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Abstract

We solve the photoelectric problem with the dressed photon. The dressed photon is
composed from the electron-positron pair. The solution uses the photon propagator with
the radiative correction to the photon.

1 Introduction

The photoelectric effect is a quantum electromagnetic phenomenon in which electrons
are emitted from matter after the absorption of energy from electromagnetic radiation.
Frequency of radiation must be above a threshold frequency, which is specific to the
type of surface and material. No electrons are emitted with a frequency below of the
threshold. The photoelectric effect was theoretically explained by Einstein in his paper in
1905 (Einstein, 1905; 1965) and the term ”light quanta” called ”photons” was introduced
by chemist G. N. Lewis, in 1926. Einstein writes (Einstein, 1905; 1965): In accordance
with the assumption to be considered here, the energy of light ray spreading out from
point source is not continuously distributed over an increasing space but consists of a
finite number of energy quanta which are localized at points in space, which move without
dividing, and which can only be produced and absorbed as complete units.

The linear dependence on the frequency was experimentally determined in 1915, when
Robert Andrews Millikan showed that Einstein formula

h̄ω =
mv2

2
+W (1)

was correct. Here, h̄ω is the energy of the impinging photon, v is the electron velocity
measured by the magnetic spectrometer and W is the work function of concrete material.
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The work function for Aluminium is 4.3 eV, for Beryllium 5.0 eV, for Lead 4.3 eV,
for Iron 4.5 eV, and so on (Rohlf, 1994). The work function concerns the surface
photoelectric effect, where the photon is absorbed by an electron in a band. The
theoretical determination of the work function is the problem of the solid state physics.
On the other hand, there is the so called atomic photoeffect (Amusia, 1987; Berestetzky
et al., 1989), where the ionization energy plays the role of the work function. The system
of the ionization energies is involved in the tables of the solid state physics.

The formula (1) is the law of conservation of energy. The classical analogue of the
equation (1) is the motion of the Robins ballistic pendulum in the resistive medium.

The idea of the existence of the Compton effect is also involved in the Einstein article.
He writes (Einstein, 1905; 1965): The possibility should not be excluded, however, that
electrons might receive their energy only in part from the light quantum. However, Einstein
was not sure, a priori, that his idea of such process is realistic. Only Compton proved the
reality of the Einstein statement.

At energies h̄ω < W , the photoeffect is not realized. However, the photo-conductivity
is the real process. The photoeffect is realized only in medium and with low energy
photons, but with energies h̄ω > W , which gives the Compton effect negligible. . For
h̄ω ≫ W the photoeffect is negligible in comparison with the Compton effect. At the
same time it is necessary to say that the Feynman diagram of the Compton effect cannot
be reduced to the Feynman diagram for photoeffect. In case of the high energy gamma
rays, it is possible to consider the process called photoproduction of elementary particles
on protons in LHC, or, photo-nuclear reactions in nuclear physics (Levinger, 1960). Such
processes are energetically far from the photoelectric effect in solid state physics.

Eq. (1) represents so called one-photon photoelectric effect, which is valid for very
weak electromagnetic waves. At present time of the laser physics, where the strong
electromagnetic intensity is possible, we know that so called multiphoton photoelectric
effect is possible. Then, instead of equation (1) we can write

h̄ω1 + h̄ω2 + ...h̄ωn =
mv2

2
+W. (2)

The time lag between the incidence of radiation and the emission of a photoelectron
is very small, less than 10−9 seconds.

The ejected electron has the final plane wave

ψq =
1√
V
eiq·x, q =

p

h̄
, (3)

where p is the momentum of the ejected electron.
The probability of the emission of electron by the electromagnetic wave is of the well-

known form (Davydov, 1976):

dP =
e2p

8π2ε0h̄mω

∣∣∣∣∫ ei(k−q)·x(e · ∇)ψ0dxdydz

∣∣∣∣2 dΩ = C|J |2dΩ, (4)

where the interaction for absorption of the electromagnetic wave is normalized to one
photon in the unit volume, e is the polarization of the impinging photon, ε0 is the dielectric
constant of vacuum, ψ0 is the basic state of and atom. We have denoted the integral in
|| by J and the constant before || by C.
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Let us consider the case with electrons in magnetic field as an analog of the Landau
diamagnetism. So, we take the basic function ψ0 for one electron in the lowest Landau
level, as

ψ0 =
(mωc

2πh̄

)1/2

exp
(
−mωc

4h̄
(x2 + y2)

)
, (5)

which is solution of the Schrödinger equation in the magnetic field with potentials
A = (−Hy/2,−Hx/2, 0, ), (Drukarev, 1988):[

p2x
2m

+
p2y
2m

− m

2

(ωc

2

)2

(x2 + y2)

]
ψ = Eψ. (6)

We have supposed that the motion in the z-direction is zero and it means that the
wave function exp[(i/h̄)pzz] = 1.

So, the main problem is to calculate the integral

J =

∫
ei(K·x)(e · ∇)ψ0dxdydz; K = k− q. (7)

with the basic Landau function ψ0 given by the equation (5).
Operator (h̄/i)∇ is Hermitean and it means we can rewrite the last integrals as follows:

J =
i

h̄
e ·

∫ [(
h̄

i
∇
)
ei(K·x)

]∗
ψ0dxdydz, (8)

which gives

J = ie ·K
∫
e−i(K·x)ψ0dxdydz, (9)

The integral in eq. (9) can be transformed using the cylindrical coordinates with
dxdydz = ϱdϱdφdz, ϱ2 = x2 + y2, which gives for vector K fixed on the axis z with
K ·x = Kz and with physical condition e ·k = 0, expressing the physical situation where
polarization is perpendicular to the direction of the wave propagation. So,

J = (i)(e · q)
∫ ∞

0

ϱdϱ

∫ ∞

−∞
dz

∫ 2π

0

dφe−iKzψ0. (10)

Using

ψ0 = A exp
(
−Bϱ2

)
; A =

(mωc

2πh̄

)1/2

; B =
mωc

4h̄
, (11)

the integral (10) is then

J = (−πi)A
B
(e · q)

∫ ∞

−∞
e−iKzdz = (−πi)A

B
(e · q)(2π)δ(K). (12)

Then,

dP = C|J |2dΩ = 4π4A
2

B2
C(e · q)2δ2(K)dΩ. (13)

Now, let be the angle Θ between direction k and direction q, and let be the angle Φ
between planes (k,q) and (e,k). Then,
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(e · q)2 = q2 sin2 Θcos2Φ. (14)

So, the differential probability of the emission of photons from the graphene (Pardy,
2010) in the strong magnetic field is as follows:

dP =
4e2p

πε0m2ωωc

[
q2 cos2Θsin2 Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (15)

We can see that our result differs form the result for the original photoelectric effect
which involves still the term

1

(1− v
c
cosΘ)4

, (16)

which means that the most intensity of the classical photoeffect is in the direction of the
electric vector of the electromagnetic wave (Φ = π/2,Θ = 0). While the nonrelativistic
solution of the photoeffect in case of the Coulomb potential was performed by Stobbe
(1930) and the relativistic calculation by Sauter (Sauter, 1931), the general magnetic
photoeffect (with electrons moving in the magnetic field and forming atom) was not still
performed in a such simple form. The delta term δ · δ represents the conservation law
|k− q| = 0 in our approximation.

So, we have calculated only the process which can be approximated by the Schrödinger
equation for an electron orbiting in magnetic field.

The photoeffect with the dressed photon is the process, where the dressed photon is
taken with the radiative correction in the form of the virtual electron-positron pair.

We have shown that such approach to the photon leads to the modification he photon
propagator. According to Dittrich (1978) and Schwinger (1973), the photon propagator
with radiative correction is in the momentum representation of the form:

D̃(k) = D(k) + δD(k), (17)

or,

D̃(k) =
1

|k|2 − n2(k0)2 − iϵ
+

+

∫ ∞

4m2

dM2 a(M2)

|k|2 − n2(k0)2 + M2c2

h̄2 − iϵ
, 18)

where the last term in equation (18) is derived on the virtual photon condition

|k|2 − n2(k0)2 = −M
2c2

h̄2
, (19)

where n is the index of refraction of the medium. The weight function a(M2) has been
derived in the following form (Dittrich, 1978; Schwinger, 1973):

a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

. (20)

The x-representation of D(k) in eq. (18) is as follows:
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D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)D(k). (21)

Or,

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)

|k2| − n2(k0)2 − iϵ
=

=
i

c

1

4π2

∫ ∞

0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t′|. (22)

Now, with regard to the definition of x-representation (21) and (22) of the D+(x−x′),
we get the x-representation of the δD+ in the following form:

δD+(x− x′) =
i

c

1

4π2

∫ ∞

4m2

dM2a(M2)×

×
∫

dω
sin[n

2ω2

c2
− M2c2

h̄2 ]1/2|x− x′|
|x− x′|

e−iω|t−t′|. (23)

The function (23) differs from the the original function D+ especially by the factor

γ =

(
ω2n2

c2
− M2c2

h̄2

)1/2

(24)

and by the additional mass-integral which involves the radiative corrections to the original
photon processes. It was easily shown in case of the Čerenkov effect by author (Pardy,
1994).

So, to involve the photoelectric effect with the dressed photon with electron positron
pair we replace the wave function of photon exp(ik · x) by the function involving the
radiative correction factor as follows:

eik·x →
∫ ∞

4m2

dM2a(M2)eiκ·x, (25)

where κ · x = γ|k||x| cosφ.
The probability of the emission of electron by the electromagnetic wave is given by

eq. (4).
So, the main problem is to calculate the integral

J =

∫
ei(κ·x)(e · ∇)ψ0dxdydz; K = κ− q. (26)

with the basic Landau function ψ0 given by the equation (5).
Then, the differential probability of the emission of photons from the plane in the

strong magnetic field is as follows:

dP =
4e2p

πε0m2ωωc

∫ ∞

4m2

dM2a(M2)
[
q2 cos2 Θsin2 Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (27)

We can see that our result differs form the result (15) by the mass term and by the
argument in the δ-function. The delta term δ ·δ represents the conservation law |κ−q| = 0
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in our approximation. The dressed photon was here considered as the photon composed
from the electron-positron pair. It is not excluded that the photoelectric experiments with
the dressed photon is related to the experiments with the Vavilov-Cherenkov phenomenon
in metal nanofilms (Pardy, 2007, 2010, 2011; Zuev, 2009).
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