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Abstract

We consider the string with the length l, the left end and the right end of which
is non relativistically accelerated by the constant acceleration a. We calculate the
motion of such string and then the motion of the Galileo free fall string in gravity.
The solutions are not identical. So, we distinguish between noninertial field and the
gravity field and we discuss the principle of equivalence. In conclusion we suggest to
drop charged objects from the very high tower Burj Khalifa in order to say crucial
words on the principle of equivalence.

1 Introduction

It is well known that Galileo performed experiment in Pisa - later the famous experiment
- with the result that the every falling body is falling with a uniform acceleration, the
resistance of the medium being through which it was falling remained negligible. He also
derived the correct kinematic law for the distance traveled during a uniform acceleration
starting from rest, namely, that it is proportional to the square of the elapsed time.
Prior to Galileo, Nicole Oresme, in the 14-th century, had derived the times-squared law
for uniformly accelerated body, and Domingo de Soto had suggested in the 16-th century
that bodies falling through a homogeneous medium would be uniformly accelerated. Soto,
however, did not recognize the strictly uniform acceleration is only in a vacuum, and that
it would otherwise eventually reach a uniform terminal velocity. Galileo expressed the
time-squared law using geometrical constructions and mathematically precise words.

We here repeat the Galileo experiment in the generalized mathematical form. Namely
with the string. We discuss the motion of the string accelerated by the Newton forces
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and by gravity and we discover substantial differences leading to the philosophy of the
principle of equivalence.

2 The uniformly accelerated string

Let us consider the string with the length l , the left end of which is accelerated by the
constant acceleration a and the right end is accelerated also by the constant acceleration
a.

Our problem is described by the wave equation (Koshlyakov, et al., 1962)

utt = c2uxx + g(x, t) (1)

with the boundary conditions

u(x = 0) = κ1(t) =
1

2
at2 (2)

u(x = l) = κ2(t) =
1

2
at2 + l = κ1(t) + l (3)

and with the initial conditions

u(t = 0) = f(x); ut(t = 0) = F (x). (4)

The problem cannot be solved by the standard Fourier method because the bound-
ary conditions (2)-(3) are not homogenous. So, we introduce the auxiliary function
(Koshlyakov et al., 1962)

w(x, t) = κ1(t) + [κ2(t) − κ1(t)]
x

l
(5)

with the boundary conditions

w(x = 0) = κ1(t); w(x = l) = κ1(t) + l (6)

and the final solution we find in the form:

u(x, t) = v(x, t) + w(x, t) (7)

with the boundary conditions

v(x = 0) = 0; v(x = l) = 0 (8)

and the initial conditions

v(t = 0) = f1(x); vt(t = 0) = F1(x). (9)

After insertion of u = v + w into eq. (1), we get the following equation for v and w:

vtt = c2vxx + g(x, t) + c2wxx − wtt. (10)

Then, if we use the definition of w by eq. (5), we get equation for v in the form:

vtt = c2vxx + g1(x, t), (11)
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where

g1(x, t) = g(x, t) − κ′′1(t) − [κ′′2(t) − κ′′1(t)]
x

l
. (12)

So, we see, that the last algebraic procedures lead to new system of equations. Namely:

vtt = c2vxx + g1(x, t) (13)

with
v(x = 0) = 0; v(x = l) = 0 (14)

and

v(t = 0) = f1(x); vt(t = 0) = F1(x). (15)

It is easy to show that g1(x, t) = g − a and the system of equation to be solved is as
follows:

vtt = c2vxx + g − a (16)

with
v(x = 0) = 0; v(x = l) = 0 (17)

and

v(t = 0) = f1(x) = 0; vt(t = 0) = F1(x) = 0. (18)

The solution of the system is well known (Koshlyakov et al., 1962) and so we write
the final form:

v(x, t) =
∞∑
k=1

Tk sin

(
kπx

l

)
, (19)

where

Tk(t) =
2

lωk

∫ t

0
dτ
∫ l

0
G(ξ, τ) sinωk(t− τ) sin

(
kπξ

l

)
dξ, (20)

where

ωk =
kπc

l
; G(ξ, τ) = g − a. (21)

3 The Free fall of the string in gravity

Let us consider the string with length l, the upper end is hanged in the gravity with the
acceleration g and the second end is free at time t = 0. So the mathematical formulation
of the problem is as follows (Koshlyakov, et al., 1962):

utt = c2uxx + g (22)

with
u(x = 0) = 0; ux(x = l) = 0 (23)

u(t = 0) = 0; ut(t = 0) = 0. (24)
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Putting u = v + w, we get for w the obligate system of equations:

wtt = c2wxx (25)

with the boundary conditions

w(x = 0) = 0; wx(x = l) = 0 (26)

and the initial conditions

w(t = 0) = −v(t = 0); wt(t = 0) = −vt(t = 0). (27)

It is possible to show (Koshlyakov, et al., 1962) that

v =
gx(2l − x)

2c2
. (28)

So, we can write

f(x) =
gx(x− 2l)

2c2
; F (x) = 0 (29)

Then, by the standard method of integration, we get

u(x, t) =
gx(2l − x)

2c2

−16gl2

π3c2

∞∑
k=1

1

(2k + 1)3
cos

(
(2k + 1)πat

2l

)
sin

(
(2k + 1)πx

2l

)
(30)

and

u(x = l) =
gl2

2c2
− 16gl2

π3c2

∞∑
k=1

(−1)k

(2k + 1)3
cos

(
(2k + 1)πat

2l

)
. (31)

The maximal quantity umax is at point t = 2l/c and so we get

umax =
gl2

2c2
+

16gl2

π3c2

∞∑
k=1

(−1)k

(2k + 1)3
(32)

With regard to the mathematical formula

∞∑
k=1

(−1)k

(2k + 1)3
=
π3

32
, (33)

we get

umax =
gl2

c2
. (34)

So, the length of the string (rod) is in the interval (l, l + gl2

c2
).
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4 Discussion

We have seen how to calculate the internal motion of the uniformly accelerated non-
relativistic of the length l by the Newton force and by the gravity force which is the
analogue of the experiment where Galileo dropped objects from the leaning tower of Pisa.
Galileo have used two bodies made of the same material, differing only in size. He had
in fact stated that, if the effects of air friction could be ignored, the two bodies would
reach the ground at the same time. So, he supported the conclusion that the every falling
body is falling with a uniform acceleration, the resistance of the medium being negligible.
Galileo experimentation represented the kernel of scientific investigation and Galileo was
keen to point this out (Frova et al., 2006).

Galileo experiment can be related to the Einstein equivalence principle with two
reference frames, K and K’ where K is a uniform gravitational field, whereas K’ has
no gravitational field but is uniformly accelerated in such a way that objects in the two
frames experience identical forces. According to Einstein systems K and K’ are physically
exactly equivalent. This assumption of exact physical equivalence makes it impossible to
speak of the absolute acceleration of the system of reference, just as the usual theory of
relativity forbids to talk of the absolute velocity of a system. It makes the equal falling
of all bodies in a gravitational field (Einstein, 1911).

Or, Inertia and gravity are identical; hence and from the results of special relativity
theory it inevitably follows that the symmetric fundamental tensor gµν determines the
metric properties of space, of the motion of bodies due to inertia in it, and, also, the
influence of gravity (Einstein, 1918).

According to Fock (1964), principle of equivalence is understood to be the statement
that in some sense a field of acceleration is equivalent to a gravitational field. It means
that by introducing a suitable system of coordinates (which is usually interpreted as an
accelerated frame of reference) one can so transform the equations of motion of a mass
point in a gravitational field that in this new system they will have the appearance of
equations of motion of a free mass point. Thus a gravitational field can, so to speak, be
replaced, or rather imitated, by a field of acceleration. Owing to the equality of inertial
and gravitational mass such a transformation is the same for any value of the mass of
the particle. But it will succeed in its purpose only in an infinitesimal region of space,
i.e. it will be strictly local. In the general case the transformation described corresponds
mathematically to passing to a locally geodesic system of coordinates.

The principle of equivalence states that it is impossible to distinguish between the
action on a particle of matter of a constant acceleration, or, of static support in a
gravitational field (Lyle, 2008).

We have seen that the motion of the accelerated string by the non-gravity forces differs
from the motion of the string caused by the gravity with the acceleration g.

The controversions between different opinions can be easily solved with regard to the
physical definition of gravity and inertia. Namely: gravity is form of matter in the physical
vacuum. And inertia is the result of the interaction of the massive body with quantum
vacuum being the physical medium.

It is well known that synchrotron radiation influences the motion of the electron in
accelerators. The corresponding equation which describes the classical motion is so called
the Lorentz-Dirac equation, which differs from the the so called Lorentz equation

mc
duµ
ds

=
e

c
Fµνu

ν (35)
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only by the additional term which describes the radiative corrections. So, the equation
with the radiative term is as follows (Landau et al., 1988):

mc
duµ
ds

=
e

c
Fµνu

ν + gµ, (36)

where uµ is the four-velocity and the radiative term was derived by Landau et al. in the
form (Landau et al., 1988):

gµ =
2e3

3mc3
∂Fµν
∂xα

uνuα − 2e4

3m2c5
FµαF

βαuβ +
2e4

3m2c5

(
Fαβu

β
)

(Fαγuγ)uµ. (37)

The last equation can be easily converted into equation for charged particle moving
in gravity. However, the term describing the radiation caused by gravity is not present
(Landau, et al., 1988).

It was proved by author (Pardy, 2009) that synchrotron radiation influences the spin
motion of the electron in accelerators. The corresponding equation which describes the
classical spin motion is so called the Bargman-Michel-Telegdi-Pardy and is of the form
(Pardy, 2009):

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ+

Λuµ

{
2e3

3mc3
∂Fλν
∂xα

uνuα−

2e4

3m2c5
FλαF

βαuβ +
2e4

3m2c5

(
Fαβu

β
)

(Fαγuγ)uλ

}
aλ. (38)

Let us remark that the conversion of this equation to the situation where the
interaction with the gravitational field is present, was not still derived.

Let us remark, that free fall of the positronium is of the same law as the free fall of
an electron, or, positron apart. Also, free fall of the protonium is of the same law as
the free fall of the proton, or, antiproton apart. It was experimentally verified. It means
that the charge interaction with gravity is zero. Gravity interact only with mass and the
result of such interaction is the free fall with emission of gravitons. In case of the binary
system it was confirmed by NASA and the spectral formula of the emission of gravitons
by the binary was calculated by author (Pardy, 1983; 1994a; 1994b; 2011; 2018; 2019). In
case of the existence of the gravitational index of refraction, the gravitational Cherenkov
radiation is possible (Pardy, 1994c; 1994d).

While Galileo dropped objects from the leaning tower of Pisa, now, we have possibility
to drop charged objects from the very high tower Burj Khalifa, in order to confirm
the law that charged objects accelerated by the gravitational field do not radiate the
electromagnetic energy. It is not excluded that such experiment with the adequate
title Galileo-Pardy-Burj Khalifa project will be realized sooner, or, later. The project
is cheaper than LHC.
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