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Abstract

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is describedin terms of
a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus
implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the
dynamics of the particle as well as in the phase space of the non dissipative system. In particular, inelastic collisionscan be
assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the
system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and
sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such
a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do
indeed suppress Fermi acceleration in two-dimensional time dependent billiards.
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1. Introduction

During the last decades many theoretical studies on dissipa-
tive systems have been introduced in order to explain differ-
ent physical phenomena in different fields of science including
atomic and molecular physics [1, 2, 3], turbulent and fluid dy-
namics [4, 5, 6, 7], optics [8, 9, 10], nanotechnology [11, 12],
quantum and relativistic systems [13, 14, 15]. Different pro-
cedures have been used to describe such systems and two main
different approaches are: (i) solving differential ordinary/partial
equations or; (ii) using the so called billiard formalism. In prin-
ciple, to chose procedure (i) or (ii) strongly depends on thetype
of system considered and possible existing symmetries. Case
(i) are more likely devoted to systems where the external po-
tential are smooth while case (ii) describes situations where the
potential is null, say inside the boundary, and infinity outside
of the boundary. The boundary identifies the position of this
abrupt change. In this paper we shall concentrate to study case
(ii), i.e. a billiard system.

A billiard consists of system in which one or many point-like
particles move freely inside a closed region suffering specular
reflections/collisions with the boundary. Billiards can be con-
sidered one of the most attractive types of dynamical modelsin
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the study of ergodic and mixed properties in Hamiltonian sys-
tems [16]. From the mathematical point of view, a billiard isde-
fined by a connected regionQ ⊂ RD, with boundary∂Q ⊂ RD−1

which separatesQ from its complement. If∂Q = ∂Q(t) the
system has a time-dependent boundary and it can exchange en-
ergy with the particle upon collision. Moreover, dissipation can
be considered via different ways where the most common types
used (i) drag force; (ii) damping coefficients. In the first case
the particle loses energy/velocity as it were moving immersed
in a fluid. For such a case, the dynamics is described by solv-
ing differential equations [17]. On the other hand, in the case
(ii), the particle loses energy/velocity upon collision with the
moving boundary. Thus the system is normally described using
a billiard approach. It is know that depending on the combi-
nation of initial conditions and control parameters, the phase
space of such systems possess different structures. In the ab-
sence of dissipation, one kind of structure is the mixed type
[18, 19, 20, 21, 22, 23, 24, 25] where regular regions, such asin-
variant tori and Kolmogorov-Arnold-Moser (KAM) islands are
observed coexisting with chaotic seas. It is also well knownin
the literature that depending on the structure of the phase space
the system can show or not a phenomenon called as Fermi ac-
celeration, i.e., unlimited energy growth [26]. Such a nomen-
clature comes from Enrico Fermi [27] in 1949, as an attempt to
explain the origin of cosmic ray acceleration. He proposed that
such phenomenon was due to the interaction between charged
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particles and time-dependent magnetic structures in the space.
Since then the model has been modified and studied consider-
ing different approaches. One of the most studied version of the
problem is the Fermi-Ulam model (FUM) [28, 29]. Such model
consists of a classical point-like particle moving betweentwo
rigid walls, one of them is assumed to be fixed and the other
one moves according to a periodic function. In such system,
Fermi acceleration is not observed since the phase space hasa
set of invariant tori limiting the size of the chaotic sea. How-
ever, an alternative model was proposed by Pustylnikov [30]
which is often called as bouncer model. Such system consists
of a classical particle falling due to the action of a constant grav-
itational field on a moving platform. One of the most important
properties of this system is that depending on the combinations
of both initial conditions and control parameters, the unlimited
energy gain for a classical particle can be observed. It happens
because there is no invariant tori limiting the size of the chaotic
sea.

When dissipation is taken into account, one can show that the
mixed structure of the phase space present in the conservative
case is destroyed. Then, an elliptic fixed point (generally sur-
rounded by KAM islands) turns into a sink. Regions of chaotic
seas might be replaced by chaotic attractors. Each one of these
attractors has its own basin of attraction. Then, as a slightin-
crease on the value of the damping coefficient, that is equivalent
to reduce the power of dissipation, the chaotic attractor touch,
even crosses, the line separating the basin of attraction ofthe
chaotic attractor and the attracting fixed point (sink). Such be-
haviour yields in a sudden destruction of the chaotic attractor.
This destruction is called as a boundary crisis [31, 32, 33].Af-
ter the destruction, the chaotic attractor is replaced by a chaotic
transient and its basin of attraction is destroyed, too. Addi-
tionally, when dissipation is considered the behaviour of energy
changes from unlimited to a constant plateau for long enough
time. Thus, confirming that the phenomenon of Fermi acceler-
ation is suppressed by dissipation [34, 35].

In the present paper we are interested in characterizing a
boundary crisis in a time-dependent oval-shaped billiard.The
paper is organized as follows. In Sec. 2 we describe all the need
details to obtain the four-dimensional mapping that describe the
dynamics of the system. Our numerical results are discussedin
Sec. 2.1. Conclusion and acknowledgments are drawn in Sec.
3.

2. The model and the mapping

The two dimensional time-dependent oval billiard consists
of a classical particle of massm confined in and suffering col-
lisions with a periodically moving boundary. The model is 2-
dimensional (2-D) in the sense that it has two degrees of free-
dom, however, the dimension of the phase space is defined
as 2× D. Based on this fact, we described the model us-
ing a four dimensional and non linear mapT(θn, αn,

−→
Vn, tn) =

(θn+1, αn+1,
−→
Vn+1, tn+1) where the dynamical variables are, re-

spectively, the angular position of the particle; the anglethat
the trajectory of the particle does with the tangent line at the

Figure 1: Plot of the boundary and a typical trajectory shown only for 6snap-
shots of the boundary. The control parameters used wereǫ = 0.2, β = γ = 1.0
andη = 0.05.

position of the collision; the absolute velocity of the particle;
and the instant of the hit with the boundary. The shape of
the boundary is given in polar coordinates asRb(θ, ǫ, η, t) =
[1+ η cos(t)][1 + ǫ cos(2θ)] whereǫ is the circle’s boundary de-
formation andη is the amplitude of the time dependent pertur-
bation and the sub-indexb denotes boundary. Figure 1 shows a
typical plot of the boundary and six collisions of a particlewith
the boundary.

To construct the mapping, we start with an initial condition
(θn, αn,Vn, tn). The Cartesian components of the boundary at
the angular position (θn, tn) are

X(θn, tn) = [1 + η cos(tn)][1 + ǫ cos(2θn)] cos(θn) , (1)

Y(θn, tn) = [1 + η cos(tn)][1 + ǫ cos(2θn)] sin(θn) . (2)

The angle between the tangent of the boundary at the position
(X(θn),Y(θn)) measured with respect to the horizontal line is

φn = arctan

[
Y′(θn, tn)
X′(θn, tn)

]
, (3)

where the expressions for bothX′(θn, tn) andY′(θn, tn) are writ-
ten as

X′(θn, tn) =
dR(θn, tn)

dθn
cos(θn) − R(θn, tn) sin(θn), (4)

Y′(θn, tn) =
dR(θn, tn)

dθn
sin(θn) + R(θn, tn) cos(θn) , (5)

with dR(θn, tn)/dθn = −2ǫ[1 + η cos(tn)] sin(2θn). Since the ex-
pressions forφn andαn are known, the angle of the trajectory
of the particle measured with respect to the positive X-axisis
(φn + αn). Such information allows us to write the particle’s
velocity vector as

−→
Vn = |

−→
Vn|[cos(φn + αn)̂i + sin(φn + αn)̂ j] , (6)

wherêi and ĵ denote the unity vectors with respect to the X and
Y axis, respectively. The position of the particle, as a function
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of time, for t ≥ tn, is given by

Xp(t) = X(θn, tn) + |−→Vn| cos(φn + αn)(t − tn) , (7)

Yp(t) = Y(θn, tn) + |−→Vn| sin(φn + αn)(t − tn) . (8)

We stress the sub-indexp denotes that such coordinates cor-
respond to the particle. The distance of the particle mea-
sured with respect to the origin of the coordinate system is

given by Rp(t) =
√

X2
p(t) + Y2

p(t) and θp at (Xp(t),Yp(t)) is

θp = arctan[Yp(t)/Xp(t)]. Therefore, the angular position at
the next collision of the particle with the boundary, i.e.θn+1, is
numerically obtained by solvingRp(θn+1, tn+1) = Rb(θn+1, tn+1).
It means that the position of the boundary is the same as the
position of the particle at the instant of the collision. Thetime
tn+1 is obtained by evaluating the expression

tn+1 = tn +

√
∆X2 + ∆Y2

|−→Vn|
, (9)

where∆X = Xp(θn+1, tn+1)− X(θn, tn) and∆Y = Yp(θn+1, tn+1) −
Y(θn, tn). To obtain the new velocity we should note that the
referential frame of the boundary is moving. Since we are con-
sidering inelastic collisions, the particle experiences afractional
loss of energy upon collision in both its normal and tangential
components. Therefore, at the instant of collision, the following
conditions must be matched

−→
V′n+1 ·

−→
T n+1 = β

−→
V′n ·

−→
T n+1 , (10)

−→
V′n+1 ·

−→
Nn+1 = −γ−→V′n ·

−→
Nn+1 , (11)

where the unitary tangent and normal vectors are

−→
T n+1 = cos(φn+1)̂i + sin(φn+1)̂ j , (12)
−→
Nn+1 = − sin(φn+1)̂i + cos(φn+1)̂ j . (13)

β andγ are damping coefficients, it means that the particle can
loses velocity/energy upon collision in its normal component
(γ), tangential component (β) or both. We consider bothγ ∈
[0, 1] andβ ∈ [0, 1]. The completely inelastic collision happens
whenγ = β = 0 and is not considered in this paper. On the other
hand, whenγ = β = 1, corresponding to an elastic collision, all
the results for the non-dissipative case are recovered. Theupper
prime indicates that the velocity of the particle is measured with
respect to the moving boundary referential frame. At the new
angular positionθn+1, we find that

−→
Vn+1 ·

−→
T n+1 = β

−→
Vn ·
−→
T n+1 +

+ (1− β)−→Vb(tn+1) · −→T n+1 , (14)

−→
Vn+1 ·

−→
Nn+1 = −γ−→Vn ·

−→
Nn+1 +

+ (1+ γ)−→Vb(tn+1) · −→Nn+1 , (15)

where−→Vb(tn+1) is the velocity of the boundary which is written
as

−→
Vb(tn+1) =

dRb(tn+1)
dtn+1

[cos(θn+1)̂i + sin(θn+1)̂ j] , (16)

Figure 2:Phase space in the variables velocity and time for a time dependent
oval billiard. The control parameters used wereǫ = 0.2, β = γ = 1.0 and
η = 0.05. We assume as fixed the initial conditionsα0 = π/2 andθ0 = 3π/2.

with

dRb(tn+1)
dtn+1

= −η[1 + ǫ cos(2θn+1)] sin(tn+1) . (17)

Then we have

|−→Vn+1| =
√

(−→Vn+1 ·
−→
T n+1)2 + (−→Vn+1 ·

−→
Nn+1)2 . (18)

Finally, the angleαn+1 is written as

αn+1 = arctan


−→
Vn+1 ·

−→
Nn+1

−→
Vn+1 ·

−→
T n+1

 . (19)

With this four dimensional mapping, we can explore now nu-
merical results for the dynamics of the particle.

2.1. Numerical Results

In this section we discuss our numerical results. Just to re-
mind, our main goal is to characterize a boundary crisis in a
time-dependent oval-shaped billiard. To start, we show in Fig.
2 a typical phase space for a special set of initial conditions:
α0 = π/2 andθ0 = 3π/2. For such combination of initial condi-
tion and taken into accountǫ = 0.2 andη = 0.05 the boundary
has neutral curvature. With this particular choice of initial con-
ditions, the phase space of the system is mixed. On the other
hand, if we chose randomα0 andθ0, the particle experiences
the phenomenon of unlimited energy growth [36].

We now consider the situation where both damping coeffi-
cientsβ , 1 andγ , 1. We then keep fixed up to the end of
the paperβ = 0.25. It implies that there is a high dissipation
along the tangent component of the particle’s velocity. Results
for differentβ will be published elsewhere [37]. The parameter
γ is considered from the order ofγ = 0.89. It is shown in Fig.
3(a) the behavior of the attractors present in the system forthe
following combination of control parametersǫ = 0.2,β = 0.25,
γ = 0.8899 andη = 0.05. We can see a chaotic attractor and
an attracting fixed point. Figure 3(b) shows their corresponding
basin of attraction. The procedure used to construct the basin
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Figure 3: (Color online) (a) Attracting Fixed point indicated by a blue star
(∗) and chaotic attractor (set of black points); (b) Their corresponding basin of
attraction. Black corresponds to the basin of attraction for the chaotic attractor
and dark gray (red) of the attracting fixed point. The controlparameters used
wereǫ = 0.2, β = 0.25, γ = 0.8899andη = 0.05.

of attraction was divide bothV andt into windows of 500 parts
each, thus leading to a total of 2.5 × 105 different initial con-
ditions. Each initial condition was iterated up ton = 5 × 106

collisions with the boundary. We see that only two attractors
emerged for such combination of control parameters: sink and
chaotic attractor. We stress that other attractors could inprin-
ciple exist. If they exist however, their basin of attraction are
too small to be obtained. It is clear that, after a very long num-
ber of collisions of the particle with the boundary, the velocity
of the particle does not grow unlimitedly. Consequently, no
Fermi acceleration is observed and we conclude that introduc-
tion of inelastic collisions worked out perfectly as a mechanism
to suppress Fermi acceleration, as proposed in Ref. [38] fora
stochastic 1-D system.

Let us now go ahead with the characterization of the bound-
ary crisis [31, 32, 33]. It is well known in the literature that a
saddle fixed point, in the planeV×t has two kinds of manifolds:
(a) stable and (b) unstable. The unstable manifolds are formed
by a family of trajectories that turn away from the saddle fixed
point. One of them can form the chaotic attractor (or visit the
region of the chaotic attractor after the event of crisis), while
the other one moves towards an attracting fixed point. These
manifolds are obtained from the iteration of the mapT with ap-
propriate initial conditions. Similarly, the construction of stable

Figure 4: (Color online) Basin of attraction for the chaotic attractor and at-
tracting fixed point (sink). The region in black correspondsto the basin of
attraction of the chaotic attractor; the region in dark gray(red), denotes the
basin of attraction of the attracting fixed point; light gray(green) in (a) iden-
tifies the chaotic attractor. The control parameters used toconstruct the basin
of attraction wereǫ = 0.2, β = 0.25, η = 0.05 and γ = 0.8899. The dissi-
pation used in (a) the chaotic attractor wereγ = 0.8899 (before crisis, light
gray (green)); (b) the chaotic transient wereγ = 0.8906(after crisis, light gray
(green)).

manifolds are a little bit more complicated since the inverse of
the mapping, sayT−1, must be obtained. The procedure for ob-
taining the stable manifolds is the same as that one used for the
unstable manifolds, however, instead of iterating the mapT we
must iterate its inverseT−1. Since the stable manifolds generate
the border of the basin of attraction of the chaotic attractor and
attracting sink, a boundary crisis happens when a chaotic attrac-
tor touch the stable manifold due to a modification of the con-
trol parameter. As a consequence, there is a sudden and drastic
destruction of the chaotic attractor and its basin of attraction.

It is shown in Fig. 4(a), two basins of attraction; one in black,
corresponding to the basin of attraction of the chaotic attractor,
and the other one in dark gray (red), denoting the basin of at-
traction of the attracting fixed point, and the chaotic attractor
marked by light gray (green). If we increase the value of the
parameterγ, which is equivalent to reduce the intensity of the
dissipation, the two branches of the stable manifold touch,even
crosses, the edges of the chaotic attractor, see Fig. 4 (b). Such
behaviour is equivalent to acollision of the chaotic attractor
with its own basin of attraction. Of course after thecollision,
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Figure 5:Behaviour ofE × n for different values ofγ, as labeled in the figure.
The control parameters used in the construction of the figurewere p= 2, ǫ =
0.4, β = 1 andη = 0.001.

there is a sudden destruction of chaotic attractor and its basin
of attraction. We have observed such crisis for the control pa-
rametersǫ = 0.2, β = 0.25, η = 0.05 andγ = 0.8906. Other
boundary crisis are observed for different combinations of con-
trol parameters, too. After the boundary crisis, the entireplane
V × t (t mod (2π)) is the basin of attraction for a sink. There-
fore, all initial conditions in such a region will converge to the
sink. Additionally, for the regime of weak dissipation, theaver-
age energy,Ei =

1
n+1

∑n
j=0 Ei, j, grows for short iteration number

and suddenly it bends towards a regime of saturation for long
enough values ofn as can be seen in Fig. 5. Consequently, the
mechanism of Fermi acceleration is suppressed in high as well
as weak dissipation.

3. Conclusion

As a short remark, we have studied a classical version of a
dissipative time-dependent oval-shaped billiard. The dissipa-
tion was introduced via damping coefficients for both the nor-
mal and tangential components of the particle’s velocity. For
the regime of high tangential dissipation, we characterized an
event of boundary crisis. For the regime of weak dissipation,
we have shown that the average energy remains constant for
long enough time. Such result allows us to confirm that the in-
troduction of inelastic collisions is sufficient to suppress Fermi
acceleration since all the initial conditions will converge to at-
tractors located at low velocity domain.
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