
Minimal Length,Minimal Inverse Temperature,Measurability
and Black Holes

Alexander Shalyt-Margolin 1

Research Institute for Nuclear Problems,Belarusian State University, 11
Bobruiskaya str., Minsk 220040, Belarus

PACS: 03.65, 05.20
Keywords: minimal length,minimal inverse temperature, measurability

Abstract

The measurability notion introduced previously in a quantum
theory on the basis of a minimal length in this paper is defined
in thermodynamics on the basis of a minimal inverse temperature.
Based on this notion, some inferences are made for gravitational ther-
modynamics of horizon spaces and, specifically, for black holes with
the Schwarzschild metric.

1 Introduction.

This paper is a continuation of the earlier works published by the author
[1],[2]. The main idea and target of these works is to construct a correct
quantum theory and gravity in terms of the variations (increments) depen-
dent on the existent energies.
Within such a theory, the small and infinitesimal variations dx, δx, dp, δp...
which, by definition, are independent of the existent energies should be
withdrawn, being included only on passage to the particular limit. First
of all, this holds true for the infinitesimal space-time variations dxµ as the
latter are at the basis of continuous space-time.
At the present time physics is using (not without success) the mathematical
apparatus based on the infinitesimal space-time variations (increments)

dt, dxi, i = 1, ..., 3 (1)

1E-mail: a.shalyt@mail.ru; alexm@hep.by
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This mathematical apparatus comes from mathematical analysis [3], calcu-
lus of variations [4] and classical mechanics [5],[6]. Continuous space-time
forms the base thereof. Then, this tool has been successfully applied in
Quantum Theory (QT) [7], Special Relativity, and General Relativity (GR)
[8]. But, due to the introduction of ultraviolet and infrared divergences into
a Quantum Theory and also due to the correct passage to the high-energy
(ultraviolet) region in Gravity, we are facing very serious problems.
By the author’s opinion, these problems are solvable but beyond the paradigm
of continuous space-time.
The principal idea of the papers [1],[2] is as follows:
(1.1) Within a discrete model for continuous space-time, at low energies
(which are far from the Planck energies) the results, to a high accuracy, are
identical to those obtained by a continuous model for space-time (and in this
case may be called the quasi-continuous model). But at high (Planck’s) en-
ergies the indicated model is fundamentally discrete, leading to principally
new results.
(1.2) All variations in any physical system considered in such a discrete
model should be dependent on the existent energies.
The primary instrument for such a discrete model is the measurability
notion introduced in [1],[2] on the basis of the minimal length lmin (minimal
time tmin).
This paper demonstrates that a similar (in essence dual) notion may be
also introduced in thermodynamics on the basis of a minimal inverse tem-
perature. The derived results are applied to study gravitational dynamics
of the horizon spherically-symmetric spaces and, specifically, of the black
holes with the Schwarzschild metric.
Actually, all the required preliminary information is included in this text.
Subsection 2.1 presents in detail some of the results, obtained by the au-
thor in thermodynamics and published in [9], which are important in what
follows. In the first part of Subsection 2.2 the author gives consideration
to the principal definitions from [1],[2] which are used for the derivation of
the necessary formulae in the second part of this section. In Subsection 2.3
the measurability notion in thermodynamics is introduced; some direct
inferences are drawn. Finally, in Subsection 3 the earlier obtained results
are used to study gravitational dynamics in the above-mentioned cases.
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2 Minimal Length, Minimal Inverse Temper-

ature, and Measurability

2.1 Generalized Uncertainty Principles in Quantum
Theory and Thermodynamics

In this Subsection the author presents some of the results from Section 2 of
the paper [9],because they are important for this work.
It is well known that in thermodynamics an inequality for the pair interior
energy - inverse temperature that is completely analogous to the standard
uncertainty relation in quantum mechanics [10] can be written [13] – [18].
The only (but essential) difference of this inequality from the quantum me-
chanical one is that the main quadratic fluctuation is defined by means of
the classical partition function rather than by the quantum mechanical ex-
pectation values. In the last years a lot of papers appeared in which the
usual momentum-coordinate uncertainty relation has been modified at very
high energies of order Planck energy Ep [19]–[30]. In this note we propose
simple reasons for modifying the thermodynamic uncertainty relation at
Planck energies. This modification results in existence of the minimal pos-
sible main quadratic fluctuation of the inverse temperature. Of course we
assume that all the thermodynamic quantities used are properly defined so
that they have physical sense at such high energies.

We start with usual Heisenberg Uncertainty Principle (relation) [10] for
momentum - coordinate:

∆x ≥ ~
∆p

. (2)

It was shown that at the Planck scale a high-energy term must appear:

∆x ≥ ~
∆p

+ α′l2p
△p

~
(3)

where lp is the Planck length l2p = G~/c3 ≃ 1, 6 10−35m and α′ is a con-
stant. In [19] this term is derived from the string theory, in [22] it follows
from the simple estimates of Newtonian gravity and quantum mechanics, in
[26] it comes from the black hole physics, other methods can also be used
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[25],[27],[28]. Relation (3) is quadratic in ∆p

α′l2p (∆p)2 − ~∆x∆p+ ~2 ≤ 0 (4)

and therefore leads to the fundamental length

∆xmin = 2
√
α′lp (5)

Inequality (3) is called the Generalized Uncertainty Principle (GUP) in
Quantum Theory.
Using relations (3) it is easy to obtain a similar relation for the energy -
time pair. Indeed (3) gives

∆x

c
≥ ~

∆pc
+ α′l2p

∆p

c~
, (6)

then

∆t ≥ ~
∆E

+ α′ l
2
p

c2
∆pc

~
=

~
∆E

+ α′t2p
∆E

~
. (7)

where the smallness of lp is taken into account so that the difference between
∆E and ∆(pc) can be neglected and tp is the Planck time tp = lp/c =√

G~/c5 ≃ 0, 54 10−43sec. Inequality (7) gives analogously to (3) the lower
boundary for time ∆t ≥ 2tp determining the fundamental time

tmin = 2
√
α′tp (8)

Thus, the inequalities discussed can be rewritten in a standard form
∆x ≥ ~

∆p + α′
(
∆p
Ppl

)
~
Ppl

∆t ≥ ~
∆E + α′

(
∆E
Ep

)
~
Ep

(9)

where Ppl = Ep/c =
√
~c3/G. Now we consider the thermodynamics un-

certainty relations between the inverse temperature and interior energy of
a macroscopic ensemble

∆
1

T
≥ kB

∆U
. (10)
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where kB is the Boltzmann constant.
N.Bohr [11] and W.Heisenberg [12] first pointed out that such kind of uncer-
tainty principle should take place in thermodynamics. The thermodynamic
uncertainty relations (10) were proved by many authors and in various ways
[13] – [18]. Therefore their validity does not raise any doubts. Neverthe-
less, relation (10) was proved in view of the standard model of the infinite-
capacity heat bath encompassing the ensemble. But it is obvious from the
above inequalities that at very high energies the capacity of the heat bath
can no longer to be assumed infinite at the Planck scale. Indeed, the total
energy of the pair heat bath - ensemble may be arbitrary large but finite
merely as the universe is born at a finite energy. Hence the quantity that
can be interpreted as the temperature of the ensemble must have the upper
limit and so does its main quadratic deviation. In other words the quantity
∆(1/T ) must be bounded from below. But in this case an additional term
should be introduced into (10)

∆
1

T
≥ kB

∆U
+ η∆U (11)

where η is a coefficient. Dimension and symmetry reasons give

η ∼ kB
E2

p

or η = α′ kB
E2

p

(12)

As in the previous cases inequality (11) leads to the fundamental (inverse)
temperature.

Tmax =
~

2
√
α′tpkB

=
Ep

2
√
α′kB

=
Tp

2
√
α′ =

~
tminkB

,

βmin =
1

kBTmax

=
tmin

~
(13)

In the work [31] the black hole horizon temperature has been measured
with the use of the Gedanken experiment. In the process the Generalized
Uncertainty Relations in Thermodynamics (11) have been derived also. Ex-
pression (11) has been considered in the monograph [32] within the scope
of the mathematical physics methods.
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Thus, we obtain the system of generalized uncertainty relations in a sym-
metric form 

∆x ≥ ~
∆p + α′

(
∆p
Ppl

)
~
Ppl

+ ...

∆t ≥ ~
∆E + α′

(
∆E
Ep

)
~
Ep

+ ...

∆ 1
T ≥ kB

∆U + α′
(
∆U
Ep

)
kB
Ep

+ ...

(14)

or in the equivalent form

∆x ≥ ~
∆p + α′l2p

∆p
~ + ...

∆t ≥ ~
∆E + α′t2p

∆E
~ + ...

∆ 1
T ≥ kB

∆U + α′ 1
T 2
p

∆U
kB

+ ...

(15)

where the dots mean the existence of higher order corrections as in [33].
Here Tp is the Planck temperature: Tp = Ep/kB. (4)
In literature the relation (10) is referred to as the Uncertainty Principle
in Thermodynamics (UPT). Let us call the relation (11) the Generalized
Uncertainty Principle in Thermodynamics (GUPT).
In this case, without the loss of generality and for symmetry, it is assumed
that a dimensionless constant in the right-hand side of GUP (formula (3))
and in the right-hand side of GUPT (formula (11)) is the same – α′.

2.2 Minimal Length and Measurable Notion in Quan-
tum Theory

First, we consider in this Subsection the principal definitions from [1],[2]which
are required to derive the key formulae in the second part of the Subsection
and to obtain further results.
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Definition I. Let us call as primarily measurable variation any small
variation (increment) ∆̃xµ of any spatial coordinate xµ of the arbitrary
point xµ, µ = 1, ..., 3 in some space-time system R if it may be realized in
the form of the uncertainty (standard deviation) ∆xµ when this coordinate
is measured within the scope of Heisenberg’s Uncertainty Principle (HUP)
[10] (formula (2) in general case):

∆̃xµ = ∆xµ,∆xµ ≃ ~
∆pµ

, µ = 1, 2, 3 (16)

for some ∆pµ ̸= 0.
Similarly, for µ = 0 for pair “time-energy” (t, E), let’s call any small

variation (increment) by primarily measurable variation in the value

of time ∆̃x0 = ∆̃t0 if it may be realized in the form of the uncertainty
(standard deviation) ∆x0 = ∆t and then

∆̃t = ∆t,∆t ≃ ~
∆E

(17)

for some ∆E ̸= 0. Formula (17) is nothing else as formula (7) for ∆E ≪ Ep

Here HUP is given for the nonrelativistic case. In the relativistic case HUP
has the distinctive features [34] which, however, are of no significance for the
general formulation of Definition I., being associated only with particular
alterations in the right-hand side of the second relation Equation (17).
It is clear that at low energies E ≪ EP (momenta P ≪ Ppl) Definition I.

sets a lower bound for the primarily measurable variation ∆̃xµ of any
space-time coordinate xµ.
At high energies E (momenta P ) this is not the case if E (P ) have no upper
limit. But, according to the modern knowledge, E (P ) are bounded by
some maximal quantities Emax, (Pmax)

E ≤ Emax, P ≤ Pmax, (18)

where in general Emax, Pmax may be on the order of Planck quantities
Emax ∝ EP , Pmax ∝ Ppl and also may be the trans-Planck’s quantities.

In any case the quantities Pmax and Emax lead to the introduction of the
minimal length lmin and of the minimal time tmin.
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Supposition II. There is the minimal length lmin as a minimal measure-
ment unit for all primarily measurable variations having the dimension
of length, whereas the minimal time tmin = lmin/c as a minimal measure-
ment unit for all quantities or primarily measurable variations (incre-
ments) having the dimension of time, where c is the speed of light.

lmin and tmin are naturally introduced as ∆xµ, µ = 1, 2, 3 and ∆t in
Equations (16) and (17) for ∆pµ = Pmax and ∆E = Emax.

For definiteness, we consider that Emax and Pmax are the quantities on
the order of the Planck quantities, then lmin and tmin are also on the order
of Planck quantities lmin ∝ lP , tmin ∝ tP .

Definition I. and Supposition II. are quite natural in the sense that
there are no physical principles with which they are inconsistent.
The combination of Definition I. and Supposition II. will be called the
Principle of Bounded Primarily Measurable Space-Time Varia-
tions (Increments) or for short Principle of Bounded Space-Time
Variations (Increments) with abbreviation (PBSTV).
As the minimal unit of measurement lmin is available for all the primarily
measurable variations ∆L having the dimensions of length, the “Inte-
grality Condition” (IC) is the case

∆L = N∆Llmin, (19)

where N∆L > 0 is an integer number.
In a like manner the same “Integrality Condition” (IC) is the case for all
the primarily measurable variations ∆t having the dimensions of time.
And similar to Equation (19), we get the for any time ∆t:

∆t ≡ ∆t(Nt) = N∆ttmin, (20)

where similarly N∆L > 0 is an integer number too.
Definition 1 (Primary or Elementary Measurability.)
(1) In accordance with the PBSTV let us define the quantity having the di-
mensions of length or time as primarily (or elementarily) measurable,
when it satisfies the relation Equation (19) (and respectively Equation (20)).
(2)Let us define any physical quantity primarily (or elementarily) mea-
surable, when its value is consistent with points (1) of this Definition.
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It is convenient to use the deformation parameter αa. This parameter has
been introduced earlier in the papers [35],[9],[36]–[39] as a deformation pa-
rameter (in terms of paper [40]) on going from the canonical quantum me-
chanics to the quantum mechanics at Planck’s scales (early Universe) that is
considered to be the quantum mechanics with the minimal length (QMML):

αa = l2min/a
2, (21)

where a is the measuring scale. It is easily seen that the parameter αa from
Equation (21) is discrete as it is nothing else but

αa = l2min/a
2 =

l2min

N2
a l

2
min

=
1

N2
a

. (22)

At the same time, from Equation (22) it is evident that αa is irregularly
discrete.
It should be noted that, physical quantities complying with Definition 1
won’t be enough for the research of physical systems.
Indeed, such a variable as

αNalmin
(Nalmin) = p(Na)

l2min

~
= lmin/Na, (23)

(where αNalmin
= αNalmin

is taken from formula (22) at a = Nalmin, and
p(Na) =

~
Nalmin

is the corresponding primarily measurable momentum),
is fully expressed in terms only Primarily Measurable Quantities of
Definition 1 and that’s why it may appear at any stage of calculations,
but apparently doesn’t comply with Definition 1. That’s why it’s neces-
sary to introduce the following definition generalizing Definition 1:

Definition 2. Generalized Measurability
We shall call any physical quantity as generalized-measurable or for
simplicity measurable if any of its values may be obtained in terms of
Primarily Measurable Quantities of Definition 1.

In what follows, for simplicity, we will use the term Measurability in-
stead of Generalized Measurability.
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It is evident that any primarily measurable quantity (PMQ) is mea-
surable. Generally speaking, the contrary is not correct, as indicated by
formula (23).
The generalized-measurable quantities are appeared from the General-
ized Uncertainty Principle (GUP) (formula (3)) that naturally leads
to the minimal length lmin [19]–[30]:

∆xmin = 2
√
α′lp

.
= lmin, (24)

For convenience, we denote the minimal length lmin ̸= 0 by ℓ and tmin ̸= 0
by τ = ℓ/c.
Solving equation (3), in the case of equality we obtain the apparent formula

∆p± =
(∆x±

√
(∆x)2 − 4α′l2p)~

2α′l2p
. (25)

Next, into this formula we substitute the right-hand part of formula (19)
for L = x. Considering (24), we can derive the following:

∆p± =
(N∆x ±

√
(N∆x)2 − 1)~ℓ
1
2
ℓ2

=

=
2(N∆x ±

√
(N∆x)2 − 1)~
ℓ

. (26)

But it is evident that at low energies E ≪ Ep;N∆x ≫ 1 the plus sign in the
nominator (26) leads to the contradiction as it results in very high (much
greater than the Planck’s) values of ∆p. Because of this, it is necessary to
select the minus sign in the numerator (26). Then, multiplying the left and
right sides of (26) by the same number N∆x +

√
N2

∆x − 1 , we get

∆p =
2~

(N∆x +
√
N2

∆x − 1)ℓ
. (27)

∆p from formula (27) is the generalized-measurable quantity in the sense
of Definition 2. However, it is clear that at low energies E ≪ Ep, i.e. for

N∆x ≫ 1, we have
√
N2

∆x − 1 ≈ N∆x. Moreover, we have

lim
N∆x→∞

√
N2

∆x − 1 = N∆x. (28)

10



Therefore, in this case (27) may be written as follows:

∆p
.
= ∆p(N∆x, HUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
≈ ~

N∆xℓ
=

~
∆x

;N∆x ≫ 1,(29)

in complete conformity with HUP. Besides, ∆p
.
= ∆p(N∆x, HUP ), to a high

accuracy, is a primarily measurable quantity in the sense of Definition
1.
And vice versa it is obvious that at high energies E ≈ Ep, i.e. for N∆x ≈ 1,
there is no way to transform formula (27) and we can write

∆p
.
= ∆p(N∆x, GUP ) =

~
1/2(N∆x +

√
N2

∆x − 1)ℓ
;N∆x ≈ 1. (30)

At the same time, ∆p
.
= ∆p(N∆x, GUP ) is a Generalized Measurable

quantity in the sense of Definition 2.
Thus, we have

GUP → HUP (31)

for
(N∆x ≈ 1) → (N∆x ≫ 1). (32)

Also, we have
∆p(N∆x, GUP ) → ∆p(N∆x, HUP ), (33)

where ∆p(N∆x, GUP ) is taken from formula (30), whereas ∆p(N∆x, HUP )
from formula (29).

Comment 2*.
From the above formulae it follows that, within GUP, the primarily mea-
surable variations (quantities) are derived to a high accuracy from the
generalized-measurable variations (quantities) only in the low-energy
limit E ≪ EP

Next, within the scope of GUP, we can correct a value of the parameter αa

from formula (22) substituting a for ∆x in the expression N∆x+
√

N2
∆x − 1.
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Then at low energies E ≪ Ep we have the primarily measurable quantity
αa(HUP )

αa
.
= αa(HUP ) =

1

[1/2(Na +
√
N2

a − 1)]2
≈ 1

N2
a

;Na ≫ 1, (34)

that corresponds, to a high accuracy, to the value from formula (22).
Accordingly, at high energies we have E ≈ Ep

αa
.
= αa(GUP ) =

1

[1/2(Na +
√
N2

a − 1)]2
;Na ≈ . (35)

When going from high energies E ≈ Ep to low energies E ≪ Ep, we can
write

αa(GUP )
(Na≈1)→(Na≫1)−→ αa(HUP ) (36)

in complete conformity to Comment 2*.

2.3 Minimal Inverse Temperature and Measurability

Now, let us return to the thermodynamic relation (11) in the case of equal-
ity:

∆
1

T
=

kB
∆U

+ η∆U, (37)

that is equivalent to the quadratic equation

η (∆U)2 −∆
1

T
∆U + kB = 0. (38)

The discriminant of this equation, with due regard for formula (12), is equal
to

D = (∆
1

T
)2 − 4ηkB = (∆

1

T
)2 − 4α′ k

2
B

E2
p

≥ 0, (39)

leading directly to (∆ 1
T
)min

(∆
1

T
)min = 2

√
α′kB
Ep

(40)
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or, due to the fact that kB is constant, we have

(∆
1

kBT
)min =

2
√
α′

Ep

. (41)

It is clear that (∆ 1
T
)min corresponds to Tmax from formula (13)

Tmax ≈ Tp ≫ 0. (42)

In this case ∆ 1
T
≈ 1

T
and, of course, we can assume that

(
1

T
)min

.
= τ̃ =

1

Tmax

. (43)

Trying to find from formula (43) a minimal unit of measurability for the
inverse temperature and introducing the “Integrality Condition” (IC) in line
with the conditions (19),(20)

1

T
= N1/T τ̃ , (44)

where N1/T > 0 is an integer number, we can introduce an analog of the
primary measurability notion into thermodynamics.

Definition 3 (Primary Thermodynamic Measurability)
(1) Let us define a quantity having the dimensions of inverse temperature
as primarily measurable when it satisfies the relation (44).
(2)Let us define any physical quantity in thermodynamics as primarily
measurable when its value is consistent with point (1) of this Definition.

Definition 3 in thermodynamics is analogous to the Primary Measura-
bility in a quantum theory (Definition 1).
Now we consider the quadratic equation (38) in terms of measurable
quantities in the sense of Definition 3. In accordance with this definition
and with formula (44) ∆(1/T ), we can write

∆
1

T
= N∆(1/T )τ̃ , (45)
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where N∆(1/T ) > 0 is an integer number.
The quadratic equation (38) takes the following form:

η (∆U)2 −N∆(1/T )τ̃∆U + kB = 0. (46)

Then, due to formula (41), we can find the ”measurable” roots of equation
(46) for ∆U as follows:

(∆U)meas,± =
[N∆(1/T ) ±

√
N2

∆(1/T ) − 1]τ̃

2η
=

=
2kB[N∆(1/T ) ±

√
N2

∆(1/T ) − 1]τ̃

τ̃ 2
=

2kB[N∆(1/T ) ±
√

N2
∆(1/T ) − 1]

τ̃
. (47)

The last line in (47) is associated with the obvious relation 2η = τ̃2

2kB
.

In this way we derive a complete analog of the corresponding relation (26)
from a quantum theory by replacement

∆p± ⇒ ∆Umeas,±;N∆x ⇒ N∆(1/T ); ~ ⇒ kB. (48)

As, for low temperatures and energies, T ≪ Tmax ∝ Tp, we have
1/T ≫ 1/Tp and hence ∆(1/T ) ≫ 1/Tp and N∆(1/T ) ≫ 1.
Next, in analogy with Subsection 2.2, in formula (47) we can have only the
minus-sign root, otherwise, at sufficiently high N∆(1/T ) ≫ 1 for (∆U)meas,+

we can get (∆U)meas,+ ≫ Ep . But this is impossible for low temperatures
(energies).
On the contrary, the minus sign in (47) is consistent with high and low
energies.
So, taking the root value in (47) corresponding to this sign and multiplying

the nominator and denominator in (47) by N∆(1/T ) +
√
N2

∆(1/T ) − 1, we

obtain

(∆U)meas =
2kB

(N∆(1/T ) +
√
N2

∆(1/T ) − 1)τ̃
(49)
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to have a complete analog of the corresponding relation from (27) in a
quantum theory by substitution according to formula (48).
Then it is clear that, in analogy with Subsection 2.2, for low energies and
temperatures N∆(1/T ) ≫ 1 (49) may be rewritten as

(∆U)meas
.
= (∆U)meas(T ≪ Tmax) =

2kB

(N∆(1/T ) +
√
N2

∆(1/T ) − 1)τ̃
≈

≈ kB
N∆(1/T )τ̃

, N∆(1/T ) ≫ 1, (50)

i.e. the Uncertainty Principle in Thermodynamics (UPT, formula (10)) is
involved. In this case, due to the last formula, ∆Umeas represents a pri-
marily measurable thermodynamic quantity in the sense of Definition
3to a high accuracy.
Of course, at high energies the last term in the formula (50)is lacking and,
for T ≈ Tmax;N∆(1/T ) ≈ 1, we have:

(∆U)meas
.
= (∆U)meas(T ≈ Tmax) =

kB

1/2(N∆(1/T ) +
√
N2

∆(1/T ) − 1)τ̃
,

N∆(1/T ) ≈ 1. (51)

From (51) it follows that at high temperatures (energies) (∆U)meas could
hardly be a primarily measurable thermodynamic quantity. Because of
this, it is expedient to use a counterpart of Definition 2.

Definition 4. Generalized Measurability in Thermodynamics
Any physical quantity in thermodynamics may be referred to as generalized-
measurable or, for simplicity, measurable if any of its values may be
obtained in terms of the Primary Thermodynamic Measurability of
Definition 3.

In this way (∆U)meas from the formula (51) is a measurable quantity.
Based on the preceding formulae, it is clear that we have the limiting tran-
sition

(∆U)meas(T ≈ Tmax)
(N∆(1/T )≈1)→(N∆(1/T )≫1)

−→ (∆U)meas(T ≪ Tmax ∝ Tp),(52)
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that is analogous to the corresponding formula (36) in a quantum theory.
Therefore, in this case the analog of Comment 2*. in Subsection 2.2 is valid.
Comment 2* Thermodynamics
From the above formulae it follows that, within GUPT (11), the primar-
ily measurable variations (quantities) are derived, to a high accuracy,
from the generalized-measurable variations (quantities) only in the low-
temperature limit T ≪ Tmax ∝ Tp.
To conclude this Section, it seems logical to make several important re-
marks.

R2.1 It is obvious that all the calculations associated with measurability
of inverse temperature 1

T
are valid for β = 1

kBT
as well. Specifically, intro-

ducing βmin
.
= β̃ = τ̃ /kB, we can rewrite all the corresponding formulae in

the ”measurable” variant replacing 1/T (∆(1/T )) by β,τ̃ by β̃ and retain-
ing N1/T (N∆(1/T )).

R2.2. Naturally, the problem of compatibility between the measurability
definitions in quantum theory and in thermodynamics arises: is there any
contradiction between Definition 1 from Subsection 2.2 and Definitions
3 from Subsection 2.3 ?
On the basis of the formulae (13) from Subsection 2.1 and (43) from Sub-
section 2.3 we can state:
measurability in quantum theory and thermodynamic measurability
are completely compatible and consistent as the minimal unit of inverse tem-
perature τ̃ is nothing else but the minimal time tmin = τ up to a constant
factor. And hence N1/T , (N∆(1/T )) is nothing else but Nt, (N∆t) in (20).
Then it is clear that Nt = Na=tc.

R2.3 Finally, from the above formulae (50), (51) it follows that the mea-
surable temperature T is varying as follows:

T =
Tmax

N1/T

, T ≪ Tmax ∝ Tp, N1/T ≫ 1;

T =
Tmax

1/2(N1/T +
√

N2
1/T − 1)

, T ≈ Tmax ∝ Tp, N1/T ≈ 1. (53)
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In such a way measurable temperature is a discrete quantity but at low
energies it is almost constantly varying – so, the theoretical calculations are
very similar to those of the well-known continuous theory. In the reality,
discreteness manifests itself in the case of high energies only.

3 Black Holes and Measurability

Now let us show the applicability of the results from Section 2 to a quan-
tum theory of black holes. Consider the case of Schwarzschild’s black hole.
It seems logical to support the idea suggested in the Introduction to the
recent overview presented by seven authors [41]: ”Since for (asymptotically
flat Schwarzschild) black holes the temperatures increase as their masses
decrease, soon after Hawking’s discovery, it became clear that a complete
description of the evaporation process would ultimately require a consistent
quantum theory of gravity. This is necessary as the semiclassical formu-
lation of the emission process breaks down during the final stages of the
evaporation as characterized by Planckian values of the temperature and
spacetime curvature”. Naturally, it is important to study the transition
from low to high energies in the indicated case.
In this Section consideration is given to gravitational dynamics at low
E ≪ Ep and at high E ≈ Ep energies in the case of the Schwarzschild
black hole and in a more general case of the space with static spherically-
symmetric horizon in space-time in terms of measurable quantities from
the previous Section.
It should be noted that such spaces and even considerably more general cases
have been thoroughly studied from the viewpoint of gravitational thermo-
dynamics in remarkable works of professor T.Padmanbhan [42]–[53] (the list
of references may be much longer).
First, the author has studied the above-mentioned case in [54] and from the
suggested viewpoint – in [1]. But, proceeding from Section 2 of the present
paper, it is possible to extend the results from [1].
In what follows we use the symbols from [53] which have been also used
in [1]. The case of a static spherically-symmetric horizon in space-time is
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considered, the horizon being described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2. (54)

The horizon location will be given by a simple zero of the function f(r), at
the radius r = a.
Then at the horizon r = a Einstein’s field equations ([53], eq.(117))

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (55)

where P = T r
r is the trace of the momentum-energy tensor and radial pres-

sure. Therewith, the condition f(a) = 0 and f ′(a) ̸= 0 must be fulfilled.
On the other hand it is known that for horizon spaces one can introduce
the temperature that can be identified with an analytic continuation to
imaginary time. In the case under consideration ([53], eq.(116))

kBT =
~cf ′(a)

4π
. (56)

In [53] it is shown that in the initial (continuous) theory the Einstein Equa-
tion for horizon spaces in the differential form may be written as a ther-
modynamic identity (the first principle of thermodynamics) ([53], formula
(119)):

~cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

G~
d

(
1

4
4πa2

)
︸ ︷︷ ︸

dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd

(
4π

3
a3
)

︸ ︷︷ ︸
P dV

. (57)

where, as noted above, T – temperature of the horizon surface, S –corresponding
entropy, E– internal energy, V – space volume.
It is impossible to use (57) in the formalism under consideration because, as
follows from the results given in the previous section and in [1], da, dS, dE, dV
are not measurable quantities.
First, we assume that a value of the radius r at the point a is a primarily
measurable quantity in the sense of Definition 1 from Subsection 2.2.,
i.e. a = ameas = Naℓ, where Na > 0 - integer, and the temperature T from
the left-hand side of (56) is the measurable temperature T = Tmeas in the
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sense of Definition 3. from Subsection 2.2.3.
Then, in terms of measurable quantities, first we can rewrite (55) as

c4

G

[
2πkBT

~c
ameas −

1

2

]
= 4πPa2meas. (58)

We express a = ameas in terms of the deformation parameter αa (formula
(21))as

a = ℓα−1/2
a ; (59)

the temperature T is expressed in terms of Tmax ∝ Tp from (53).
Then, considering that Tp = Ep/kB, equation (58) may be given as

c4

G
[

πEp√
α′N1/T~c

ℓα1/2
a − 1

2
αa] = 4πPℓ2. (60)

Because ℓ = 2
√
α′lp and lp =

~c
Ep
, we have

c4

G
[
2πEp

N1/T~c
lpα

1/2
a − 1

2
αa] =

c4

G
[
2π

N1/T

α1/2
a − 1

2
αa] = 4πPℓ2. (61)

Note that in its initial form [53]the equation (55)has been considered in
a continuous theory, i.e. at low energies E ≪ Ep. Consequently, in the
present formalism it is implicitly meant that the ”measurable counterpart”
of equation (55) – (58)(or the same (60),(61)) is also initially considered at
low energies, in particular, N1/T ≫ 1.
Let us consider the possibility of generalizing (60),(61) to high energies tak-
ing two different cases.

3.1. Measurable case for low energies: E ≪ Ep. Due to formula (29),
a = ameas = Naℓ, where the integer number is Na ≫ 1 or similarly
N1/T ≫ 1. In this case GUP, to a high accuracy, is extended to HUP
(formula (31),(32)).
As this takes place, αa = αa(HUP ) is a primarily measurable quantity
(Definition 1), αa ≈ N−2

a , though taking a discrete series of values but
varying smoothly, in fact continuously. (60)is a quadratic equation with
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respect to α
1/2
a ≈ N−2

a with the two parameters N−1
1/T and P . In this terms,

the equation (61) may be rewritten as

c4

G
[
2π

N1/T

α1/2
a (HUP )− 1

2
αa(HUP )] = 4πPℓ2. (62)

So, at low energies the equation (61) (or (62)) written for the discretely-
varying αa may be considered in a continuous theory.
As a result, in the case under study we can use the basic formulae from a
continuous theory considering them valid to a high accuracy.
In particular, in the notation used for Schwarzschild’s black hole [55], we
have

rs = Naℓ =
2GM

c2
;M =

Naℓc
2

2G
. (63)

As its temperature is given by the formula

TH =
~c3

8πGMkB
, (64)

at once we get

TH =
~c

2πkBNaℓ
=

~cα1/2
a

2πkBℓ
. (65)

Comparing this expression to the expression with high N1/T (N1/T ≫ 1)
for temperature from the equation (53) that is involved in (58), we can find
that at low energies E ≪ Ep, due to comment R2.2. from Subsection 2.3,
the number N1/T is actually coincident with the number Na:

N1/T = Na = α−1/2
a (HUP ). (66)

The substitution of the last expression from formula (69) into the quadratic

equation (60)for α
1/2
a makes it a linear equation for αa with a single param-

eter P .

3.2.Measurable case for high energies:: E ≈ Ep. Then, due to (30), a is
the generalized measurable quantity a = ameas = 1/2(Na +

√
N2

a − 1)ℓ,
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with the integer Na ≈ 1.
The quantity

∆ameas(q) = 1/2(Na +
√

N2
a − 1)ℓ−Naℓ = 1/2(

√
N2

a − 1−Na)ℓ (67)

may be considered as a quantum correction factor for themeasurable
radius r = ameas, that is infinitesimal at low energies E ≪ Ep and not
infinitesimal for high energies E ≈ Ep.
In this case there is no possibility to replace GUP by HUP. In equation (60)
αa = αa(GUP ) is a generalized measurable quantity (Definition 2).
As noted in formula (53) of Comment R2.3, in this case the number N1/T

in equation (61) is replaced by 1/2(N1/T +
√
N2

1/T − 1), i.e. the equation is

of the form

c4

G
[

2π

1/2(N1/T +
√

N2
1/T − 1)

α1/2
a (GUP )− 1

2
αa(GUP )] = 4πPℓ2. (68)

In so doing the theory becomes really discrete, and the solutions of (68)
take a discrete series of values for every Na or (αa(GUP )) sufficiently close
to 1.
In this formalism for a ”quantum” Schwarzschild black hole (i.e. at high
energies E ≈ Ep) formula (69) is replaced by

TH(Q) =
~c

πkB(Na +
√
N2

a − 1)ℓ
=

~cα1/2
a (GUP )

2πkBℓ
. (69)

We should make several remarks which are important.

Remark 3.3.
As noted in [1], the parameter αa = αa(HUP ), within constant factors, is
coincident with the Gaussian curvature Ka [56] corresponding to primary
measurable a = Naℓ:

αa =
ℓ2

a2
= ℓ2Ka. (70)
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Because of this, the transition from αa(HUP ) to αa(GUP ) may be consid-
ered as a basis for ”quantum corrections” to the Gaussian curvature Ka in
the high-energy region E ≈ Ep:

αa(GUP )− αa(HUP ) = ℓ2[
1

1/4(Na +
√
N2

a − 1)2ℓ2
− 1

N2
a ℓ

2
] =

= ℓ2(KQ
a −Ka), (71)

where the ”measurable quantum Gaussian curvature ” KQ
a is defined as

KQ
a

.
=

1

1/4(Na +
√

N2
a − 1)2ℓ2

. (72)

In a similar way, with the use of formulae (69) and (64), we can derive a
”measurable quantum correction ” for the mass M of a Schwarzschild black
hole at high energies.
Remark 3.4.
It is readily seen that a minimal value of Na = 1 is unattainable because
in formula ((30) we can obtain a value of the length l that is below the
minimum l < ℓ for the momenta and energies above the maximal ones, and
that is impossible.
Thus, we always have Na ≥ 2. This fact was indicated in [35],[9], however,
based on the other approach.

Remark 3.5. It is clear that we have the following transition:

Eq.(68)(E ≈ Ep)
(Na≈1)→(Na≫1)−→ Eq.(62)(E ≪ Ep)

.

Remark 3.6. So, all the members of the gravitational equation (61) (and
(68), respectively), apart from P , are expressed in terms of the measur-
able parameter αa. From this it follows that P should be also expressed
in terms of the measurable parameter αa, i.e. P = P (αa): E ≪ Ep,
P = P [αa(HUP )] at low energies and E ≈ Ep,P = P [αa(GUP )] at high
energies. Then, due to the above formulae, we can have for a ”quantum”
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Schwarzschild black hole the “ horizon” gravitational equation in terms of
measurable quantities

(4π − 1)
c4

G
αa(GUP ) = 8πP [αa(GUP )], ℓ2, (73)

where αa(GUP ) takes a discrete series of the values αa(GUP ) = (1/2(Na+√
N2

a − 1))−2; Na ≥ 2 is a small integer.

4 Conclusion

Taking a simple case as an example, in this paper the author has successfully
expressed almost all of the members in the gravitational equation (except-
ing P ) in terms of measurable quantities. In the general case the problem
at hand is as follows:
the formulation of Gravity in terms of measurable quantities and also the
derivation of a solution in terms of measurable quantities.
Proceeding from the results obtained in [1], [2], such a ”measurable”Grav-
ity – discrete theory that is practically continuous at low energies E ≪ Ep

and very close to the Einstein theory, though with some principal differ-
ences. By author’s opinion, in the low-energy ”measurable” variant of
Gravity we should have no solutions without physical meaning, specifically
Godel’s solution [57].
At high energies E ≈ Ep this ”measurable” Gravity should be really a
discrete theory enabling the transition to the low-energy ”measurable”
variant of Gravity.
Still it is obvious that, to construct a measurable variant of Gravity at all
the energy scales, in the general case we need both the primarily mea-
surable variations ∆p(N∆x, HUP ) (formula (29)) and the generalized-
measurable variations ∆p(N∆x, GUP ) from formula (30). The author be-
lieves that such construction should be realized jointly with a construction
of a measurable variant for Quantum Theory (QT).
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