood essential oil, is metabolized by a strain of A. niger, 

mostly to the monoterpenoid teresantalic acid (CIII), which is 

used as a flavoring ingredient (Prema et al., 1962): 

OH

O

CIIICII
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Costunolide (CIV), a sesquiterpenoid lactone from 

magnolia trees that is cytotoxic to tumor cells in vitro, is converted 

by A. niger ATCC 16888 to dihydrocostunolide (CV), colartin 

(CVI), 11,13-dihydrosantamarine (CVII), 11,13-dihydroreynosin 

(CVIII), and tetrahydrovulgarin (CIX); all of these metabolites, 

however, lack cytotoxicity to tumor cells (Clark et al., 1979):  
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The sesquiterpenoids α-cyclocostunolide (CX), β-

cyclocostunolide (CXI), and γ-cyclocostunolide (CXII) are 

transformed by another strain of A. niger by double-bond 

reduction, hydroxylation, methylene oxidation, and conjugation to 

form several metabolites (Hashimoto et al., 2001): 
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The nerolidols are sesquiterpenoids from plant essential oils 

that are used in flavors and perfumes. cis-nerolidol (CXIII) is 

transformed by A. niger ATCC 9142 to a major product, 10,11-

dihydroxy-10,11-dihydro-cis-nerolidol, and a minor product, 12-

hydroxy-cis-nerolidol (Arfmann et al., 1988). trans-nerolidol 

(CXIV) is transformed by the same strain to all-trans-12-

hydroxynerolidol, 10,11-dihydroxy-10,11-dihydro-trans-nerolidol, 

1,2,12-trihydroxy-1,2-dihydro-trans-nerolidol, trans-nerolidol 12-

carboxylic acid, trans-12-acetoxynerolidol, and 6E,10Z-12-

hydroxynerolidol (Arfmann et al., 1988): 
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Farnesol (CXV), a sesquiterpenoid alcohol from plant 

essential oils, is used in perfumes, tobacco flavoring, and 

pesticides. A mixture of farnesol isomers is hydroxylated by A. 

niger DSM 63263 to produce 12-hydroxyfarnesol (Arfmann et al., 

1988); and by another strain of A. niger to produce 12-

hydroxyfarnesol (yield 35%) and 10,11-dihydroxyfarnesol (yield 

48%) [33]. α-Farnesene (CXVI), a sesquiterpene found in the 

essential oils of fruits, is transformed by A. niger LB 2025 to four 

terpenoid alcohols: two diastereomers of p-menth-1-en-3-[2-

methyl-1,3-butadienyl]-8-ol (CXVII) and two diastereomers of 

2,6,10-trimethyldodeca-2,7,9,11-tetraen-6-ol (Krings et al., 2006): 
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(R)-Caryolan-1-ol (CXVIII) is transformed by A. niger 

MMP 521, forming caryolan-1,14-diol (CXIX) with a yield of 

26% (Lamare et al., 1989): 
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 The fragrance compound patchoulol (CXX), from 

patchouli oil, is hydroxylated by a strain of A. niger to form a diol 

(Lamare et al., 1990). Cedrol (CXXI), from cedarwood oil, is 

hydroxylated by A. niger ATCC 9142 to form another diol 

(Lamare et al., 1990): 

 

CXXI

HO H

H

OH

CXX  

 

Germacrone (CXXII), a sesquiterpenoid produced by 

several plants, is transformed by a strain of A. niger to the anti-

inflammatory drug zedoarondiol (CXXIII) and 3β-

hydroxygermacrone (Asakawa et al., 1991; Cho et al., 2009): 
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(+)-Germacrone-4,5-epoxide (CXXIV), a sesquiterpenoid 

epoxide derived from a species of turmeric, is transformed by a 

strain of A. niger into zedoarondiol (CXXIII) and isozedoarondiol 

(CXXV) (Asakawa et al., 1991): 

CXXIV
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HO

OH
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(+)-Curdione (CXXVI), from a traditional Chinese 

medicine, is transformed by growing cells of A. niger AS 3.739 to 

several metabolites, including 3α-hydroxycurdione, 2β-

hydroxycurdione, curcumalactone (CXXVII), 3α-

hydroxycurcumalactone, (10S)-9,10-dihydroxycurcumalactone, 

and (10R)-9,10-dihydroxycurcumalactone (Asakawa et al., 1991; 

Chen et al., 2014): 
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A sesquiterpenoid ketone, 1,4,4-

trimethyltricyclo[5.4.0.03,5]undec-7-en-9-one (CXXVIII), is 

hydroxylated at the 13- and 12-methyl groups by A. niger ATCC 

9142 to produce 4(S)- and 4(R)-(hydroxymethyl)-1,4-

dimethyltricyclo[5.4.0.03,5]undec-7-en-9-one, respectively (Hebda 

et al., 1991): 
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(−)-α-Santonin (CXXIX), a sesquiterpenoid lactone from 

the sandalwood plant, was formerly used as an anthelmintic. It is 

transformed by one strain of A. niger to 1,2-dihydro-α-santonin 

(Atta-ur-Rahman et al., 1998) and by a different strain to 1-

hydroxy-α-santonin, 13-hydroxy-α-santonin, 3,6,9-trihydroxy-

9,10-seco-selina-1,3,5(10)-trien-12-oic acid-12,6-lactone (CXXX), 

and the photoproduct lumisantonin (CXXXI) (Hashimoto et al., 

2001). Another strain, A. niger ATCC 9142, transforms (−)-α-
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santonin (CXXIX) to 11β-hydroxy-α-santonin, 14-hydroxy-α-

santonin, and 3,6-dihydroxy-9-keto-9,10-seco-selina-1,3,5(10)-

trien-12-oic acid-12,6-lactone (CXXXII) (Lamm et al., 2009):  
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11,13-Dehydro-(−)-α-santonin is transformed by A. niger 

MIL 5024 to produce the metabolites (−)-α-santonin (CXXIX), 

11β-hydroxy-(−)-α-santonin, 13-hydroxy-(−)-α-santonin, 3,6,9-

trihydroxy-9,10-seco-selina-1,3,5(10)-trien-l2-oic acid-12,6-

lactone (CXXX), and 8β-hydroxy-(−)-α-santonin (Iida et al., 

1993).  

 (−)-Drimenol (CXXXIII), a sesquiterpenoid alcohol from 

the Winter’s bark tree of Chile and Argentina, is useful for chiral 

synthesis. Hydroxylation by a strain of A. niger produces 3β-

hydroxy-(−)-drimenol (CXXXIV); drimenyl acetate (CXXXV) is 
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also transformed to the corresponding 3β-hydroxy derivative 

(Ramirez et al., 1993):  
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Sclareolide (CXXXVI), a sesquiterpenoid lactone obtained 

from sage plants and used as a fragrance, is transformed by A. 

niger ATCC 10549 to five metabolites: 3-ketosclareolide, 1β- and 

3β-hydroxysclareolide, and 1α,3β- and 1β,3β-dihydroxysclareolide 

(Atta-ur-Rahman et al., 1997): 
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Myli-4(15)-en-9-one (CXXXVII) and myliol 

(CXXXVIII), two sesquiterpenoids derived from a liverwort, are 

hydroxylated by A. niger IFO 4407 at the 12-methyl group 

(Hayashi et al., 1998): 
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(−)-Hinesol (CXXXIX), a sesquiterpenoid alcohol from a 

Chinese medicinal plant, is transformed by a strain of A. niger to 

eight metabolites: 2-ketohinesol, 2α- and 2β-hydroxyhinesol, two 

trans-1,2-dihydrodiols, 3α,13- and 3α,12-dihydroxyhinesol 10,11-

ethers, and 3α,13-dihydroxy-1,2-epoxyhinesol 10,11-ether 

(Hashimoto et al., 1999): 
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The tricyclic sesquiterpene Δ9(15)-africanene (CXL), 

incubated with A. niger ATCC 9642 for 8 days, produces 10α-

hydroxy-Δ9(15)-africanene and 9α,15-epoxyafricanane 

(Venkateswarlu et al., 1999): 
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Dehydropinguisenol (CXLI), a furanosesquiterpenoid 

alcohol obtained from a liverwort, is metabolized by a strain of A. 

niger to two metabolites, 10-oxolejeuneapinguisenol (CXLII) and 

lejeuneapinguisenol (CXLIII), in 3 to 5 days of incubation 

(Lahlou et al., 2000): 
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Dehydrocostus lactone (CXLIV), a drug derived from an 

Asian plant, inhibits the activation of NF-κB, a protein complex 

which regulates immune responses. It is transformed regio- and 

stereospecifically by a strain of A. niger via double-bond 

reduction, epoxidation, ring hydroxylation, and epoxide hydrolysis 

to six metabolites (Hashimoto et al., 2001. Atractylon (CXLV), 

found in a Chinese herbal medicine, is transformed by the same 

strain to produce atractylenolide III (CXLVI), which inhibits 

vascular permeability (Hashimoto et al., 2001): 
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A sesquiterpenoid cyclic ether from a liverwort, (−)-

maalioxide (CXLVII), is hydroxylated by a strain of A. niger to 

three metabolites: 1β-hydroxy-(−)-maalioxide, 1β,9β-dihydroxy-

(−)-maalioxide, and 1β,12-dihydroxy-(−)-maalioxide (Hashimoto 

et al., 2004): 
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(−)-Isolongifolol (CXLVIII), a derivative of a 

sesquiterpene from Himalayan pine resin, is transformed by A. 

niger ATCC 10549 to the metabolites 10α- and 9α-

hydroxyisolongifolol, which inhibit butyrylcholinesterase activity 

and have been investigated for the treatment of diseases of the 

nervous system (Choudhary et al., 2005): 
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Nootkatone (CXLIX), a sesquiterpenoid ketone from 

grapefruits, is biotransformed by a strain of A. niger to three 

metabolites, 12-hydroxy-11,12-dihydronootkatone (yield 10.6%) 

and a mixture of  (11R)- and (11S)-nootkatone-11,12-diol 

(combined yield 51.5%) (Furusawa et al., 2005). The related 

sesquiterpene valencene (CL), from orange oil, can be 

biotransformed by the same strain to the same three metabolites as 

nootkatone plus four minor metabolites. The ratio of (11R)- and 

(11S)-diols from valencene was found by derivatization and HPLC 

analysis to be 3:1 (Furusawa et al., 2005): 
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A tricyclic sesquiterpene, (+)-1(10)-aristolene (CLI), from 

a Chinese medicinal plant, is transformed by a strain of A. niger to 

2-oxo-1(10)-aristolen-12-oic acid, 3β-hydroxy-1(2),9(10)-

aristoladien-13-oic acid, 3-oxo-1(2),9(10)-aristoladien-13-oic acid, 

and 2β,3α-dihydroxynardosinan-1(10),8(9)-dien-11β-methyl-12,7-

olide (CLII) (Furusawa et al., 2006). The same strain also 

transforms plagiochilide (CLIII), a sesquiterpenoid from a 

liverwort, to 12-hydroxyplagiochilide and plagiochilid-12-oic acid 

(Furusawa et al., 2006): 
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Cyclomyltaylan-5α-ol (CLIV), another sesquiterpenoid 

from a liverwort, is biotransformed by a strain of A. niger in 5 

days to four metabolites: cyclomyltaylane-5α,9β-diol, 

cyclomyltaylane-5α,10β-diol, cyclomyltaylane-5α,9β,15-triol, and 

5-oxocyclomyltaylane-9β,15-diol (Furusawa et al., 2006). ent-β-

Chamigren-1β-ol (CLV) is transformed to β-chamigren-1β,9α-

diol, β-chamigren-1β,8α-diol, and β-chamigren-1β,8α,15-triol 

(Furusawa et al., 2006): 



 

   43 

CLIV
OH

1 2

3

4

5

6
7

8
9

10 11

12 13

14
15 OH

1 2
3

45

6
78

9

10
11

13 12

14

15

CLV  

 

7α-Hydroxyfrullanolide (CLVI), a sesquiterpenoid lactone 

from the East Indian globe thistle, inhibits growth of Gram-

positive bacteria and the production of pro-inflammatory 

cytokines. A. niger ATCC 1004 transforms it to three metabolites: 

11,13-dihydro-7α-hydroxyfrullanolide, 13-acetyl-7α-

hydroxyfrullanolide, and 2α,7α-dihydroxyfrullanolide, which are 

much less antibacterial (Ata et al., 2009): 

CLVI

1

2

3 4
5 6

7

8

9

10

11 13

12
O

O

OH

H

14

15

 

 

A sesquiterpenoid, (+)-(S)-ar-turmerone (CLVII), from the 

rhizomes of black turmeric, inhibits acetylcholinesterase activity. 

It is oxidized by A. niger NBRC 4414 to four metabolites: (+)-

(7S)-hydroxydehydro-ar-todomatuic acid (CLVIII), (+)-(7S,10E)-
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12-hydroxydehydro-ar-todomatuic acid, (+)-(7S,10E)-7,12-

dihydroxydehydro-ar-todomatuic acid, and (+)-(7S)-15-carboxy-

9,13-epoxy-7-hydroxy-9,13-dehydro-ar-curcumene (CLIX) 

(Fujiwara et al., 2011). The same strain also metabolizes (+)-(S)-

dihydro-ar-turmerone (CLX) to (+)-7,11-dihydroxy-ar-

todomatuic acid (Fujiwara et al., 2011): 
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Onopordopicrin (CLXI), an antibacterial but cytotoxic 

sesquiterpenoid lactone produced by several plants, is transformed 

by A. niger PTCC 5011 to 11αH-dihydroonopordopicrin, 11βH-

dihydroonopordopicrin, 3β-hydroxy-11βH-

dihydroonopordopicrin, and 14-hydroxy-11βH-

dihydroonopordopicrin (Esmaeili et al., 2012): 
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Curcumol (CLXII), a sesquiterpenoid with antitumor and 

antivirus activity, is derived from a species of turmeric used in 

Chinese traditional medicine. It is transformed by A. niger AS 

3.739 to 3α-hydroxycurcumol and 3α-(4’methoxysuccinyloxy)-

curcumol (CLXIII) (Chen et al., 2013): 

 

OH

CLXII

O

H

1

2

3
4

5 6 7

8

9
10

14

11

12

13

OH

CLXIII

O

H

1

2

3
4

5 6 7

8

9
10

14

11

12

13
OH3CO

O

O

1'
2'

3'
4'

5'

 

Shiromodiol diacetate, a sesquiterpenoid epoxide obtained 

from an Asian tree, is hydroxylated by A. niger IFO 4407 to 

produce 2β-hydroxyshiromodiol diacetate (CLXIV), with a 59% 

yield in 4 days (Hayashi et al., 1998): 
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3. Transformation of diterpenoids 

Many diterpenoids from medicinal plants have antimalarial 

activity (García et al., 2007; Titanji et al., 2008; Kaur et al., 2009). 

Cultures of the fungus Cephalosporium aphidicola CCT 2163 

hydroxylate the kaurane diterpenoid ent-kaur-16-en-19-ol (CLXV) 

with formation of two products, ent-kauran-16b,19-diol (CLXVI, 

yield 54%) and ent-kauran-16b,17,19-triol (CLXVII, yield 

18.6%), in 13 days (Rocha et al., 2009): 
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Because plants containing pimarane diterpenoids, such as 

Kaempferia marginata, have been used as antimalarials in 

traditional medicine, the pimaranes have also been investigated for 

antimalarial activity (Thongnest et al., 2005). Although the 

reduction of specific carboxyl groups to alcohols is not always 

possible by chemical methods, the fungus Glomerella cingulata 

regioselectively transformed ent-pimara-8(14),15-dien-19-oic acid 

(CLXVIII) to ent-8(14),15-pimaradien-19-ol (CLXIX, yield 

18.3%) in 10 days (Severiano et al., 2010). Mucor rouxii 

converted CLXVIII to ent-pimara-7,15-dien-19-oic acid (CLXX, 

yield 2.8%) and 7-keto-ent-pimara-8,15-dien-19-oic acid (CLXXI, 

yield 2.1%) in 7 days (Severiano et al., 2010): 
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Some mulinane derivatives from the medicinal plant 

Azorella compacta have been shown to have antiplasmodial 

activity (Loyola et al., 2004). Mucor plumbeus IMI 116688 

transformed mulin-11,13-dien-20-oic acid (CLXXII) to two 

metabolites, 16-hydroxymulin-11,13-dien-20-oic acid (CLXXIII, 

yield 0.8%) and 7α,16-dihydroxymulin-11,13-dien-20-oic acid 

(CLXXIV, yield 0.75%) in 15 days (Areche et al., 2008): 
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The diterpenoids found in plant resins consist of four 

isoprene units in a variety of arrangements. They are not used as 

fragrances, but several of them have medicinal properties, 

especially the taxoids produced by yew trees, which have valuable 

anticancer activity. Biotransformation processes have been 

developed for many diterpenoids (Bhatti et al., 2014).  

17-Norkauran-16-one (CLXXV) and ent-17-norkauran-16-

one (CLXXVI), which are tetracyclic diterpenoids that are 
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possible gibberellin precursors in plants, are biotransformed by A. 

niger ATCC 26693 to the 3β-hydroxy and 3α-hydroxy derivatives, 

respectively (Anderson et al., 1975). In contrast, 17-

norphyllocladan-16-one (CLXXVII) is biotransformed to the 3β-

hydroxy and the 3-keto derivatives (Anderson et al., 1975): 
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A similar diterpenoid, ent-18-acetoxykaur-16-en-3,7-dione 

(CLXXVIII), can be transformed by A. niger CECT 2091. 

Acetoxyl hydrolysis produces ent-18-hydroxykaur-16-en-3,7-

dione in 2 days; ent-16β,18- and ent-17,18-dihydroxykauran-3,7-

dione; and ent-l6α,17,18- and ent-16β,17,18-trihydroxykauran-3,7-

dione can also be isolated after 6 days (García-Granados et al., 

1986). ent-Kaur-16-en-19-oic acid (kaurenoic acid, CLXXIX), a 

diterpenoid from the roots of a medicinal plant, has antispasmodic 

and anti-inflammatory properties. It is transformed by A. niger 

AN-1 to two dihydroxylated metabolites, ent-7α,11β-dihydroxy-

kaur-16-en-19-oic acid (20% yield) and ent-1β,7α-dihydroxy-kaur-

16-en-19-oic acid (5.8% yield) in 13 days (Marquina et al., 2009): 
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Isosteviol (CLXXX), an ent-beyer-19-oic acid derivative 

with a variety of biological effects, is biotransformed by A. niger 

CMI 17454 to form 7β-hydroxyisosteviol and 1α,7β-

dihydroxyisosteviol (Oliveira et al., 1999). Another strain, A. niger 

IFO 4414, metabolizes isosteviol not only to 7β-hydroxyisosteviol 

but also to 11β- and 12β-hydroxyisosteviol; all three of these 

metabolites have antitumor activity (Akihisa et al., 2004). 

Isosteviol lactone (CLXXXI) is biotransformed by A. niger BCRC 

31130 to seven different hydroxylated diterpenoids, some of which 

inhibit the activator protein-1 transcription factor (Chou et al., 

2009). Isostevic acid (CLXXXII) is hydroxylated by A. niger 

BCRC 32720 to eight metabolites with anti-inflammatory 

properties (Yang et al.,2012): 
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The tetracyclic diterpenoid ent-16β-hydroxybeyeran-19-oic 

acid (CLXXXIII) is hydroxylated by A. niger CCRC 32720 to 

ent-1β,7α,16β-trihydroxybeyeran-19-oic acid and ent-1β,7α-

dihydroxy-16-oxobeyeran-19-oic acid, both of which have greater 

antihypertensive activity than the starting drug [81]. A similar 

diterpenoid from a Mexican plant, ent-beyer-15-en-19-oic acid 

(CLXXXIV), is hydroxylated by A. niger AN-1 to ent-1β,7α-

dihydroxy-beyer-15-en-19-oic acid (yield 40%) (Marquina et al., 

2009): 
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(−)-Ambroxide (Ambrox, CLXXXV), a diterpenoid used in 

fragrances, is transformed by a strain of A. niger, by oxidation at 
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the C3 and C18 positions and hydrolysis of the furan ring, to 

produce four metabolites (Hashimoto et al., 2001): 
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Stemodin (CLXXXVI), a tetracyclic diterpenoid produced 

by the seaside twintip plant of Jamaica, is biotransformed in 

cultures of A. niger ATCC 9142 to 2α,3β,13-, 2α,7β,13-, and 

2α,13,16β-trihydroxystemodane (Furusawa et al., 2005). The same 

strain also transforms stemodinone (CLXXXVII) to 13,18- and 

13,16β-dihydroxystemodan-2-one; and it transforms stemarin 

(CLXXXVIII) to four metabolites, including three carboxylic 

acids (Chen et al., 2002): 
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Baccatin VI (CLXXXIX), a taxoid diterpenoid from a 

Chinese yew tree, can be biotransformed with A. niger BCRC 

31130 to produce the diterpenoids taxumairol S1 (CXC) and 

taxumairol T1 (CXCI), which have been used in antitumor 

research (Shen et al., 2003): 
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Similarly, the biotransformation of 1β-hydroxybaccatin I 

(CXCII), a polyacetylated diterpenoid epoxide from the Chinese 

yew, by A. niger BCRC 31130 produces a mixture of taxumairol S 

(CXCIII) and taxumairol T (CXCIV) (Shen et al., 2003): 
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5α-Hydroxy-10β-methoxy-2α,14β-diacetoxytaxa-

4(20),11(12)-diene (CXCV), a taxadiene diterpenoid, is 

transformed by A. niger CGMCC 3.1858 by demethylation, 

acetylation, deacetylation, and O-alkylation to seven metabolites. 

One of them, 2α-hydroxy-5α,10β,14β-triacetoxytaxa-4(20),11(12)-

diene, has the potential to prevent resistance to chemotherapeutic 

drugs in some tumor cells (Liu et al., 2012): 
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Solidagenone (CXCVI), a diterpenoid found in Chilean 

goldenrod rhizomes, is hydroxylated to 3β-hydroxy- and 19-
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hydroxysolidagenone, which have gastroprotective effects on 

cultured epithelial cells, when incubated with A. niger ATCC 

16404 (Schmeda-Hirschmann et al., 2004): 
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A diterpenoid from a tarweed plant, 13R,14R,15-

trihydroxylabd-7-ene (CXCVII), is transformed by a strain of A. 

niger to produce 3β,13R,14R,15-tetrahydroxy-labd-7-ene; and 

13R,14R,15-trihydroxylabd-8(17)-ene (CXCVIII) is transformed 

by the same strain to produce 7α,13R,14R,15-tetrahydroxylabd-

8(17)-ene and 13R,14R,15-trihydroxy-3-oxo-labd-8(17)-ene 

(Haridy et al., 2006):  
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Neoandrographolide (CXCIX), a diterpenoid from a 

Chinese traditional medicinal plant, is biotransformed by A. niger 

AS 3.739 to five products:  8(17),13-ent-labdadien-16,15-olid-19-

oic acid, 19-hydroxy-8(17),13-ent-labdadien-16,15-olide, 18-

hydroxy-8(17),13-ent-labdadien-16,15-olid-19-oic acid, 3α-

hydroxy-8(17),13-ent-labdadien-16,15-olid-19-oic acid, and 

8β,19-dihydroxy-ent-labd-13-en-16,15-olide (Chen et al., 2007): 
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Jatrophone (CC), a relatively toxic antiprotozoal and 

antileukemic diterpenoid from a plant native to Middle and South 

America, is regioselectively converted by A. niger ATCC 16404 to 

a small amount of the much less cytotoxic 9β-hydroxyisabellione 

in 25 days (CCI, yield 0.65%) (Pertino et al., 2007): 
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Imbricatolic acid (CCII), a diterpenoid obtained from the 

common juniper, is regioselectively transformed by cultures of A. 

niger ATCC 16404 to 1α-hydroxyimbricatolic acid (CCIII) in 15 

days (Schmeda-Hirschmann et al., 2007): 
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Stypotriol triacetate (CCIV), a derivative of a compound 

found in brown algae, is converted by A. niger ATCC 16404 to 

6’,14-diacetoxystypol-4’,5’-dione (CCV) in 20 days, with a 1.7% 

yield after purification (Areche et al., 2011): 
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ent-Pimaradienoic acid (CCVI), an antibacterial 

diterpenoid from a Chinese yew tree, is derivatized by 

biotransformation with a strain of A. niger to 7α-hydroxy-ent-

pimara-8(14),15-dien-19-oic acid, 1β-hydroxy-ent-pimara-

6,8(14),15-trien-19-oic acid, 1α,6β,14β-trihydroxy-ent-pimara-

7,15-dien-19-oic acid, and 1α,6β,7α,11α-tetrahydroxy-ent-pimara-

8(14),15-dien-19-oic acid (Severiano et al., 2013): 
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Triptonide (CCVII), a diterpenoid triepoxide lactone from 

a Chinese medicinal vine, has anti-inflammatory and antitumor 

activity but also significant toxicity. A. niger AS 3.739 transforms 

it to the less toxic metabolites 5α-hydroxytriptonide, triptolide 

(with a 14β-hydroxyl group), 17-hydroxytriptonide, and 16-

hydroxytriptonide without hydrolyzing any of the three epoxide 

groups (Ning et al., 2003): 
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Gelomulide G (3β,6β-diacetoxy-8β,14β-epoxyabiet-13(15)-

en-16,12-olide, CCVIII), a diterpenoid epoxy lactone from a 

tropical Asian plant with antileishmanial activity, when incubated 

with A. niger ATCC 10549 produces two metabolites, 3β,6β-

diacetoxy-8β,14β-dihydroxyabiet-13(15)-en-16,12-olide (CCIX) 

and 3β,6β-diacetoxy-14β-hydroxyabiet-8(9),13(15)-dien-16,12-

olide (CCX) (Choudhary et al., 2005): 
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4. Transformation of triterpenoids 

Several triterpenoids from plant essential oils are potential 

antimalarial drugs (Kaur et al., 2009). The lupanes are a group of 

pentacyclic triterpenoids that contain compounds with antimalarial 

activity (Suksamrarn et al., 2006; Kaur et al., 2009). Aspergillus 

ochraceus converted lupeol (CCXI) to two metabolites, CCXII 

(yield 19.0%) and CCXIII (yield 11.1%) in 10 days (Carvalho et 

al., 2010): 
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Also, M. rouxii transformed lupeol (CCXI) to two 

metabolites, CCXIV (yield 26.5%) and CCXV (yield 16.0%) in 

10 days (Carvalho et al., 2010): 
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The triterpenoids betulinic acid and betulonic acid are 

known to have antimalarial activity (Sá et al., 2009). Several fungi 

have been investigated for their ability to biotransform these 

compounds. For instance, Colletotrichum sp. transformed betulinic 

acid (CCXVI) to 3-oxo-15α-hydroxylup-20(29)-en-28-oic acid 

(CCXVII, yield 2.34%) (Bastos et al., 2007): 
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Some oleanolic acids from medicinal plants have been 

reported to be antimalarial (Cimanga et al., 2006; Kaur et al., 

2009). The fungus Absidia glauca CGMCC 3.67 transformed 3-

oxo-oleanolic acid (CCXVIII) to three new derivatives, 1β-

hydroxy-3-oxo-olean-11-eno-28,13-lactone (CCXIX, yield 

0.74%), 1β,11α-dihydroxy-3-oxo-olean-12-en-28-oic acid 

(CCXX, yield 2.3%) and 1β,11α,21β-trihydroxy-3-oxo-olean-12-

en-28-oic acid (CCXXI, yield 0.23 %) (Guo et al., 2010): 
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The triterpenoid ursolic acid, from the medicinal plant 

Morinda lucida, has been shown to have antimalarial activity 

(Cimanga et al., 2006). The soil fungus Umbelopsis isabellina 

converted ursolic acid (CCXXII) to three metabolites, 3β-

hydroxy-urs-11-eno-28,13-lactone (CCXXIII, yield 0.69%), 

3β,7β-dihydroxy-urs-11-eno-28,13-lactone (CCXXIV, yield 

0.5%) and 1β,3β-dihydroxy-urs-11-eno-28,13-lactone (CCXXV, 

yield 0.88%) (Fu et al., 2011): 
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Transformation of another triterpenoid, senegenin 

(CCXXVI), by Nocardia sp. NRRL 5646 was accompanied by the 

formation of senegenic acid 28-methyl ester (CCXXVII) (Zhang 

et al., 2005): 
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Platycodin D (CCXXVIII), a triterpenoid saponin with two 

side chains, from the root of the Asian bellflower, is transformed 

by a crude enzyme preparation from A. niger KCTC 6906 to a 

saponin lacking the terminal apiose and xylose of one side chain. 

This derivative has greater nitrite-scavenging activity and less 

toxicity (Wie et al., 2007):  
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A triterpenoid saponin derived from licorice, glycyrrhizic 

acid (glycyrrhizin, CCXXIX), is metabolized by a strain of A. 

niger that removes two glucuronic acid residues to produce the 

triterpenoids 7β,15α-dihydroxy-3,11-dioxo-oleana-12-en-30-oic 
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acid and 15α-hydroxy-3,11-dione-oleana-12-en-30-oic acid (Kang 

et al., 2008):  
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5. Transformation of tetraterpenoids 

Carotenoids, an important group of tetraterpenoids found in 

nearly all plants, are often biotransformed for preparation of food 

additives and flavorings (Uenojo and Pastore, 2010). 

Biotransformation of β-carotene may produce retinoids, which can 

be used as raw materials for drugs and cosmetics (Jang et al., 

2011), and some retinoids, including retinol, have antimalarial 

activity (Hamzah et al., 2003). A recombinant strain of 

Esсherichia coli expressing β-carotene 15,15’-mono(di)oxygenase 

and the mevalonate pathway transformed β-carotene (CCXXX) to 



 

   67 

retinal (CCXXXI), the antimalarial retinol (CCXXXII) and 

retinyl acetate (CCXXXIII) (Jang et al., 2011): 
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For the biotransformation of β-carotene, over 300 strains of 

microorganisms (bacteria, yeasts and filamentous fungi) were 

tested and seven unidentified strains showed transformation 

activity (Uenojo and Pastore, 2010). The isoprenoid chain of β-

carotene (CCXXX) was cleaved with the formation of several 

products, including the principal product β-ionone (CCXXXIV), 

β-damascone (CCXXXV), β-damascenone (CCXXXVI), 

pseudoionone (CCXXXVII) and probably 1,1,6-trimethyl-1,2,3,4-

tetrahydronaphthalene (CCXXXVIII) (Uenojo and Pastore, 

2010): 



 

68 

 

CH3

CH3

O

CH3

CH3

OCH3H3CCH3H3C

CH3

CH3

OCH3H3C

CH3

CH3

OCH3H3C CH3H3C

CH3

CCXXXIV CCXXXV CCXXXVI

CCXXXVII CCXXXVIII
 

 

Conclusion 

A work with terpenoids may suggest new biotransformation 

experiments that use fungi to produce new drug candidates. The 

most useful biotransformations should be amenable to improved 

methods and scale-up so that larger quantities of new metabolites 

may be made available for investigation. 

Currently, artemisinin derivatives appear to be the most 

promising sources of new terpenoid antimalarial drugs. The main 

route selected by most researchers for the preparation of 

derivatives begins with chemical reduction of the carbonyl at 

position 10 of artemisinin to produce the toxic antimalarial 

compound dihydroartemisinin (Klayman, 1985; Li et al., 1998; 

Chaturvedi, 2011). 
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Arteether can be converted to several metabolites, not only 

by mammalian systems but also by fungi and bacteria (Vroman et 

al., 1999). Other chemical derivatives of artemisinin may be useful 

in the future for the microbial biosynthesis of new drugs with 

novel therapeutic properties. The combination of artemether with 

the unrelated drug lumefantrine is one of five artemisinin-based 

combinations currently recommended by the World Health 

Organization (WHO) for treatment of malaria (Omari et al., 2004; 

O’Brien et al., 2011). Various laboratories now are conducting 

research on hybrid trioxaquine molecules that have two different 

modes of action (Chauhan et al., 2010), such as a drug combining 

the structures of artemisinin and quinine that is highly effective 

against P. falciparum (Walsh et al., 2007). 

The mechanisms of action of artemisinin and its derivatives 

on malaria parasites have not been completely studied, but there is 

evidence that the endoperoxide group plays an important role in 

antimalarial activity (Vroman et al., 1999; Muraleedharan and 

Avery, 2009; Fernández and Robert, 2011). The endoperoxide 

linkage breaks down under the influence of heme iron, with 

formation of an oxy free radical and then a carbon free radical, 

which interacts with proteins of the parasite to cause its death 

(Chaturvedi et al., 2010).  

Some of the artemisinin derivatives, especially the trioxane 

dimers, are selectively cytotoxic; they have been shown not only 
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to target cancer cells by inducing apoptosis but also to prevent 

tumor growth by antiangiogenesis (Beekman et al., 1998; Posner 

et al., 2006; Nakase et al., 2008). The endoperoxide moiety 

required for antimalarial activity also appears to be required for 

cytotoxicity toward tumor cell lines (Beekman et al., 1998; 

Meunier and Robert, 2010). Therefore, in the development of 

microbial biotransformation processes for the derivatization of 

artemisinin, the endoperoxide group should be preserved.  

Among the microbial biotransformation processes 

described here, the ones of greatest interest are those for the 

regiospecific and stereospecific hydroxylation of artemisinin and 

other antimalarial terpenoids because they increase solubility and 

provide sites for further modification (Medeiros et al., 2002; 

Parshikov et al., 2006). Microbial biotransformation procedures 

can be used to obtain terpenoid derivatives hydroxylated in almost 

any position, including some not obtainable by organic synthesis, 

such as 7β-hydroxyartemisinin (Parshikov et al., 2004b; Khor and 

Uzir, 2011). These metabolites may be used for further chemical 

or biological transformations that yield many potential candidate 

drugs from one compound. 

Future research on antimalarial terpenoids should include 

studies of the biochemistry of the most useful biotransformations 

and of the antiplasmodial efficacy and toxicity of each of the 

metabolites. The compounds that are most effective against drug-
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resistant strains of P. falciparum or P. vivax may be produced in 

higher yields by the use of biotechnology. New biotransformations 

of terpenoids, perhaps combined with chemical derivatization, 

may provide ways to overcome parasite resistance to currently 

used antimalarial drugs. 

Hydroxylated derivatives of artemisinins obtained by 

microbial techniques may be used to create hybrid molecules 

based on molecules of nitrogenous heterocycles (Dovgilevich et 

al., 1991; Khasaeva et al., 2014; Modyanova et al., 1999, 2010; 

Parshikov et al., 1992, 1994, 1997, 1999a,b,c, 2000a,b,c,d, 

2001a,b,c,d, 2002a,b,c,d, 2010b,c,d,e ; Sutherland et al., 2001; 

Terentyev et al., 1989, 1997, 2010; Williams et al., 2001, 2004; 

Williamson et al., 2007). 
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