A GENERALIZED KOSZUL THEORY AND ITS APPLICATION

LIPING LI

ABSTRACT. Let A be a graded algebra. In this paper we develop a generalized
Koszul theory by assuming that Ag is self-injective instead of semisimple and
generalize many classical results. The application of this generalized theory to
directed categories and finite EI categories is described.

1. INTRODUCTION

The work described in this paper originated in the exploration of homological
properties of finite EI categories. We want to apply Koszul theory, which has been
proved to be very useful in the representation theory of algebras, to study the Ext
groups of representations of finite EI categories. Examples of such applications
can be found in [19] and [2I], where Koszul theory has been applied to incidence
algebras of posets. In general this theory applies to graded algebras, and we do
not assume that the degree 0 part of the algebra is semisimple, unlike the classical
Koszul theory described in [4] [9] [10] [15]. This generalization is necessary so that
we can apply the theory to finite EI categories.

There do already exist several generalized Koszul theories where the degree 0
part Ay of a graded algebra A is not required to be semisimple, see [11] [13] [14]
and [2I]. Each Koszul algebra A defined by Woodcock in [21] is supposed to sat-
isfy that A is both a left projective Ag-module and a right projective Ag-module.
This requirement is too strong for us. Indeed, even the category algebra k€ of a
standardly stratified finite EI category £ (studied in [20]) does not satisfy this re-
quirement: k& is a left projective k€y-module but in general not a right projective
k&y-module. In Madsen’s paper [14], Ay is supposed to have finite global dimen-
sion. But for a finite EI category &£, this happens in our context if and only if k&
is semisimple. The theory developed by Green, Reiten and Solberg in [11] works
in a very general framework, but some efforts are required to fill the gap between
their theory and our applications.

Thus we want to develop a generalized Koszul theory which can inherit many
useful results of the classical theory, and can be applied to structures with nice
properties such as finite EI categories. Let A be a graded k-algebra with Ay being
self-injective instead of being semisimple. Then we define generalized linear modules
(or Koszul modules), Koszul algebras in a similar way to the classical case. That is,
a graded A-module M is Koszul if M has a linear projective resolution, and A is a
Koszul algebra if Ay viewed as a graded A-module is Koszul. We also define quasi-
Koszul modules and quasi-Koszul algebras: M is quasi-Koszul if the Ext* (Ao, Ao)-
module Ext% (M, Ap) is generated in degree 0, and A is a quasi-Koszul algebra if
Ap is a quasi-Koszul A-module. It turns out that this generalization works nicely
for our goal. Many classical results described in [4] [9] [10] and [I5] generalize to
our context. In particular, we obtain the Koszul duality both on the category of
linear modules and on the derived category.

The author wants to express great appreciation to his thesis advisor, Professor Peter Webb,
for the proposal to develop a generalized Koszul theory, and the invaluable suggestions and con-
tributions provided in numerous discussions.
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We then focus on the applications of this generalized Koszul theory. First we
define directed categories. A directed category C is a k-linear category equipped
with a partial order < on ObC such that for each pair of objects x,y € ObC,
the space of morphisms C(x,y) is non-zero only if # < y. Directed categories
include the k-linearizations of finite EI categories as special examples. This partial
order determines a canonical pre-order < on the isomorphism classes of simple
representations. Following the technique in [20], we develop a stratification theory
for directed categories, describe the structures of standard modules and characterize
every directed category C standardly stratified with respect to the canonical pre-
order:

Theorem 1.1. Let C be a directed category with respect to a partial order <. Then
C is standardly stratified for the canonical pre-order X if and only if the morphism
space C(x,y) is a projective C(y,y)-module for every pair of objects x,y € ObC.

By the correspondence between graded k-linear categories and graded algebras
described in [I6], we can view a directed category as a directed algebra and vice-
versa. Therefore, all of our results on graded algebras can be applied to graded
directed categories. In particular, the following theorem relates Koszul theory to
stratification theory:

Theorem 1.2. Let C be a graded directed category with Co = @, ¢ oy, ¢ C(x, ) being
a self-injective algebra . Then:

(1) C is standardly stratified with respect to the canonical pre-order < if and
only if C is a projective Co-module.

(2) C is a Koszul category if and only if C is a quasi-Koszul category standardly
stratified for <.

(8) If C is standardly stratified for <, then a graded C-module M generated in
degree 0 is linear if and only if it is a quasi-Koszul C-module and a projective
Co-module.

Applying the homological dual functor F = Ext;(—,Cp) to a graded directed
category C, we construct the Yoneda category E(Cy) = Ext(Co,Co). We prove that
if C is a Koszul directed category with Cy being self-injective, then E(Cp) is also a
Koszul directed category.

We acquire a very nice correspondence between the classical Koszul theory and
our generalized Koszul theory for directed categories.

Theorem 1.3. Let C be a graded directed category with Cy being a self-injective al-
gebra. Define D to be the subcategory of C obtained by replacing each endomorphism
ring by k - 1, the span of the identity endomorphism. Then:

(1) C is a Koszul category in our sense if and only if C is standardly stratified
for the canonical pre-order < and D is a Koszul category in the classical
sense.

(2) If C is a Koszul category, then a graded C-module M is linear if and only
if M is a projective Co-module, and M i% is a linear D-module.

Finite EI categories have nice combinatorial properties. These properties can be
used to define length gradings on the sets of morphisms. We discuss the possibility
to put such a grading on an arbitrary finite EI category, and prove the following
result for finite free EI categories (defined in [12]):

Theorem 1.4. Let € be a finite free EI category. Then the following are equivalent:
(1) pdkgo < 00y
(3) € is standardly stratified in a sense defined in [20];
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(4) k& is a Koszul algebra.

Moreover, k€ is a quasi-Koszul algebra if and only if Exti o (k&,kEy) = 0 for each
=2

We then give a sufficient condition for the category algebra of a finite EI category
£ to be quasi-Koszul. An object x € Ob £ is called left regular if for every morphism
a : z — x, the stabilizer of @ in Autg(y) has order invertible in k. Similarly we
define right regular objects. Then:

Theorem 1.5. Let £ be a finite free EI category. If every object in € is either left
reqular or right reqular, then k&€ is a quasi-Koszul algebra.

Motivated by the fact that the Yoneda category E(Cy) of a directed Koszul
category C is still a directed Koszul category, and hence is standardly stratified,
we ask whether the Koszul dual algebra I' = Ext’ (Ao, Ag) of a graded algebra A
standardly stratified for a partial order < is still standardly stratified for < (or <°P).
This question has only been studied for the case that Ay is semisimple, see [I] [2] [§]
[17] and [I8]. By assuming that Ag is a self-injective algebra, and supposing that
all standard modules are concentrated in degree 0 and linear, we get a sufficient
condition for I" to be standardly stratified with respect to <°P.

The layout of this paper is as follows. The generalized Koszul theory is developed
in the first three sections. In Section 2 we define Koszul modules and quasi-Koszul
modules, which generalize linear modules and Koszul modules in the classical the-
ory, and describe their basic properties. Since Koszul modules and quasi-Koszul
modules do not coincide in our context, we also give a relation between these two
concepts. Koszul algebras are studied in Section 3. The Koszul dualities are proved
in Section 4. Most results in these three sections are generalized from works in [4]
[9) [I0] [15]. Some results can be deduced from the paper [I1] of Green, Reiten and
Solberg, who worked in a more general context, but we present full arguments for
the sake of completeness.

The last three sections are on the application of the general theory developed
before. Directed categories are defined in Section 5. Their stratification properties
and Koszul properties are discussed in details in this section as well. The main
content of Section 6 to apply the Koszul theory and stratification theory to finite
EI categories, which have nice combinatorial structures. In Section 7 we modify
the technique of [I] to study standardly stratified algebras with linear standard
modules.

Here are the notation and conventions we use in this paper. All algebras are
k-algebras with k being algebraically closed. All modules are finitely generated left
modules. Let A be a graded algebra. A graded A-module M is said to be locally
finite if dimy M; < oo for each degree i € Z. By A-mod and A-gmod we denote the
category of all finitely generated A-modules and the category of all locally finite
graded A-modules. Let M and N be two A-modules. By Hom4 (M, N) we denote
the space of module homomorphisms from M to N. If furthermore M and N are
graded, we use hom 4 (M, N) to denote all graded module homomorphisms from M
to N, i.e., the homomorphisms ¢ € Homa (M, N) such that ¢(M;) C N; for all
i € Z. When ¢ is said to be a homomorphism between two graded modules, it is
supposed to be a graded homomorphism. If M is a graded A-module, its s-th shift
M{s] is defined in the following way: M[s]; = M;_ for alli € Z. If M is generated in
degree s, then B, ,, M; is a graded submodule of M, and M; = M/ D, ., M;
as vector spaces. We then view M as an A-module by identifying it with this
quotient module. We also regard the zero module 0 as a projective module since
with this convention the expressions of many results can be simplified.
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2. GENERALIZED K0SzuL MODULES

Throughout this section A is a non-negatively graded and locally finite associa-
tive k-algebra with identity 1 generated in degrees 0 and 1, i.e., A = @;-, A; such
that A; - A; = A;y; for all 4,5 > 0; each A; is finite-dimensional. We also suppose
that Ag is a self-injective algebra, i.e., every projective Ag-module is injective as
well. Define J = @;°; A;, which is a two-sided ideal of A. An A-module M is
called graded if M = @,, M; such that A; - M; € M, ;. We say M is generated
in degree s if M = A- M. It is clear that M is generated in degree s if and only if
JM = ;5 Mi, which is equivalent to JIM = D>y Mi forall I > 1.

Most results in this section are generalized from [9] [I0] and [I5]. We suggest
that the reader refer to these papers.

We collect some preliminary results in the following lemma.

Lemma 2.1. Let A be as above and M be a locally finite graded A-module. Then:

(1) J =D;5, Ai is contained in the graded radical of A;
(2) M has a graded projective cover;
(8) the graded syzygy QLM is also locally finite.

Proof. By definition, the graded radical grad A is the intersection of all maximal
proper graded submodules of A. Let L C A be a maximal proper graded submodule.
Then Ly is a proper subspace of Ag. We clalm that A; = L; for all i > 1. Otherwise,
we can define L C A in the following way: Ly = Lo and L; = A; for i > 1.
Then L C L A, so L is not a maximal proper graded submodule of A. This
Contradlctlon tells us that L; = A; for all i > 1. Therefore, J C grad A, and the
first statement is proved.

We use the following fact to prove the second statement: every primitive idem-
potent of Ag (as an algebra) can be lifted to a primitive idempotent of A. Conse-
quently, a projective Ag-module concentrated in some degree d can be lifted to a
graded projective A-module generated in degree d.

Define M = M/JM, which is also a locally finite graded A-module. Write M =
@i>0 M;. Then each M; is a finite-dimensional graded A-module since J M = 0and
AgM; = M; for all i > 0. Therefore, there is a decomposition of M in which each
indecomposable summand (which must be of finite dimension) is concentrated in a
certain degree. Moreover, for each i € Z, there are only finitely many summands
which are concentrated in degree i.

Take L to be such an indecomposable summand and without loss of generality
suppose that it is concentrated in degree 0. As an Ag-module, L is finitely generated
and has a finitely generated projective cover Py. By the lifting property, Py can
be lifted to a finitely generated (hence locally finite) graded projective module P
generated in degree 0.

We claim that P is a graded projective cover of L. Indeed, there is a graded
surjective homomorphism ¢ : P — L by mapping Fy onto L = Ly and JP to
0. Furthermore, this surjection is minimal. That is, if @) is a proper summand
of P, then the induced map ¢’ : @ — L is not surjective. Otherwise, the proper
submodule Qg ; P, can be mapped onto Lg. But this contradicts the fact that Py
is a projective cover of L as an Ag-module. In conclusion, we proved that P is a
graded projective cover of L.

Take the direct sum of these projective covers P when L ranges over all inde-
composable summands of M. In this way we obtain a graded projective cover P
of M. We claim that P is also a graded projective cover of M. On one hand,
the surjection p : P — M can be factored through the quotient homomorphlsm
q: M — M and induces a graded homomorphism p’ : P — M such that p = qp,
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as showed in the following diagram:

Define M’ to be the image of p’. Viewed as vector spaces, M = M/JM C M’ and
M = M + JM. Therefore, M = JM + M’ as graded A-modules. By the graded
Nakayama’s lemma and the first statement, we deduce that M’ = M, and hence p’
is a surjection. On the other hand, if there is a proper summand Q ; P such that
the induced map

Q~ L p p M

is a graded surjection, where ¢ is the inclusion, then the map tp’q = tp is a graded
surjection from Q to M = M/JM. This contradicts the fact that Pis a graded
projective cover of M. In conclusion, P is a graded projective cover of M, and the
second statement is proved.

Now we turn to the third statement. By the above proof, the graded projective
cover P of M can be written as a direct sum ®i>0 P? of graded projective modules,
where P? is generated in degree i. For each fixed degree i > 0, there are only finitely
many indecomposable summands L of M which are concentrated in degree i, and
the graded projective cover of each L is finitely generated. Consequently, P? as the
direct sum of graded projective covers of those L concentrated in degree 7 is finitely
generated, and hence locally finite.

For a fixed n > 0, we have P, = B0 Pl = Bocicn Pi

i Since each P! is
locally finite, dimy P! < oo. Therefore, dimy ]5,3 < 00, and P is locally finite as
well. As a submodule (up to isomorphism) of P, the graded syzygy QM is also

locally finite. O

The results in the previous lemma will be used frequently in the rest of this
paper without being mentioned.

Lemma 2.2. Let0 — L — M — N — 0 be an exact sequence of graded A-modules.
Then:

(1) If M is generated in degree s, so is N.

(2) If L and N are generated in degree s, so is M.

(8) If M is generated in degree s, then L is generated in degree s if and only if
JMNL=JL.

Proof. (1): This is obvious.

(2): Let P and @ be graded projective covers of L and N respectively. Then
P and @, and hence P & () are generated in degree s. In particular, each graded
projective cover of M, which is isomorphic to a direct summand of P & @, is
generated in degree s. Thus M is also generated in degree s.

(3): We always have JL C JM N L. Let z € LNJM be a homogeneous element
of degree i. Since M is generated in degree s, we have i > s+ 1. If L is generated
in degree s, then x € J*SL C JL. Thus LNJM C JL,so JL=LNJM.
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Conversely, the identity JL = L N JM gives us the following commutative dia-
gram where all rows and columns are exact:

0 0 0
0 JL JM JN 0
0 L M N 0

0—>L/JL—> M/JM —> N/JN —>0

0 0 0

Consider the bottom sequence. Notice that (M/JM) = M, is concentrated
in degree s. Thus L/JL is also concentrated in degree s, i.e., L/JL = L,. Let
I=A-L,, Then LC I+ JL CL,solI+ JL = L. Notice that J is contained
in the graded Jacobson radical of A. Therefore, by the graded Nakayama lemma,
I=A-Ls=1L,so L is generated in degree s. O

Corollary 2.3. Suppose that each graded A-module in the short eract sequence
0—L— M — N — 0 is generated in degree 0. Then J'MNL = J'L for alli > 0.

Proof. Since all modules L, M and N are generated in degree 0, all J°L, J*M and
J®N are generated in degree s for s > 0. The exactness of the above sequence
implies JL = L N JM, which in turns gives the exactness of 0 - JL — JM —
JN — 0. By the above lemma, J2M N JL = J2L and this implies the exactness of
0— J?L — J2M — J?>N — 0. The conclusion follows from induction. O

Now we introduce generalized linear modules (or called Koszul modules).

Definition 2.4. A graded A-module M generated in degree 0 is called a linear
module (or a Koszul module) if it has a (minimal) projective resolution

P Pn—l . Pl PO M 0
such that P' is generated in degree i for all i > 0.

A direct consequence of this definition and the previous lemma is:

Corollary 2.5. Let M be a linear module. Then Q(M)/JQHM) = QY(M); is a
projective Ag-module for each i > 0, or equivalently, Q'(M) C JP*~! where P*~1
is a graded projective cover of U =1(M), where ) is the Heller operator.

Proof. Since M is linear, Q(M) is generated in degree i, and Q'(M)/JQ (M) =
QY(M);. Moreover, all Q(M)[—i] are linear A-modules as well. By induction, it
is sufficient to prove QM C JP°. But this is obvious since QM is generated in
degree 1. From the following commutative diagram we deduce that QM C JPO if
and only if the bottom sequence is exact, or equivalently M/JM = PY/JPY = pJ
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is a projective Ag-module.

0 QM JPY JM 0
0 QM PO M 0
0 0 PY/JP° —> M/JM —> 0

There are several characterizations of linear modules.

Proposition 2.6. Let M be a graded A-module generated in degree 0. Then the
following are equivalent:

(1) M is linear.

(2) The syzygy Q' (M) is generated in degree i for every i > 0.

(3) For all i > 0, QY(M) C JP™! and Q{(M) N J2P~! = JQ(M), where

Pi=1 is a graded projective cover of X1(M).

(4) Q{(M) C JP=1 and Q{(M) N JSHP=1 = J5QY(M) for alli > 0,s > 0.
Proof. The equivalence of (1) and (2) is clear. It is also obvious that (3) is the
special case of (4) for s = 1. Now we show (1) implies (4). Indeed, if M is a

linear module, then both JP° and QM are generated in degree 1 and QM C JP°.
Therefore we have the following exact sequence

0 QM JP° JM 0

in which all modules are generated in degree 1. By Corollary 2.5 J*T'P° N QM =
J*QM for all s > 0. Notice that all syzygies of M are also linear with suitable
grade shifts. Replacing M by Q¢(M)[—i] and using induction we get (4).

Finally we show (3) implies (2) to finish the proof. Since QM C JP° we still
have the above exact sequence. Notice that both JM and JP° are generated in
degree 1 and J2P° N QM = JQM, by Lemma 2.2, QM is generated in degree 1 as
well. Now the induction procedure gives us the required conclusion. O

The condition that Q'(M) C JP~! (or equivalently, Q'(M)/JQ (M) = Q' (M),
is a projective Ag-module) in (3) of the previous proposition is necessary, as shown
by the following example:

Example 2.7. Let G be a finite cyclic group of prime order p and k be an alge-
braically closed field of characteristic p. Let the group algebra kG be concentrated
on degree 0, so J = 0. Consider the trivial kG-module k. Obviously, k is not a
linear module. But since J = 0, the condition JQ'(k) = J2P=1 N Q4(k) holds
trivially.

Remark 2.8. We do not use the property that Ay is a self-injective algebra up to
now. Therefore, all results described before still hold for a mon-negatively graded,
locally finite graded algebra A with Ag being an arbitrary finite-dimensional algebra.

Proposition 2.9. Let 0 - L - M — N — 0 be a short exact sequence of graded
A-modules such that L is a linear A-module. Then M is linear if and only if N is
linear.

Proof. We verify the conclusion by using statement (2) in the last proposition. That
is, given that Q(L) is generated in degree i for each i > 0, we want to show that
Q(M) is generated in degree i if and only if so is Q¢(IV).
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Consider the given exact sequence. By Lemma 2.2, M is generated in degree 0
if and only if IV is generated in degree 0. Therefore we have the following diagram
in which all rows and columns are exact:

(2.1) 0 0 0

0 0 0

where P and @) are graded projective covers of L and N respectively. In general
P3®Q is not a graded projective cover of M, and hence M’ 2 QM. However, under
the hypothesis of this proposition we claim that P& Q is indeed a graded projective
cover of M and M’ = QM. To see this, we point out that the given exact sequence
induces a short exact sequence of Ap-modules:

0 Lg My Ny 0.

Observe that Ly = Q°(L)o is projective (by Corollary 2.5) and hence injective
(since Ay is self-injective) as an Ag-module. Therefore, the above sequence splits,
and My = Lo & Ny. On one hand, a graded projective cover P of M should be
isomorphic to a direct summand of P & Q. On the other hand, since P induces a
projective cover Py of My = Lo @ Ny, P should contain a summand isomorphic to
Q & P. This forces P = P & Q, and our claim is proved.

Now let us consider the top row of diagram 2.1. Since M’ = QM, and QL is
generated in degree 1, QM is generated in degree 1 if and only if QN is gener-
ated in degree 1 by Lemma 2.2. Replace L, M and N by (L)[-1], (QM)[-1]
and (2N)[—1] (all of which are linear) respectively in the short exact sequence.
Repeating the above procedure and using the fact that the Heller operator 2 and
the grade shift functor [—] commute, we conclude that Q2(M)[—1] is generated in
degree 1 if and only if Q2(NV)[—1] is generated in degree 1, i.e., Q*(M) is generated
in degree 2 if and only if Q?(N) is generated in degree 2. By induction, M is linear
if and only if N is linear. O

The condition that L is linear in this proposition is necessary. Indeed, quotient
modules of a linear module might not be linear.

Lemma 2.10. Let M be a graded A-module generated in degree s. If My is a
projective Ag-module, then Exty (M, Ag) = Ext;(l(QM, Ap) foralli > 1.

Proof. Tt is true for ¢ > 1. When 7 = 1, consider the following exact sequence:
0 — Hom (M, Ag) — Hom (P, Ag) — Hom4(QM, Ag) — Exth (M, Ag) — 0.

As a graded projective cover of M, P is also generated in degree s. Since M is a
projective Apg-module, P; = M. So

Hom 4 (M, Ap) = Hom 4, (Ms, Ag) = Hom 4, (Ps, Ag) = Homa (P, Ap).
Thus Hom 4 (QM, Ag) = Exth (M, Ay). O
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Proposition 2.11. Let 0 - L — M — N — 0 be an exact sequence of linear
modules. Then it induces the following short exact sequence:

0 — Exzty (N, Ag) — Faty (M, Ag) — Ext}y (L, Ag) —— 0.

Proof. As in the proof of Proposition 2.9, the above exact sequence gives exact
sequences 0 — QY(L) — QY(M) — QY(N) — 0, i = 0. For a fixed 4, the sequence
0 — QYL); — QY(M); — Q(N); — 0 splits since all terms are projective Ag-
modules by Corollary 2.5. Applying the exact functor Hom4,(—, Ag) we get an
exact sequence

0 — Hom a, (Q(N);, Ag) — Hom 4, (Q°(M);, Ag) — Hom a, (Q°(L);, Ag) — 0
which is isomorphic to
0 — Hom(Q'(N), Ag) — Hom4(Q4 (M), Ag) — Homa(Q(L), Ag) — 0

since all modules are generated in degree ¢. By Lemma 1.9, it is isomorphic to

0 — Ext’ (N, Ag) — Ext’y (M, Ag) — Ext’y(L, Ag) — 0.
Putting them together we have:

0 —— Ext} (N, Ag) —— Ext’y (M, Ag) — Ext’ (L, Ag) —=0.

O

If a graded A-module M is linear, so are all syzygies Q(M)[—i], i > 0. The next
example shows that the linear property of M in general does not imply the linear
property of J*M[—i]:

Example 2.12. Let £ be a finite EI category with two objects x and y such that:
Autg(z) = (g) = Autg(y) = (h) are cyclic groups of order 2; Homg(z,y) has one
element a on which both Autg(x) and Auts(y) act trivially; and Home(y,z) = ().
Let k be an algebraically closed field of characteristic 2. We put the following grade
on the category algebra A = kE: Ay is spanned by {g,1,h,1,} and Ay is spanned
by a. Consider the projective kE-module P, = kE1,. Obviously, P, is linear, but
JP, = ky is not linear.

However, for some special cases, we can get a conclusion as follows.

Proposition 2.13. Suppose that Ag is a linear A-module. If M is a linear A-
module, then J'M[—i] and My are also linear A-modules. In particular, M is
projective viewed as an Ag-module (or equivalently, M; is a projective Ag-module
for every i = 0).

Proof. Without loss of generality we assume that M is indecomposable. Since M
is linear, My is a projective Ap-module and is contained in add(Ap), the category
of all A-modules each of which is isomorphic to a direct summand of AJ™ for some
m > 0. But Ag is linear, so is M.

Notice that M and M, have the same graded projective cover (up to isomor-
phism) as A-modules. Thus we have the following commutative diagram:

0 QM —= Q(Mp) —> JM —= 0
0 po—"— po 0
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Consider the top sequence. The modules M and M, are linear, so are QM [—1] and
Q(Mpy)[—1]. Therefore, JM[—1] is also linear by Proposition 2.9. Now replacing M
by JM[-1] and using recursion, we conclude that J*M[—i] is a linear A-module
for every ¢ > 0. This proves the first statement.

Since J!M[—i] is a linear A-module, (JM[—i])o = (J'M); = M, is a projective
Ap-module for each i > 0 by Corollary 2.5. Since M = @i>0 M; as an Ag-module,
we deduce that M is a projective Ap-module if and only if M; is a projective Ag-
module for every i > 0. O

The following lemma is very useful.

Lemma 2.14. Let M be a non-negatively graded A-module and suppose that A is
a projective Ag-module. Then the following are equivalent:

(1) all Q'(M); are projective Ag-modules, i,j > 0;

(2) all Q' (M); are projective Ag-modules, i > 0;

(8) all M; are projective Ag-modules, i > 0.

Proof. Tt is clear that (1) implies (2).

(3) implies (1): Suppose that M; is a projective Ap-module for all ¢ > 0. Let P
be a graded projective cover of M. The surjective homomorphism ¢ : P — M gives
a surjective homomorphism ¢; : P; — M; with kernel (2M);. By the hypothesis,
P; and M, are projective Ag-modules for all j > 0. Then P; = M, & (Q2M);, so
all (QQM); are projective Ap-modules for j > 0. Replacing M by QM and using
recursion, we conclude that all QZ(M)j are projective Ap-modules for 7,5 > 0. In
particular, all Q¢(M); are projective Ag-modules.

(2) implies (3): Conversely, suppose that Q!(M); is a projective Ag-modules for
every i > 0. We use contradiction to show that all M; are projective Ag-modules.
If this not the case, we can find the minimal number n > 0 such that M, is not a
projective Ag-module. As above, consider ¢, : P, — M, with kernel (QM),,. We
claim that this kernel is not a projective Apg-module. Indeed, if it is a projective
Ap-module, then it is injective as well, so P,, = (QM),, ® M,,. Consequently, M, is
isomorphic to a summand of the projective Ap-module P,, and must be a projective
Ap-module, too. This is impossible. Therefore, (2M),, is not a projective Ag-
module. Now replacing M by QM and using induction, we deduce that Q™(M),,
is not a projective Ag-module. This contradicts our assumption. Therefore, all M;
are projective Ag-modules. O

Now we define quasi-Koszul modules over the graded algebra A.
Definition 2.15. A non-negatively graded A-module M is called quasi-Koszul if
Eaxt' (Ao, Ag) - Ext'y (M, Ag) = Ext' (M, Ap)
for all i > 0. The algebra A is called a quasi-Koszul algebra if Ag as an A-module
is quasi-Koszul.

A graded A-module M is quasi-Koszul if and only if as a graded Ext’ (Ao, Ao)-
module Ext’ (M, Ag) is generated in degree 0. The graded algebra A is a quasi-
Koszul algebra if and only if the cohomology ring Ext% (Ao, Ag) is generated in
degree 0 and degree 1.

The quasi-Koszul property is preserved by the Heller operator. Explicitly, if M
is a quasi-Koszul A-module with My being a projective Ap-module, then its syzygy
QM is also quasi-Koszul. This is because for each i > 1, we have:

Ext’y (QM, Ag) = Ext 1 (M, Ag)
= EXth(Ao, Ao) . EthA(M, A0>
= Ext}y (A, Ap) - Ext’y 1 (QM, Ap).
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The identity Ext’ (M, Ag) = Extf;l(QM, Ap) is proved in Lemma 2.10.

If Ay is a semisimple k-algebra, quasi-Koszul modules generated in degree 0
coincide with linear modules. This is not true if Ay is only self-injective. Actually,
by the following theorem, every Koszul module is quasi-Koszul, but the converse
does not hold in general. For example, let kG be the group algebra of a finite group
concentrated in degree 0. The reader can check that every kG-module generated
in degree 0 is quasi-Koszul, but only the projective kG-modules are Koszul. If |G|
is not invertible in k, then all non-projective kG-modules generated in degree 0 are
quasi-Koszul but not Koszul.

The following theorem gives us a close relation between quasi-Koszul modules
and Koszul modules.

Theorem 2.16. A graded A-module M generated in degree 0 is Koszul if and only
if it is quasi-Koszul and Q'(M); is a projective Ag-module for every i > 0.

The following lemma will be used in the proof of this theorem.

Lemma 2.17. Let M be a graded A-module generated in degree 0 with My being
a projective Ag-module. Then QM is generated in degree 1 if and only if every A-
module homomorphism QM — Aqg extends to an A-module homomorphism JP —
A, where P is a graded projective cover of M.

Proof. The short exact sequence 0 — QM — P — M — 0 induces an exact
sequence 0 — (M), — P, — My — 0. Applying the exact functor Hom 4, (—, Ag)
we get another exact sequence

0— HOHIAO(M17A0) — HOInAO(Pl,A()) — HOInAO((QM)1,A0) — 0.

Since My is a projective Ag-module, My = Py, so (QM)g = 0. Therefore, QM is
generated in degree 1 if and only if QM /J(QM) = (QM);, if and only if the above
sequence is isomorphic to

0 — Homa, (M1, Ao) — Homa, (P, Ag) — Homy, (QM/JQM, Ag) — 0.

Here we use the fact that Ag is self-injective and the functor Homy,(—, Ag) is a
dual functor. But the above sequence is isomorphic to

0 —— Homy (JM, Ag) —— Homu (JP, Ag) — Hom 4 (QM, Ag) —— 0

since JM and JP are generated in degree 1. Therefore, QM is generated in degree
1 if and only if every (non-graded) A-module homomorphism QM — Aj extends
to a (non-graded) A-module homomorphism JP — Aj. O

Now let us prove the theorem.

Proof. The only if part. Let M be a Koszul A-module. Without loss of generality
we can suppose that M is indecomposable. Notice that all syzygies Q(M)[—i] are
also Koszul. Therefore, Q'(M); = (Q!(M)[—i])o is a projective Ag-module for all
12 0.
Now we show that M is quasi-Koszul, i.e.,
Ext’ (M, Ag) = Extl (Ao, Ag) - Exty (M, Ay)

for all ¢ > 0. By Lemma 2.10, we have Extfjl(M, Ag) = Exthy(QH(M), Ag) and
Ext% (M, Ag) = Hom 4 (Q(M), Ag). Therefore, it suffices to show Extl (M, Ag) =
Ext} (Ao, Ag) - Hom 4 (M, Ag) since the conclusion follows immediately if we replace
M by (QM)[—1] recursively.

To prove this identity, we first identify Ext! (M, Ag) with Hom4(QM, Ag) by
Lemma 2.10. Take an element z € Ext! (M, Ag) and let g : QM — Ay be the
corresponding homomorphism. Since M is linear, M is a projective Ag-module,
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and QM is generated in degree 1. Thus by the previous lemma, g extends to JP?,
and hence there is a homomorphism § : JP? — Ag such that g = §¢, where P° is a

graded projective cover of M and ¢ : QM — JPV is the inclusion.

QM —— jp°

A

Ag

We have the following commutative diagram:

0 QM po M 0
| ;
0 J PO PO Py 0

where the map p is defined to be the projection of M onto My = Py.
The map § : JP? — A gives a push-out of the bottom sequence. Consequently,
we have the following commutative diagram:

0 QM PO M 0
| ;

0 JP° PO Py 0
b

0 Ao E Py 0.

Since Py € add(Ap), we can find some m such P can be embedded into A;‘f’".
m

Thus the bottom sequence y € Extl (P, Ag) C @, Extl(Ap, Ag) and we can
write y = y1 + ... + Yy, where y; € Exth(Ao, Ap) is represented by the sequence

0 Ao E; A 0.

Composed with the inclusion € : Py — A$™, the map €op = (p1,...,pm) where
each component p; is defined in an obvious way. Consider the pull-backs:

0 Ay F; M 0
| b
0 Ao E; Ao 0.

Let x; be the top sequence. Then x = 7" a; = Yo', yipi € Extl(Ag, Ap) -
Hom 4 (M, Ag) and hence Exty (M, Ay) C Ext),(Ag, Ag) - Hom 4 (M, Ag). The other
inclusion is obvious.

The if part. By Proposition 2.6, it suffices to show that Q(M) is generated in
degree i, i > 0. But we observe that if M is quasi-Koszul and Q¢(M); are projective
Ag-modules for all i > 0, then each Q°(M) has these properties as well. Thus we
only need to show that QM is generated in degree 1 since the conclusion follows if
we replace M by QM recursively. By the previous lemma, it suffices to show that
each (non-graded) A-module homomorphism g : QM — Ag extends to JPP.
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The map g gives a push-out = € Extfq(M , Ap) as follows:

0 QM PO M 0
P
0 A E M 0

Since M is quasi-Koszul, = is contained in Extj(Ag, Ag) - Hom4 (M, Ag). Thus
x =3, y;h; with y; € Ext} (Ao, Ag) and h; € Homu (M, Ag), and each y;h; gives
the following commutative diagram, where the bottom sequence corresponds to y;:

(2.2) 0—> Ay — E; M—>0
|
0 Ao F; Ao 0

By the natural isomorphism Ext’ (M, Ag) = Hom4(QM, Ag) (see Lemma 2.10),
each y;h; corresponds an A-homomorphism g; : QM — Ag such that the following
diagram commutes:

(2.3) 0 QM po M 0
o
0 Ao E; M 0
Diagrams 2.2 and 2.3 give us:
0 QM JP° JM 0
P
0 QM po M 0
<k
0 Ay —L—F, Ao 0

Since JM is sent to 0 by h;j, there is a homomorphism ¢; from JF, to the first
term Ag of the bottom sequence such that pp; = h;j. Then g; factors through ¢;,
ie., g; = @it Since g = Y, g;, we know that g extends to JPY. This finishes the
proof. O

An easy corollary of the above theorem is:

Corollary 2.18. Suppose that A is projective viewed as an Ag-module. Then a
graded A-module M is linear if and only if it is quasi-Koszul as an A-module and
projective as an Ag-module (or equivalently all M; are projective Ag-modules).

Proof. By Lemma 2.14, all Q(M); are projective Ag-modules for i > 0 if and only
if My is a projective Ag-module for every s > 0. The conclusion follows from the
previous theorem. O

In particular, if Ag is is a linear A-module, then by letting M = A in Proposition
2.13, we deduce that all A; are projective Ag-modules for i > 0.

3. GENERALIZED KO0SZUL ALGEBRAS

In this section we generalize to our context some useful results on classical
Koszul algebras which appear in [4]. As before, throughout this section A is a
non-negatively graded, locally finite associative k-algebra with Ay being a self-
injective algebra. For two graded A-modules M and N, we use Hom (M, N) and
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hom 4 (M, N) to denote the space of all module homomorphisms and the space of
graded module homomorphisms respectively. The derived functors Ext and ext
correspond to Hom and hom respectively.

Recall that A a quasi-Koszul algebra if Ay is quasi-Koszul as an A-module. In
particular, if Ag is a linear A-module, then A is a quasi-Koszul algebra.

Theorem 3.1. The graded algebra A is quasi-Koszul if and only if the opposite
algebra A°P is quasi-Koszul.

Proof. Since the quasi-Koszul property is invariant under the Morita equivalence,
without loss of generality we can suppose that A is a basic algebra. Therefore,
Ap is also a basic algebra. Let M and N be two graded A-modules. We claim
Extly (M, N) = Ext’.,(DN,DM) for all i > 0, where D is the duality functor
Homy (—, k). Indeed, Let

p? P! po M 0
be a projective resolution of M. Applying the functor Homa(—, N) we get the
following chain complex C*:

04>H0IHA(PO7N) 4>HomA(P17N) o ...,

Using the natural isomorphism Hom 4 (P?, N) & Hom so» (DN, DP?), we get another
chain complex E* isomorphic to the above one:

OHHOHIAD;)(DN,DPO) *)HOIHAO;;(DN,DPI) P

Notice that all DP? are injective A°P-modules. Thus
Ext’y(M,N) = H/(C*) = H(E*) = ExtY., (DN, DM)
which is exactly our claim. . '

Now let M = N = Aj. Then Ext!y(Ag, Ao) = Ext’yopr (DAg, DAg). Since Ag is
self-injective and basic, it is a Frobenius algebra. Therefore, D Aq is isomorphic to
AGP as a left AgP-module (and hence as a left A°’-module). Consequently, Ay is a
quasi-Koszul A-module if and only if Ag” is a quasi-Koszul A°P-module. O

However, if A is a linear A-module, Ag” need not be a linear A°’-module, as
shown by the following example.

Example 3.2. Let £ be a finite EI category with two objects x and y such that:
Aute(x) = (g) is a cyclic group of order 2; Autc(y) is a trivial group; Homg(x,y) =
{a} (thus aog = «) and Homeg(y,z) = 0. Let k be an algebraically closed field of
characteristic 2. The category algebra A = k& is of dimension 4. Let Ag be the space
spanned by 15,9 and 1,, and let Ay be the one-dimensional space spanned by . The
reader can check that Ag is a linear A-module. The opposite algebra A°P = kEP
can also be graded in a similar way, but A’ is not a linear A°P-module. However,
we will show in Section 6 that A°P is a quasi-Koszul algebra.

Proposition 3.3. The graded algebra A is Koszul if and only if Q'(Ag); are pro-
jective Ag-modules for all i > 0, and whenever extly(Ag, Ag[n]) # 0 we have n = i.

Proof. If A is a Koszul algebra, then Aj is a linear A-module, and by Corollary
2.5 all Q(Ap); are projective Ag-modules. Moreover, there is a linear projective
resolution

P? Pt PO Ao 0
with P? being generated in degree i. Applying hom 4(—, Ag[n]) we find that all terms
in this complex except hom 4 (P", Ag[n]) are 0. Consequently, exty (Ao, A[n]) # 0
unless ¢ = n.
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Conversely, suppose that Q¢(4p); is a projective Ag-module for each i > 0 and
ext’y (Ag, Ag[n]) = 0 unless n = i, we want to show that Q%(A4y) is generated in
degree i by induction. Obviously, Q°(Ag) = Ay is generated in degree 0. Suppose
that €7 (Ap) is generated in degree j for 0 < j < i. Now consider Q'T1(4y). By
applying the graded version of Lemma 2.10 recursively, we have

homA (Qi+1(A0), AO [’I’LD = ethIl(Ao, AO [’I’L])

The right-hand side is 0 unless n = i + 1, so QiT1(A) is generated in degree i + 1.
By induction we are done. il

The reader can check that the conclusion of this proposition is also true for linear
modules. i.e., M is a linear A-module if and only if ext’ (M, Ag[n]) # 0 implies
n =1i.

We can define a tensor algebra T(A) generated by A;, which is a (Ao, Ag)-
bimodule. Explicitly,

T(A)=A®A1 0 (A1®A)S(ARARA) ...,

where all tensors are over Ay and we use ® rather than ® 4, to simplify the notation.
This tensor algebra has a natural grading. Clearly, A is a quotient algebra of T'(A).
Let I be the kernel of the quotient map ¢ : T(A) — A. We say that A is a quadratic
algebra if the ideal I has a set of generators contained in A; ® Aj.

Theorem 3.4. If A is a Koszul algebra, then it is a quadratic algebra.

Proof. This proof is a modification of the proofs of Theorem 2.3.2 and Corollary
2.3.3 in []. First, consider the exact sequence

0—=W —AR A A A 0

where W is the kernel of the multiplication. Clearly, Q(A4o) = J = P, 4;. Since
the image of (A® A1)1 = Ag® A; under the multiplication is exactly Ay = Q(Ap)1,
A ® Ay is a projective cover of Q(Ag) and Q2(A4g) = W C J ® A;. Therefore,
W is generated in degree 2, and hence W/JW = W, is concentrated in degree 2.
Observe that A is a quotient algebra of T'(A) with kernel I. Let R,, be the kernel
of the quotient map AY" — A,,.

If A is not quadratic, we can find some = € R,, with n > 2 such that z is not
contained in the two-sided ideal generated by 2?2—21 R;. Consider the following
composite of maps:

AP — A @ Ay L Ay ® Ay T A,

Clearly p(z) € W since m(p(x)) = 0. We show p(z) ¢ JW by contradiction.

Indeed, if p(xz) € JW, then p(x) € Ay W since JW = @i% W, = A4W (notice
that W is generated in degree 2). Therefore, we can express p(x) as a linear
combination of vectors of the form A-w with A € A; andw € W. But W C J® Ay,
so each w can be expressed as ) ,w; ® \; with w] € A, _», A\ € Ay such that
i wh- A, =0 by the definition of W.

Since there is a surjective product map ¢ : A‘lg’"_2 —» A, _2, we can choose a
pre-image v} ® ... ®v]" % € ! (w}) for each i and define

S
=Y vl ®.. .o\
i=1

which is contained in R,_; clearly. Observe that p(A ® @w) = X - w. Since p(x)
is a linear combination of vectors of the form A - w, by the above process we can
get some y which is a linear combination of vectors of the form A\ ® @ such that
p(y) = p(z). Clearly, p(x —y) =0 and y € A; ® Rj,—1.
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Consider the following short exact sequence

0 Ry A(lgm_l I An—l —0.

Since Ap is a linear A-module, so is J[—1] = Q(Ag)[—1]. Therefore, by Corollary
2.5, A; = J[—1]p is a projective Ag-module. Therefore, the following sequence is
also exact:

L A1 @A ——0.

0——=R,1© 4 AP

Thus x —y € R,—1 ® Ay since p(x —y) = 0. It follows € Ay @ Ry—1 + Ry—1 ® Ay,
which contradicts our choice of x.

We proved « ¢ JW. Then p(z) € W/JW = Wj is of degree 2. But this is
impossible since p as a graded homomorphism sends * € R, with n > 2 to an
element of degree n. O

We can define the Koszul complex for A in a similar way to the classical situation.

Let A = T(A)/(R) be quadratic with R C A; ® A; being a set of relations.
Define PP = (-7 A" @ R® AP"~"2 C A®". In particular, P = Ay, P} = A
and Py = R. Let P" = A® P such that Ag ® P = P" is in degree n. Define
d" : P* — P"~! to be the restriction of AQ AP™ — ARAY" ! by a®@v,®...Qu, —
avy ® vy ® ... ® v,. The reader can check d”~'d™ = 0 for n > 1. Therefore we get
the following Koszul complex K*:

d? d?

p3 AQR A®A1L>A—>O.

Theorem 3.5. Let A = T(A)/(R) be a quadratic algebra. Then A is a Koszul
algebra if and only if the Koszul complex is a projective resolution of Ag.

Proof. One direction is trivial. Now suppose that Ag is a linear A-module. The
Koszul complex K* of A has the following properties:
(1). Let Z™ be the kernel of d* : P — P"~!. The restricted map d? :

n—2 n—3
Pr=A4 @ (A @R@AT ) 5Pl =40 ([ AP @ Ro AP"9)
i=0 =0

is injective. Therefore Z* = 0 for every i < n.
(2). Z,,, the kernel of the map d?'*! :

n—2 n_3
Pl =A@ ( m A?i ®R®A?n_i_2) — P:_:ll =AR® ( m A‘?i ®R®A?”_i_3)
=0 i=0
is
n—2 ‘ 1 ‘
Ave (AP @ Ro AP )N (R AP 1) = (] AP @ Re APt
=0 i=0

which is exactly P/ (or d'T1 (P ) since d)'T7 is injective by the last property).

We claim that each P = A® P} is a projective A-module. Clearly, it is enough
to show that each P = Z"~! is a projective Ag-module. We prove the following
stronger conclusion. That is, Z* are projective Ap-modules for ¢ € Z and n > 0.
We use induction on n.

Since Ay is a linear A-module, by Proposition 2.13, A; are projective Ap-modules
for all i > 0. The conclusion is true for Z° = J since Jy = 0 and J,, = A4,, for
m > 1. Suppose that it is true for I < n. That is, all Z! are projective Ag-modules
for I < n and i € Z. Consider | = n + 1. By the second property described

above, P,?j_rll = Z}',1, which is a projective Ag-module by the induction hypothesis.
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Therefore, P"t! = A® Ps_ﬁ is a projective A-module, so Pi"+1 are all projective

Ap-modules for i € Z. But the following short exact sequence of Ag-modules splits
0)—— Zin'i'l 4>PZ."+1 —_— Zln —

since Z* is a projective Ap-module by the induction hypothesis. Now as a direct
summand of P[”r1 which is a projective Ap-module, Zf“ is a projective Ag-module
as well. Our claim is proved by induction.

We claim that this complex is acyclic. First, the sequence

Pl=A® A —=P'=A® Ag —= A4g—>0
is right exact. By induction on n > 1
ext’y ! (Ao, Ag[m]) = coker (hom 4 (P™, Ag[m]) — homa(Z", Ag[m])).
By Property (1), Z) = 0if m <n+1. If m > n+ 1, homa(P", Aglm]) = 0
since P™ is generated in degree n, so ext’y T (A, Ag[m]) = homa(Z", Ag[m]) by the

above identity. But the left-hand side of this identity is non-zero only if m =n +1

since Ay is linear. Therefore, hom4(Z™, Ag[m]) = 0 for m > n + 1. Consequently,

Z" is generated in degree n + 1. By property (2), Z}, | = dZﬁ(PT?LlL so Z" =

d" (P 1) since both modules are generated in degree n+1. Therefore, the Koszul
complex is acyclic, and hence is a projective resolution of Ay. O

4. GENERALIZED K0SzZUL DUALITY

In this section we prove the Koszul duality. As before, A is a non-negatively
graded, locally finite algebra with Ay being a self-injective algebra. Define I' =
Ext’ (Ao, Ap) which has a natural grading. Notice that T’y = A’ is also a self-
injective algebra. Let M be a graded A-module. Then Ext’ (M, Ap) is a graded
I-module. Thus we can define a functor £ = Ext’ (—, Ap) from A-gmod to I'-gmod.

Theorem 4.1. If A is a Koszul algebra, then E = Faty(—, Ao) gives a duality
between the category of linear A-modules and the category of linear T'-modules.
That is, if M is a linear A-module, then E(M) is a linear T'-module, and EpEM =
Exti.(EM,T) = M.

Proof. Since M and Ay both are linear, by Proposition 2.13 My and JM[—1] are lin-
ear, where J = EBi>1 A;. Furthermore, we have the following short exact sequence
of linear modules:

0 —— QM[-1] —— Q(My)[-1] —= JM[-1] ——0.

As in the proof of Proposition 2.9, this sequence induces exact sequences recursively
(see diagram 2.1):

0 —— QY(M)[—i] —— Q' (My)[—i] — Q" (JM[-1])[1 — i] —=0O,
and gives exact sequences of Ag-modules:
0)—— QZ(M)z e Ql(Mo)l e Qi_l(JM[—l])i_l — (.

Applying the exact functor Hom 4, (—, Ag) and using the following isomorphism for
a graded A-module N generated in degree i

Homy (N, Ap) = Homy (N;, Ag) = Homy, (N;, Ag,)
we get:

0 — Hom (Q1(JM[~1]), Ag) — Hom(Q'(My), Ag) — Hom4(Q'M, Ag) — 0.
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By Lemma 2.10, this sequence is isomorphic to
0 — Ext’y H(JM[-1], Ag) — Ext’ (Mo, Ag) — Exty (M, Ag) — 0.
Now let the index ¢ vary and put these sequences together. We have:
0 —— E(JM[-1])[1] E(Mo) EM —0.

Let us focus on this sequence. We claim Q(EM) = E(JM[—1])[1]. Indeed, since
My is a projective Ag-module and the functor E is additive, E(M)) is a projective
I-module. Since JM[—1] is Koszul, JM[—1] is quasi-Koszul and hence E(JM[-1])
as a I-module is generated in degree 0. Thus E(JM[—1])[1] is generated in degree 1,
and E(My) is minimal. This proves the claim. Consequently, Q(EM) is generated
in degree 1 as a I'-module. Moreover, replacing M by JM[—1] (which is also linear)
and using the claimed identity, we have

O(EM) = QEIM[-1]))1]) = QB M[-1))[1] = E(]*M[-2])[2],
which is generated in degree 2. By recursion, we know that Q' (EM) = E(J*M[—i])[i]

is generated in degree ¢ for all ¢ > 0. Thus EM is a linear I'-module. In particular
for M = A,

FEA = EXtZ(A, Ao) = HOHIA(A7 Ao) = Fo
is a linear I'-module.
Since Q(EM) is generated in degree i and
Q(EM); = E(J'M[—i])[i]; = E(J'M[—i])o
= Hom 4 (J*M[—i], Ag) = Hom 4 (M;, Ao),
we have
Homp (Q°(EM),T) = Homr, (Q°(EM);,To)
= HOH’IFO (HOI’HA (Mi, Ao), FQ)
= HOHll'*0 (I{OIHA0 (Mi, Ao), Fo)
The last isomorphism holds because Ay is self-injective and 'y = AgP.

We have proved that EM is a linear I-module. Therefore, (Q*(EM)); is a projec-
tive T'g-module for every ¢ > 0. Applying Lemma 2.10 recursively, Ext;.(EM,Tg)
Homr (QY(EM),Ty) = M, for every i > 0. Adding them together, ErE(M)
@ﬁo M; = M.

Now we have Ep(E(A)) = Er(I'g) =2 A. Moreover, I' is a graded algebra with
Ty = AP being self-injective as an algebra and linear as a I-module. Using this
duality, we can exchange A and T" in the above reasoning and get EEp(N) &2 N

for an arbitrary linear I'-module N. Thus E induces an equivalence between these
two categories. O

1R

Remark 4.2. We can also use homa(—, Ag) to define the functor E on the category
of linear A-modules, namely E = @, extly(—, Aoli]). Indeed, for a linear A-
module M, we have:
Exty (M, Ag) = @ Ext'y (M, Ay)
>0

= DD eaty (M, Adlj)

i>0 jEZ
= @D eatiy (M, Aoli))
>0

since exty (M, Ag[j]) = 0 for i # j, see the paragraph after Proposition 5.3.
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Now we want to study the Koszul duality on the level of derived categories. We
introduce the following notation: let DgTA be the bounded derived category of A-
gmod, and define T to be the category formed by objects T[i] where T ranges over
indecomposable summand of Ag and i € Z.

Lemma 4.3. Let A be a locally finite graded algebra with Ay being a self-injective
algebra and a linear A-module. Let T' = Ext}y(Ag, Ag). Then we have:

(1) If pdy Ao < o0, then dimy, T < oo.

(2) If the global dimension gldim A < oo, then gldim Ay < 0o, pdy Ag < 00;

(8) Conversely, if gldim Ay < o0, pdy Ay < 00, and dimy, A < oo, then gldim A <
00.

Proof. Notice that Ty = Ext’ (Ao, Ag) = 0 for all i > m + 1. If 0 < i < m, then
Fl‘ = EX‘DZ(AQ, Ao) = HOl’IlA(Qi(Ao), Ao)

which is finite-dimensional since Q(Ap) is a finitely generated A-module and A is
locally finite. Therefore, dimy I' < co. This proves the first statement.

If gldim A = m < oo, clearly pdy Ag < m. Take an arbitrary Ag-module M.
Viewed as a A-module concentrated in degree 0, A has a projective resolution

0 —— P™ —— pn-1 PO M 0,
which induces

0— P —— Pyt Py My 0.

This is a projective resolution of the Ag-module M = My. Therefore, pd,, M < m.
So gldim Ay < m, and (2) is proved.

Conversely, assume that pdy Ag < oo, gldim Ay < oo and dimy A < oco. To
prove gldim A < oo, it suffices to show pd, S < oo for each simple A-module S
since every A-module has a composition series of finite length. Clearly, S is still
simple viewed as a Ag-module. Therefore, there exists a number m > 0 such that
QZLOJrl(S) = 0 but Q7 (5) is a non-zero projective Ag-module. Consider the exact
sequence of Ag-modules:

OHQTXO(S) HPHQX{%S’) — 0.

Each module appearing in this sequence can be viewed as an A-module concentrated
in degree 0. Notice that the first two terms are projective Ag-modules and hence
have finite projective dimensions as A-modules. Therefore, pd 4 ngl(s ) < c0. By
induction, pdy S < oo. O

Theorem 4.4. Suppose that A is a Koszul algebra such that gldim Ay, pdy Ao,
gldimTy and pdr Ty are all finite. Then DSTA =~ DSTI‘OP as triangulated categories.

Proof. By the above lemma, both A and I' are finite-dimensional algebras. There-
fore, gldim A and gldimI" are also finite. Consequently, the category T generates
DgTA as a triangulated category, and the category of all indecomposable graded
projective I'-modules generates DZT.F. Now the conclusion can be deduced from
Theorem 4.3.4 in [14] by letting 7' = Ay. We remind the reader that functor G 4, in
[14] is Ext’ (A, —) instead of E = Ext’(—, Ap) used by us throughout this paper,
and the algebra T in his paper is set to be Ext’ (Ao, Ag)°P. O
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5. APPLICATION TO DIRECTED CATEGORIES

In this section we will apply the general theory to a type of structures called
directed categories, for which there exist very nice relations between stratification
theory and Koszul theory and a nice correspondence between our generalized Koszul
theory and the classical theory. All categories C we consider in this section are
locally finite k-linear categories with finitely many objects, that is, for z,y € ObC,
the set of morphisms C(z,y) is a finite-dimensional k-vector space. To simplify the
technical part, we suppose furthermore that C is skeletal, i.e., x = y implies z = y
for z,y € ObC.

Definition 5.1. A locally finite k-linear category C is a directed category if there
is a partial order < on ObC such that C(x,y) # 0 only if v < y.

Correspondingly, we define directed algebras.

Definition 5.2. A finite-dimensional algebra A is called a directed algebra with
respect to a partially ordered set of orthogonal idempotents {e;; <}y if Y i e =1
and Homa(Ae;, Ae;) = e;Aej # 0 implies ej < e;.

Notice that in the above definition we do not require the idempotents e; to be
primitive. Clearly, every algebra A is always directed with respect to the trivial set
{1}.

There is a bijective correspondence between directed categories and directed
algebras. Let A be a directed algebra with respect to a poset of orthogonal idem-
potents ({e;}"_;,<). Then we can construct a directed category A in the follow-
ing way: ObA = {e;}}; with the same partial order, and A(e;,e;) = e;jAe; =
Hom 4 (Aej, Ae;). The reader can check that A is indeed a directed category. We
call A the associated category of A.

Conversely, given a directed category A with the poset (Ob A, <), we obtain an
algebra A which is directed with respect to the poset of orthogonal idempotents
({1z}zeob 4, <), namely, 1, < 1, if and only if # < y. As a k-vector space,
A= @at,yGOb 4 A(z,y). For two morphisms a :  — y and 3 : z — w, the product
B-a=0if y # z, otherwise it is the composite morphism Sa. Since every vector
in A is a linear combination of morphisms in .4, the multiplication of morphisms
can be extended linearly to a well defined product in A. The reader can check that
the algebra A we get in this way is indeed a directed algebra, which is called the
associated algebra of A.

It is well known that A-mod is equivalent to the category of finite-dimensional
k-linear representations of A. If one of A and A is graded, then the other one can be
graded as well. Moreover, A-gmod is equivalent to the category of finite-dimensional
graded k-linear representations of .A. For more details, see [I6]. Because of these
facts, we may view a directed category A as a directed algebra with respect to the
set of idempotents {1, | x € Ob.A} and abuse notation and terminologies. For
example, we may say idempotents in A4, ideals of A and so on. We hope this would
not cause confusions to the reader and point out that all results in previous sections
can be applied to directed categories.

Directed categories generalize k-linearizations of finite EI categories. Explicitly,
let £ be a skeletal finite EI category. Consider the category algebra k€ with a set
of idempotents {1;}zcon ¢ on which there is a partial order < such that 1, <1,
if and only if £(z,y) # (. Then the category algebra k€ is directed with respect
to this poset of idempotents, so we can construct a direct category & by the above
correspondence. Actually, € is precisely the k-linearization of €.

Let C be a directed category. A C-module (or a representation of C) is defined to
be a k-linear functor from C to the category of finite-dimensional k-vector spaces.
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The morphism space of C can be decomposed as the direct sum of Cl, with x
ranging over all objects, where by C1, we denote the vector space formed by all
morphisms with source . Therefore, each C1, is a projective C-module, and every
indecomposable projective C-module is isomorphic to a direct summand of a certain
C1,. The isomorphism classes of simple C(z, z)-modules with = varying within ObC
give rise to isomorphism classes of simple C-modules. Explicitly, let V' be a simple
C(x,x)-module for some object x, we can construct a simple C-module S: S(z) =V
and S(y) = 0 for y # x. These results are well known for finite EI categories, see
[20].

Our next task is to translate some results on finite EI categories in Section 2 of
[20] to directed categories. First, we want to show that every directed category is
stratified with respect to the given partial order.

Proposition 5.3. Let D and £ be full subcategories of a directed category C such
that ObD U ObE = ObC, ObD N ObE = (), and C(x,y) = 0 for x € ObD and
ye€ ObE. Lete=3 oy ple and I =CeC. Then I is a stratified ideal of C.

Proof. The proof is similar to that of Proposition 2.2 in [20]. Clearly I is idempo-
tent. Notice that Ce is the space spanned by all morphisms with sources contained
in ObD and eCe is the space spanned by all morphisms with both sources and
targets contained in ObD. Since C(z,y) = 0 for z € ObD and y € Ob &, these two
spaces coincide, i.e., Ce = eCe. In particular, Ce is projective eCe-module, here eCe
is an algebra for which the associated directed category is precisely D. Therefore,
Torc¢(Ce, eC) = 0 for n > 1. Furthermore,

Ce Rece €C = eCe Rece eC = eC.

We claim eC = CeC. Clearly, eC C CeC. On the other hand, since we just proved
Ce = eCe, we have CeC = eCeC C eC. Therefore, eC = CeC as we claimed. In
conclusion, I is indeed a stratified ideal of C. O

Corollary 5.4. FEvery directed category C is stratified with respect to the give partial
order on ObC.

Proof. The partial order < on ObC gives a filtration on ObC in the following way:
let S7 be a set containing a maximal object in ObC(C, Ss is formed by adding a
maximal object in ObC \ S into Sy, S3 is formed by adding a maximal object in
ObC\ S; into S, and so on. Consider the full subcategories D; formed by S; and
let e; = ) s, lz. Then the ideals Ce;C give a stratification of C by the previous
proposition. O

Now we want to describe standard modules and give a characterization of stan-
dardly stratified directed categories with respect to a particular pre-order. Before
doing that, we need to define this pre-order on a complete set of primitive idempo-
tents of C (or precisely, primitive idempotents of the assciated algebra). For every
object z, C(z,x) = 1,C1, is a finite-dimensional k-algebra, so we can choose a com-
plete set of orthogonal primitive idempotents E, = {ex}rca, with ZAGAT ey = 1,.
In this way we get a complete set of orthogonal primitive idempotents |_|$'€Ob ¢ B
The partial order < on ObC can be applied to define a pre-ordered set (A, <) to
index all these primitive idempotents, namely for ey € E, and ¢, € E,, ey < ¢, if
and only if z < y. We can check that < is indeed a pre-order. We denote ey < ¢,
if ex < e, but e, £ ey for A\, u € A. Notice that indecomposable summands of C
(viewed as an algebra) can be indexed by these primitive idempotents in a obvious
way, namely Py = Cey. Therefore, the pre-ordered set (A, =) can also be used to
index all indecomposable summands of C.
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We define standard C-modules in the following way:

Ax=P/ Y trp(Py),

pu=X, nEA

where trp, (Py) is the trace of P, in Py. The following proposition gives a descrip-
tion of standard C-modules with respect to the above pre-order.

Proposition 5.5. The standard C-module Ay is only supported on x with value
Ayx(z) 2 1,Cex, where x € ObC and ey € E,.

Proof. Let us first analyze the structure of Py = Cey. Since e) € E,, P, is a direct
summand of C1,. The value of C1, on an arbitrary object y is 1,C1,, the space of all
morphisms from x to y. Therefore, the value of Py on y is 1,Cey. By our definition
of the partial order on ObC, if £ y, then there is no nontrivial morphisms from
x to y. Therefore, 1,C1, and hence 1,Cey are 0. We deduce immediately that Ay
is only supported on objects y satisfying z < y.

Let y be an object such that y > x. Then every e, € E, satisfies e, > ex.
Since ZeHeEy ey = 1y, by taking the sum we find that trecy, (Py) is contained in
Zu>>\, pen b, (Py). The value on y of trey, (Cl;) is 1,C1,. Since Py = Ce, is a
direct summand of C1,, the value on y of trey, (Py) is 1,Cey. Consequently, the
value of Z“>A’ peA tI‘P”(P,\) on y contains 1,Cey, which equals the value of Py on
y. Therefore, the value of ZH>‘)\7 pen e, (Px) on y is precisely 1,Cey, so the value
of Ay on y is 0.

We have proved that Ay is only supported on z. Clearly, its value on x is
11;(36)\. O

This proposition tells us that standard modules are exactly indecomposable di-
rect summands of @, ., ¢ C(7, ) (viewed as a C-module by identifying it with the

quotient module P, ,cop, ¢ C(2,y)/ D, C(@,y)).

Definition 5.6. A directed category C is said to be standardly stratified if every
(indecomposable) projective module Py has a A-filtration by standard modules.

To simplify the expression, we stick to the following convention frow now on:

Convention: When we say a directed category is standardly stratified, we al-
ways refer to the preorder < induced by the given partial order < on the set of
objects.

This definition is very simple compared to the definition of standardly stratified
algebras (for example, the definition in [6]). However, from the previous proposition
we find that every standard module Ay of C satisfies the following condition: if S,
and S, are two different composition factors of Ay, then both S, < S, and S, < S,
(but in general S,, 2 S,,). Moreover, If S,, is a composition factor of the kernel K of
the surjection Py — Ay, then S, > S) since K is only supported on objects y > =,
here x is the object where S}, is supported. Therefore, if C satisfies the requirement
in the above definition, then the associated algebra is standardly stratified as well.

The next theorem characterizes standardly stratified directed categories.

Theorem 5.7. Let C be a directed category. Then C is standardly stratified if and
only if the morphism space C(x,y) is a projective C(y,y)-module for every pair of
objects x,y € ObC. Moreover, if C is standardly stratified, then @, ¢ ope C(x, ) as
a C-module has finite projective dimension.

Proof. Suppose that C is standardly stratified and take two arbitrary objects  and y
in C. Since 0 is regarded as a projective module, we can assume C(z,y) # 0 and want
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to show that it is a projective C(y,y)-module. Consider the projective C-module
Cl,, which has a filtration with factors standard modules. Since each standard
module is only supported on one object, the value of C1, on y is exactly the sum of
these standard modules with non-zero values on y. This sum is direct since standard
modules supported on y are non-comparable with respect to the pre-order and
therefore there is no extension between them (or because by the previous proposition
each of these standard modules is projective viewed as a C(y, y)-module). Therefore,
the value of C1, on y is a projective C(y, y)-module. But the value of C1, on y is
precisely C(z,y), so the only if part is proved.

Conversely, let Py = Cey be an indecomposable projective C-module. Its value
on an arbitrary object y is 1,Ceyx = 1,C1, which is either 0 or isomorphic to a
direct summand of C(z,y). If C(z,y) is a projective C(y, y)-module, then the value
of Py on y is a projective C(y,y)-module as well. This value can be expressed
as a direct sum of standard modules supported on y since standard modules are
exactly indecomposable direct summands of @, .y, ¢ C(,z). Therefore we can get
a filtration of Py by standard modules.

It is well known that the projective dimension of a standard module is finite if
the algebra is standardly stratified. Since @,y C(z, ) as a C-module is a direct
sum of standard modules, the last statement follows from this fact immediately. [

If the directed category C is standardly stratified, then all standard modules
have finite projective dimensions. But the converse is not true in general. However,
we will prove later that for a finite EI category, all standard modules have finite
projective dimension if and only if this category is standardly stratified with respect
to the canonical pre-order.

From now on we suppose that C is a graded category, that is, there is a grading
on the morphisms in C such that C; - C; C C;y;, where we denote the subspace
spanned by all morphisms with grade ¢ by C;. Furthermore, C is supposed to satisfy
the following condition: C; - C; = C;y;. Every vector in C; is a linear combination
of morphisms with degree i. Clearly, C; = @, ,con ¢ C(2,y);- We always suppose
Ci=0fori<0andCy =, 0 cC(x,x). This is equivalent to saying that Cy is
the direct sum of all standard C-modules by Proposition 5.5.

Given a graded directed category C, we can apply the functor E = Ext;(—,Cop)
to construct the Yoneda category E(Co): Ob E(Cy) = ObC and E(Co)(z,y)n =
Exte(C(x,x),C(y,y)). This is precisely the categorical version of Yoneda algebras.
By the correspondence between graded algebras and graded categories, we can de-
fine Koszul categories, quasi-Koszul categories, quadratic categories, Koszul mod-
ules, quasi-Koszul modules for graded categories as well. We do not repeat these
definitions here but emphasize that all results described in the previous sections
can be applied to graded categories.

A corollary of Theorem 5.7 and Corollary 2.18 relates stratification theory to
Koszul theory in the context of directed categories.

Theorem 5.8. Let C be a graded directed category with Co = @D ¢ o, ¢ C(x, ) being
a self-injective algebra . Then:

(1) C is standardly stratified if and only if C is a projective Co-module.

(2) C is a Koszul category if and only if C is standardly stratified and quasi-
Koszul.

(8) If C is standardly stratified, then a graded C-module M generated in degree
0 is Koszul if and only if it is a quasi-Koszul C-module and a projective
Co-module.

Proof. Take an arbitrary pair of objects x,y € ObC. If C is standardly stratified,
then C(x,y) is either 0 (a zero projective module) or a projective C(y, y)-module by
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the previous theorem. Notice that each C(z,y); is a C(y,y)-module since C(y,y) C
Co, and we have the decomposition C(z,y) = @, C(,y);. Therefore, C(z,y); is
a projective C(y, y)-module, and hence a projective Co-module since only the block
C(y,y) of Co acts on C(x, y); nontrivially. In conclusion, C; = D, ,con ¢ C(7,y)i is a
projective Cy-module. Conversely, if C; are projective Co-modules for all 7 > 0, then
each C(x,y);, and hence C(x,y) are projective C(y,y)-modules, so C is standardly
stratified again by the previous theorem. The first statement is proved.

If C is Koszul, then it is quasi-Koszul. Moreover, each C; is a projective Cg
module, see the last paragraph of Section 2. Therefore, C is a projective Co-module,
and hence is standardly stratified. Conversely, if C is standardly stratified and
quasi-Koszul, then C is a projective Cy-module, so Cy is linear by Corollary 2.18,
and hence C is Koszul. This proves the statement.

The last part is an immediate result of Corollary 2.18. (|

To each graded category C we can associate an associated quiver @ in the fol-
lowing way: the vertices of @ are exactly the objects in C; if C(z,y)1 # 0, then
we put an arrow from z to y with x,y ranging over all objects in C. Clearly, the
associated quiver of C is completely determined by Cy and C;. There is no loop in
Q@ since C(z,x)1 = 0 for each x € ObC.

Proposition 5.9. Let C be a graded category with Co = @, oy, ¢ C(x, ) and Q be
its associated quiver. Then C is a directed category if and only if Q is an acyclic
quiver.

Proof. Assume that C is directed. By the definition, there is a partial order < on
ObC such that C(z,y) # 0 only if x < y for z,y € ObC. In particular, C(x,y); # 0
only if < y. Therefore, an arrow z — y exists in @ only if x < y. If there is an
oriented cycle
1 — T2 —> ... > Ty —> I

in @, then z; < 23 < ... <z, < 21, which is impossible. Hence @) must be acyclic.

Conversely, if @ is acyclic, we then define x < y if and only if there is a directed
path (including trivial path with the same source and target) from z to y in @ for
x,y € ObC. This gives rise to a well defined partial order on ObC. We claim that
C is a directed category with respect to this partial order, i.e., C(x,y) # 0 implies
x < y. Since it holds trivially for x = y, we assume that = # y. Take a morphism
0 # a € C(z,y) with a degree n (this is possible since C(z,y) is a non-zero graded
space). Since C,, = C;-...-C1, we can express « as a linear combination of composite

morphisms

(e} « «
T=T) 1 s ... ox, =y

with each a; € C; and all z; being distinct (since endomorphisms in C are contained
in Cy). Therefore, there is a nontrivial directed path

rT=x9g =21 T2 ... 2 Tp =219y
in @, and we have x < 1 < 2 < ... <y, which proves our claim. (|

Let C be a graded directed category. We define the free cover C of C by using
the associated quiver ). Explicitly, C has the same objects and endomorphisms as
C. For each pair of objects z # y we construct C(x,y) as follows. let ', , be the
set of all paths from z to y in Q. In the case that I'; , = 0 we let C(z,y) = 0.
Otherwise, take an arbitrary path v € I'; , pictured as below

r—T1 T2 —> ... > Tp-1—Y,
and define (z,y), to be

C(xnflay)l ®C(mn,1,mn,1) C(xn72; mn71>1 ®C(azn,2,zn,2) cee ®C(x1,a:1) C(.’I},.’IJ1>1.



A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 25

Finally, we define

6(5571/): @ (x7y)’7'

Y€ 2,y

It is clear that C is also a graded category with Co = Co and C; = Cy. Therefore, C
has the same associated quiver as that of C and is also a directed category by the
above lemma. Actually, if two grade categories C and D have the same degree 0
and degree 1 components, then one is a directed category if and only if so is the
other.

Theorem 5.10. Let C be a directed Koszul category with Cy being a self-injective
algebra, then the Yoneda category € = E(Cp) is also directed and Koszul.

Proof. Applying the Koszul duality (Theorem 4.1) we know that &£ is a Koszul
category. What we need to show is that £ is a directed category as well. Since C
is standardly stratified, pd; Co < co. Therefore, all morphisms in £ spans a finite-
dimensional space by Lemma 4.3. In particular, for z,y € Ob &, dimg £(x,y) < co.
Therefore, £ is a locally finite k-linear category.

Let < be the partial order on ObC with respect to which C is directed. This
partial order gives a partial order on Ob & as well because Ob & = ObC. We claim
that & is directed with respect to this partially ordered set, i.e., if = f y are two
distinct objects in &, then &(z,y) = 0.

Since € is the Yoneda category of C, £(z,y) = 1,1, = Ext;(Cols, Coly). But
C is a Koszul category, so it is standardly stratified by the second statement of
Theorem 5.8. Therefore, C; are projective Cy-modules for all ¢ > 0 by the first
part of this theorem. By Lemma 2.14, all Q¢(Cy1,); are projective Co-modules. By
Lemma 2.10, we have

E(z,y)i = Exté(Coly, Coly) = Home (Q4(Coly),Coly).

Observe that Col, is only supported on the object y and y # z. If we can prove
the statement that each Q¢(Cy1,) is only supported on objects z with z > x, then
our claim is proved.

Clearly, Q°(Col,) = Col, = C(z, z) is only supported on z, so the statement is
true for ¢ = 0. Now suppose that Q"(Cyl,) is only supported on objects z > = and
consider Q"T1(Cy1,). Let S be the set of objects z such that the value 1,27 (Co1,)
of Q™(Cpl,) on z is non-zero. Then we can find a short exact sequence:

0—— N —— @ZES(C1Z)mZ L>Qn(colx) —0

such that the map p gives a surjection p, : (1,C1,)™= — 1,Q"(Cpl,) for z € S.
Thus p is a surjection and Q"*1(Cy1,) is a direct summand of N. Notice that all
C1, are supported only on objects w > z, and z > x by the induction hypothesis.
Therefore, the submodule Q"1 (Cyl,) € N C @, 5(C1.)™ is only supported on
objects w > z. Our statement is proved by induction. This finishes the proof. [

Let A be the category of directed Koszul categories C with Co = B, ¢ C(7, )
being self-injective algebras. This theorem tells us that the homological dual func-
tor FE is also a dual functor from A to itself. For a fixed category C € Ob A, since
standard modules of C are exactly indecomposable summands of Cy, F interchanges
standard (indecomposable projective, resp.) C-modules and indecomposable pro-
jective (standard, resp.) E(Cp)-modules bijectively.

The condition that C is exactly the space spanned by endomorphisms in C is cru-
cial since it implies that standard modules are precisely indecomposable summands
of Cy. The following example tells us that without this assumption, the Yoneda
category E(Cp) might not be directed even if C is a Koszul directed category.



26 LIPING LI

Example 5.11. Let C be the following category. Put an order x <y on the objects
and the following grading on morphisms: Co = (15,1,,5), C1 = ().

This category is directed obviously. It is standardly stratified (actually hereditary)
with Ay =2 ky and Ay = k. By the exact sequence

0 ky 1] ¢ Co 0,

Co is a linear module. But Ay ® Ay % Co. Furthermore, Ay ® Ay is not linear since
from the short exact sequence

we find that Q(A, & Ay) is not generated in degree 1.
By computation we get the Yoneda category D = E(Cy) pictured as below, with
relation o - B = 0.

This is not a directed category with respect to the order x < vy. However, we check:
P, = A}, = Doly and A}, = k, = P,/P,. Therefore, A}, ® A} = Dy, and D is
standardly stratified. The eract sequence

0 P[] D Dy 0

tells us that Dy is a linear D-module. Therefore, D is standardly stratified and
Koszul, but not directed.

The k-linearization of a finite EI category is a directed category by definition.
However, this theorem does not hold in the context of finite EI categories. That is,
if £ is a Koszul finite EI category, F (k&) might not to be the category algebra of
a finite EI category, as illustrated in the next example:

Example 5.12. Let € be the following finite EI category with three objects whose
endomorphism groups are all trivial. Put a grading on & with & = {1,1,,1,},
& = {a, B} and & = {pa}. Then (k&) = kE/(Ba) is not the category algebra of
a finite EI category.

e’
r—Yy ——=2z

There is a close relation between the classical Koszul theory and our general-
ized Koszul theory in the context of graded directed categories. Let C be a graded
directed category. We then define a subcategory D of C by replacing all endo-
morphism rings in C by k- 1, the span of the identity endomorphism. Explicitly,
ObD = ObC(; for z,y € ObD, D(z,y) = k(1,) if z = y and D(z,y) = C(x,y)
otherwise. Clearly, D is also a graded directed category with D; = C; for every
i > 1. Observe that the degree 0 component Dy is semisimple.

Theorem 5.13. Let C be a graded directed Koszul category and define the subcat-
egory D as above. If M is a linear C-module, then M i% s a linear D-module. In
particular, D is a Koszul category in the classical sense.



A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 27

Proof. We prove the conclusion by induction on the size of ObC. If the size of
ObC( is 1, the conclusion holds trivially. Now suppose that the conclusion is true
for categories with at most n objects and let C be a graded directed category with
n + 1 objects. Take x to be a minimal object in C and define C, (D, resp.) to be
the full subcategory of C (D, resp.) formed by removing z from it. Clearly C, and
D, have n objects.

The following fact, which is well known in the context of finite EI categories (see
[22]), is essential in the proof.

Fact: Every graded C,-module N can be viewed as a C-module with N(z) = 0 by
induction. Conversely, every graded C-module M with M (x) = 0 can also be viewed
as a Cy-module by restriction. Furthermore, if M (z) = 0, then Q!(M)(z) = 0 for
all ¢ > 0. The above induction and restriction preserves projective modules: a
projective C,-module is still projective when viewed as a C-module; conversely, a
projective C-module P with P(x) = 0 is still projective viewed as a C,-module.
Therefore, a graded C-module M with M (x) = 0 is linear if and only if it is linear
as a Cy-module. All these results hold for the pair (D, D,) similarly.

By this fact, we only need to handle linear C-modules M with M (x) # 0. Indeed,
if M(z) = 0, then M is also linear regarded as a C,-module. By the induction
hypothesis, M L%T'z is a linear D,-module. By the above fact, M i% is a linear
D-module. Thus the conclusion is true for linear C-modules M with M (z) = 0.

Firstly we consider the special case M = Cyl, = C(x,z) which is concentrated
on = when viewed as a C-module. It is clear that

Q(Col,) 1S5= Q(Dol,)
as vector spaces since for each pair u # v € ObC, C(u,v) = D(u,v), and
Colm »LCDg (DO]-z)m = kchna

where m = dimy C(x,x). Since Cpl, is a linear C-module, Q(Col,)[—1] is a lin-
ear C-module supported on ObC,. By the induction hypothesis, Q(Dgl,)[—1] =
Q(Col,) 1% [—1] is a linear D,-module, and hence a linear D-module. Therefore,
Dol,, and hence Cyl, i%%“ (Dol;)™ are linear D-modules. In the case that y # z,
Dyl is a direct summand of Cpl, i%. It is linear viewed as a D,-module by the
induction hypothesis, and hence is a linear D-module. Consequently, Dy is a linear
D-module, so D is a Koszul category in the classical sense.

Now let M be an arbitrary linear C-module with M (x) # 0. Consider the exact
sequence

(5.1) 0—=QM |$ ——>P |§ "> M |§, ——=0
induced by

p

0 QM P M 0.

The structures of C and D give the following exact sequence:

0 pD pC D.cob c ks —=0

where k, = Dyl, and m, = dimg C(z,x) — 1. Since P ¢%€ add(pC), the above
sequence gives us a corresponding sequence for P ¢%:

(5.2) 0——=p —>Pl{—>T—>0,

here P’ is a projective D-module and T € add(Dy). Both of them are generated in
degree 0.
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Putting sequences 5.1 and 5.2 together we get

pot

0—= QM) P M 0

S

0 —=Q(M) 1% Pl M5 0

]

T—— M | /M’

where M’ = (po¢)(P’). Notice that p and ¢ both are injective restricted to degree
0 components. Therefore p o ¢ is also injective restricted to the degree 0 compo-
nent of P’ (actually it is an isomorphism restricted to the degree 0 component).
Consequently, P’ is a projective cover of M’ and the kernel of po is indeed Q(M").

We claim that ¢ is an isomorphism and hence Q(M’) = (QM) |%. It suffices to
show T'= M i% /M’ by the snake lemma. First, since T' is concentrated in degree
0 in sequence 5.2, (P |%); = P/ and

M= (pou)(F)) =p((PIp)i) = (M 15)i,i > 0.
Therefore, M i% /M’ is concentrated in degree 0. Furthermore, since M is linear,
(P 1%)0 =Py = My = (M ]%)o, and P} = M}, because p o ¢ restricted to P} is an
isomorphism as well. We deduce that

T = (P1$)o/P) = (M 1$)o/My =M |$ /M,

exactly as we claimed.

Now consider the rightmost column of the above diagram. Clearly, the bottom
term M |$, /M’ = T € add(Dy) is linear since we just proved that Dy is linear. The
C-module (2M)[—1] is linear since M is supposed to be linear. Moreover, because x
is minimal and M is generated in degree 0, M (x) C My and hence (QM)[—1](z) =
(QM)(z) = 0. Therefore, (QM)[—1] is a linear C-module supported on ObC,, so it
is also a linear C,-module. By the induction hypothesis, (QM’)[-1] = (QM)[-1] 1%
is linear viewed as a D,-module, and hence linear as a D-module. Thus the top term
M’ is a linear D-module since as a homomorphic image of P’ (which is generated
in degree 0) it is generated in degree 0 as well. By Proposition 2.9, M ¢% is also a
linear D-module since Dy is semisimple by our construction. The conclusion follows
from induction. U

The converse of the above theorem is also true.

Theorem 5.14. Let C be a graded directed category and construct the subcategory
D as before. Suppose that D is Koszul in the classical sense. Let M be a graded
C-module generated in degree 0 such that Q*(M); are projective Co-modules for all
1> 0. Then M 1is a linear C-module whenever M i% is a linear D-module.

Proof. We use the similar technique to prove the conclusion. Notice that we always
assume that Co = @, .oy, ¢ C(z, 7). If C has only one object, then linear modules
are exactly projective modules generated in degree 0 and the conclusion holds.
Suppose that it is true for categories with at most n objects. Let C be a category
of n 4+ 1 objects and take a minimal object x. Define C, and D, as before. As in
the proof of last theorem, a graded C-module M with M(z) = 0 is linear if and
only if it is linear viewed as a C;-module by restriction. and the same result holds
for the pair (D,D,). In particular, D, is a Koszul category. Therefore, we only
need to show that an arbitrary graded C-module M which is generated in degree
0 and satisfies the following conditions is linear: Q¢(M); is a projective Co-module
for each i > 0; M(z) # 0; and M |5, is a linear D-module.
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Let M be such a C-module and consider the commutative diagram:

(5.3) K K—>i)
0—=Q(M |%) P M 15, 0
b
0—= (QM) |§, — P [, M 15 0

where P and P are projective covers of M i% and M respectively. Since My is a
projective Co-module, Py = My = (M i%)o = (13 i%)o as vector spaces, and the
induced map ¢ restricted to Py is an isomorphism. Therefore ¢ is surjective since
both P and P i% are generated in degree 0. Let K be the kernel of ¢.

We have the following exact sequence similar to sequence 5.2:

OHP/HP\LCDLTHO,
where P’ is a projective D-module such that P/ = (P |$); for every i > 1, and

T e add(Do)
Let P” be a projective cover of T' (as a D-module). Then we obtain:

(5.4) K=——K
0 P! p—2— pr 0
o l(p lp//
0 P! Pl LT 0

We give some explanations here. Since P is a projective D-module and the map
p” is surjective, the map p o ¢ factors through p” and gives a map p : P — P”.
Restricted to degree 0 components, p” and ¢ (see diagram 5.3) are isomorphisms
and p is surjective. Thus p restricted to the degree 0 components is also surjective.
But P” is generated in degree 0, so p is surjective. Since Py = (P 1%)o and
PJ = Ty = T, « restricted to the degree 0 components is an isomorphism, and
hence an isomorphism of projective kD-modules (notice that the middle row splits
since P” is a projective D-module, so the kernel should be a projective D-module
generated in degree 0). By the snake Lemma, the kernel of p” is also K up to
isomorphism.

Let J = €P,;5, Di- Since Dy is supposed to be a linear D-module, J[—1] =
Q(Dy)[—1] is a linear D-module, too. Consider the leftmost column in diagram 5.3.
The top term K[—1] is a linear D-module since K = P"”/T = P"/Py € add(J).
The middle term Q(M |$)[—1] is linear as well since M |5, is supposed to be linear.
By Proposition 2.9, the bottom term (QM)[—1] [% must be linear.

Since M is generated in degree 0 and x is a minimal object, M (z) C My, so
M(z) = (M 1$)(x) € (M |%)o as vector spaces. Similarly, P(x) C Py and
P(z) =2 (M |$%)(x), so Q(M |%)(x) = 0. Consequently, (M )[—1] is supported on
Ob(C, by observing the leftmost column of diagram 5.3. Moreover, we can show as
in the proof of Theorem 5.10 that all of its syzygies are supported on Ob(C,, and
QUQM)[-1]); = QY (M), 41 are projective (C;)o-modules. Therefore, applying
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the induction hypothesis to (Q2M)[—1] supported on ObC, and (QM)[—1] % sup-
ported on ObD,, we conclude that (QM)[—1] is a linear C,-module, and hence a
linear C-module. Clearly, M is a linear C-module since it is generated in degree 0.
The conclusion follows from induction. (]

Remark 5.15. We remind the reader that in the previous two theorems we do not
require Co = @, cop ¢ C(7,2) to be a self-injective algebra. By our construction,
Dy = @erb p ke is a semisimple algebra.

Assuming that Cy is self-injective, we get the following nice correspondence.

Theorem 5.16. Let C be a graded directed category with Cy being a self-injective
algebra and construct D as before. Then:

(1) C is a Koszul category in our sense if and only if C is standardly stratified
and D is a Koszul category in the classical sense.

(2) If C is a Koszul category, then a graded C-module M generated in degree 0
18 linear if and only if M L% is a linear D-module and M is a projective
Co-module.

Proof. If C is Koszul in our sense, then it is standardly stratified by (2) of Theorem
5.8, and D is Koszul in the classical sense by Theorem 5.13. Conversely, if D is
Koszul in the classical sense, then Cy ¢%€ add(Dy) is a linear D-module. If C is
furthermore standardly stratified, then it is a projective Cyp-module by Theorem 5.8.
Therefore, all 2¢(Cy); are projective Co-modules according to Lemma 2.14. Thus
Cp is a linear C-module by Theorem 5.14, and hence C is a Koszul category. This
proves the first statement.

Now suppose that C is Koszul. Then C is a projective Cy-module. If M is a
linear C-module, M i% is a linear D-module by Theorem 5.13. Furthermore, M
is a projective Cy-module by Corollary 2.18. Conversely, if M is a projective Cy-
module and M i% is a linear D-module, then by Lemma 2.14 Q¢(M); are projective
Co-modules for all i > 0. By Theorem 5.14 M is a linear C-module. O

6. FINITE EI CATEGORIES

When applying the generalized Koszul theory to a directed category C in the pre-
vious section, we take for granted that there is already a grading on the morphisms
in C such that the degree 0 component is formed precisely by endomorphisms in C.
But in practice it is very hard to find such a grading for C. Actually, we do not
even know the existence of such gradings in general. In this section we will focus on
finite EI categories, whose k-linearizations form a type of directed categories with
combinatorial properties. These properties can be used to define a length grading
on the set of morphisms and completely determine whether an arbitrary finite EI
category can be graded by this length grading.

In this section we only consider skeletal and connected finite EI categories &,
i.e., for every pair z,y € Ob &, there is a chain of objects zg = x, 1, 22,...,2p =y
such that either £(z;, x;41) # 0 or E(wi41,x;) # 0 for every 0 < i < n — 1.

First we introduce some results from [12]. A morphism « in & is called un-
factorizable if « is not an automorphism, and whenever there is a decomposition
a = a1 o ag, either oy or as is an automorphism. The composite morphism of
an unfactorizable morphism and an automorphism is still unfactorizable. There-
fore, all unfactorizable morphisms from an object x to another object y form an
(Autg(y), Autg(z)) bi-set. Every non-isomorphism can be expressed as a composite
of unfactorizable morphisms. This decomposition is not unique in general. We say
a finite EI category & satisfies the Unique Factorization Property (UFP) if whenever
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a non-isomorphism « has two decompositions into unfactorizable morphisms:

a1 a2 Qm

T =To 1 Tm =Y

T =z B1 i B2 Bn Yn =y

then m = n, x; = y;, and there are h; € Autg(z;) such that the following diagram
commutes, 1 <i<n—1:

[e %) a9 [0 (o779
Zo T s Tn—1 Tn
id l’n Lh \Lhnl id
Zo B1 1 B2 A B... T 1 Bn T

Finite EI categories with this property are called finite free EI categories by us.
For every finite EI category £ there is a unique (up to isomorphism) finite free EI
category & (called the free EI cover) and a covering functor F: € — & such that F'is
the identity map restricted to objects, isomorphisms and unfactorizable morphisms.
The functor F' induces a surjective algebra homomorphism ¢ : kE — kE. Therefore,
kE = kE /I, where I is the kernel of ¢. We have the following description of I:

LemAma 6.1. The kf;—ideal I as a vector space is spanned lzy elements of the form
& — B, where & and 8 are morphisms in £ with F(&) = F(B).

Proof. Let U be the vector space spanned by elements & — B such that F' (&) =
F(B) Clearly, U C I and we want to show the other inclusion. Let z € U.
By the definition of category algebras, x can be expresses uniquely as > . ; A;jq;
where «; are pairwise different morphisms in € and \; € k. Then (X i) =
S AiF(a;) = 0. Those F(a;) are probably not pairwise different in £. By
changlng the indices if necessary, we can write the set {a;}?_; as a disjoint union of
[ subsets: {aq,...,as }, {Qs;+1,.-., 05, and so on, untll {as,_y+41,---,0s } such
that two morphisms have the same image under F if and only if they are in the
same set.
Now we have:

o) =AM 4...+ X)) F(as) 4+ ...+ Qgyp1 4.+ X)) F(ay,) = 0.
Therefore,
MA .o oF A =. =X _41+-.-F+ A, =0,
and hence
x=[A(ag —aq)+ ...+ As; (a5, —1)] + ...
+ [/\SL71+2(045171+2 - aszfﬁ-l) .o+ >‘Sl (asl - a5171+1)]

is contained in U. O

If € is a finite free EI category, we can put a length grading on its morphisms
as follows: automorphisms and unfactorizable morphisms are given grades 0 and
1 respectively; if « is a factorizable morphism, then it can be expressed (probably
not unique) as a composite a,,_1 ... sy with all a; being unfactorizable and we
assign « grade n. This grading is well defined by the Unique Factorization Property
of finite free EI categories. It is clear that this length grading cannot be applied to
an arbitrary finite EI category. We say a finite EI category can be graded if this

length grading is well defined on it. The following proposition gives us criterions
to determine whether an arbitrary finite EI category can be graded.
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Proposition 6.2. Let £ be a finite FI category. Then the following are equivalent:

(1) & is a graded finite EI category.

(2) For each factorizable morphism « in £, whenever it has two factorizations
®10...00,, and 310...003, into unfactomzable morphisms, we have m = n.

(8) Let 5 be the free EI cover ofé' and F : € — & be the covermg functor. If
two morphisms & and 3 in € have the same image under F, then they have
the same length in E.

Proof. Tt is easy to see that if condition (2) holds, our grading works for £, and
hence (1) is true. Otherwise, if a factorizable morphism « has two decompositions
po...oqp and By, o...0 B with m # n, then «a should be assigned a grade n
by the first decomposition, and a grade m by the second decomposition. Thus our
grading cannot be applied to £. This proves the equivalence of (1) and (2).

Now let a be an arbitrary morphism in £ which has two different decompositions
apo...oap and B, o...o B into unfactorizable morphisms. Since & is the free EI
cover of &, these unfactorizable morphisms are also unfactorizable morphisms in E.
Let & and B be the composite morphisms of these a;’s and §;’s in é respectively.
Thus & — 3 is contained in U since they have the same image o under F'. If (3) is
true, then m = n since & and B have lengths m and n respectively. Therefore (3)
implies (2). We can check that (2) implies (3) in a similar way. O

The following two lemmas are from [12].

Lemma 6.3. Let £ be a finite free EI category and o : x — y be an unfactorizable
morphism. Define H = Autg(y) and Hy = Stabg(a). If |Hy| is invertible in k,
then the cyclic module k€ is projective.

Proof. This is Lemma 5.2 of [12], where we assumed that the automorphism groups
of all objects are invertible in k£ but only used the fact that |Hp| is invertible in
k. Here we give a sketch of the proof. Let e = ﬁ ZhGHO h. Then e is well
defined since |Hp| is invertible in k, and is an idempotent in k€. Now define a
map ¢ : ke — k€a by sending re to ra for r € k€. We can check that ¢ is an
k&-module isomorphism. Thus k€« is projective. See [12] for a detailed proof. O

Lemma 6.4. Let £ be a finite free EI category and o : v — y and o' : x' — 3y’ be
two distinct unfactorizable morphisms in £. Then kEaNkEa’ =0 or kEa = kEa'.

Proof. This is Lemma 5.1 of [I2]. We give a sketch of the proof. Notice that k€«
is spanned by all morphisms of the form Sa with 8 : y — 2z being a morphism
starting at y. Similarly, k€a’ is spanned by all morphisms of the form ’a’ with
B :y" — 2’ being a morphism starting at y'. If x # 2’ or y # 3/, then by the
Unique Factorization Property of finite free EI categories we conclude that the set
EanN&a’ = (), and the conclusion follows. If z = 2’ and y = ¥/, then the set £
coincides with the set £’ if and only if there is an automorphism h € Aute(y)
such that ha = o’ again by the UFP. Otherwise, we must have Ea N Ea’ = @. The
conclusion follows from this observation. O

Remark 6.5. The reader can check that the conclusion of Lemma 6.3 is true for
any non-isomorphisms « in £ by using the UFP. Moreover, a direct check shows
that it is also true for automorphisms. Similarly, we can also prove that Lemma
6.4 still holds if we assume that o and o are two morphisms with the same target
and source.

Theorem 5.8 has a corresponding version for finite EI categories.



A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 33

Proposition 6.6. Let £ be a graded finite EI category. Then k& is a Koszul algebra
if and only if k€ is a quasi-Koszul algebra and £ is a standardly stratified category
(in a sense defined in [20]) with respect to the canonical partial order on ObE.

Proof. By the decompositions

ko= P kAute(x), k&= € kE(x,y)ii>0
z€Ob & z#ycOb &

we conclude that all k&; are projective k€y-modules if and only if kE(z,y); are
projective kAutg(y)-modules for all ¢ > 0, z,y € Ob&. Notice that kE(x,y);
is spanned by morphisms from z to y with length ¢, and these morphisms form
several orbits under the action of Autg(y). Suppose that there are n distinct orbits
and take a representative «; from each orbit. Then we have a decomposition
kE(x,y)i = @j_; kAute(y)a;. Thus kE(x,y); is a projective kAute (y)-module if
and only if each kAutg(y)a; is a projective kAutg(y)-module, and if and only if
the stabilizer of o in Autg(y) has an order invertible in k. This happens if and
only if £ is standardly stratified by Theorem 2.5 in [20]. In conclusion, all k&; are
projective k€y-modules if and only if £ is standardly stratified in a sense defined in
[20].

Notice that k& is the direct sum of several group algebras, and hence is self-
injective. If k€ is Koszul, then it is quasi-Koszul by Theorem 2.17. Moreover, all
kE; are projective k€y-modules (see the last paragraph of Section 2). Therefore, £
is standardly stratified.

Conversely, if k& is standardly stratified, then all k&; are projective k€y-modules.
By Corollary 2.18, k& is a linear k€-module if k€ is quasi-Koszul. O

In the first paragraph of the above proof we have showed that a graded finite EI
category & is standardly stratified in the sense of [20] if and only if its k-linearization
as a graded directed category is standardly stratified in our sense. Actually this
is still true for an arbitrary finite EI category by comparing Theorem 5.7 in this
paper and Theorem 2.5 in [20]. This is not surprising since the k-linearization of £
is precisely the associated category of the algebra k€.

Proposition 6.7. Let £ be a finite EI category which might not be graded. Then £
is standardly stratified if and only if M = @, ¢ o), ¢ Aute(x) viewed as a kE-module
has finite projective dimension.

Proof. Consider the k-linearization of £, which is a directed category. By Theorem
5.8 and the remark we made in the paragraph before this proposition, we conclude
that pd M < oo.

Conversely, suppose that £ is not standardly stratified. Then there is a non-
isomorphism v : ¢ — y such that the order of H, is not invertible in the field
k by Theorem 2.5 in [20], where H = Autg(y) and H, = Stabg(y). For this
object y, define S to be the set of objects w such that there is a non-isomorphism
B : w — y satisfying that |Hg| is not invertible in k. This set S is nonempty since
t € S. It is a poset equipped with the partial order inherited from the canonical
partial order on Ob €. Take a fixed object z which is maximal in this set and define
I..,={z € 0Ob€& |z > z}.

By our definition, for an arbitrary object x € I~ , and a non-isomorphism « :
x — y (if it exists), the group H, < H has an order invertible in k. Therefore,
the kH-module kH « is projective. Since the value of k€1, on y is 0 or is spanned
by all non-isomorphisms from x to y, and these non-isomorphisms form a disjoint
union of H-orbits, we conclude that the value of k€1, on y is a projective kH-
module (notice that we always view 0 as a zero projective module). With the same
reasoning, we know that the value of k€1, on y is not a projective kH-module.
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Consider the k€-module L = kAutg(z). We claim that pd L = oo. If this is
true, then pd M = oo since L is a direct summand of M. We prove this claim by
showing the following statement: for each i > 1, every projective cover of (L)
is supported on Is; the value Q'(L)(y) of (L) on y is non-zero and is not a
projective kH-module. Clearly, (L) is spanned by all non-isomorphisms starting
from z and is supported on I~ .; Q(L)(y), spanned by all non-isomorphisms from z
to y, is non-zero. Moreover, Q(L)(y) coincides with the value of k€1, on y and is
not a projective kH-module. Therefore our statement is true for i = 1.

Suppose that this statement is true for n, and let P be a projective cover of
Q™(L). The exact sequence

gives rise to an exact sequence
0 ——= Q" (L)(y) — Py) — Q" (L)(y) —=0.

Let us focus on the above sequences. Since Q™ (L) is supported on I, so are P
and Q"1(L). By the induction hypothesis Q"(L)(y) # 0, Thus P(y) # 0. But P
is supported on I, so P € add(@xel>z kE1,). Notice that the value of each k€1,
on y is zero or a nontrivial projective kH-module. Therefore, P(y) is a projective
kH-module. Again by the induction hypothesis, Q™(L)(y) is not a projective kH-
module, so Q"(L)(y) 2 P(y), and Q"1 (L)(y) is non-zero. It cannot be a projective
kH-module. Otherwise, 2" *1(L)(y) is also an injective kH-module and hence the
above sequence splits, so Q™ (L)(y) as a summand of P(y) is a projective kH-module,
too. But this contradicts the induction hypothesis.

We proved the induction hypothesis for Q"*1(L). Thus our statement and claim
are proved. Consequently, pd M = co. O

Now we can prove:

Theorem 6.8. Let & be a finite free EI category. Then the following are equivalent:

(2) k& is a Koszul algebra;
(8) € is standardly stratified;
(4) pdk&Ey < oo.

Proof. 1t is clear that pd k& = 0 if and only if £ is a finite EI category with a single
object since we only consider connected categories. In this situation, k€ = k&,
J = 0, and all statements are trivially true. Thus without loss of generality we
suppose that pd k& # 0.

Observe that pd k& = 1 if and only if Q(k&) = J = @i;l k&; is projective.
Since J is spanned by all non-isomorphisms in £ and each non-isomorphism can
be written as a composition of unfactorizable morphisms, it is generated in degree
1. Thus k& is a linear k€-module, and (1) implies (2). By Proposition 6.6, (2)
implies (3). The statements (3) and (4) are equivalent by Proposition 6.7.

Now we prove that (3) implies (1). If £ is standardly stratified, then for every
morphism « : & — y in &, the order of Staby(«) is invertible in k, where H =
Autg(y). By Lemma 6.4, J is a direct sum of some k€-modules k€«;’s with each
«; being unfactorizable. By Lemma 6.3, each k€«; is projective. Therefore, J is
also projective, i.e., pd k& = 1. (]

This theorem and Theorem 5.13 give us a way to construct Koszul algebras in the
classical sense. Indeed, let £ be a standardly stratified finite free EI category and
define D to be the subcategory formed by removing all non-identity automorphisms.
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Then by Theorem 5.13 kD is a Koszul algebra in the classical sense since k& is a
linear k€-module in the generalized sense by the previous theorem.

Let us get more information about the projective resolutions of k&, for arbitrary
finite free EI categories. In general, Q(k&y)) = J = 69121 k&; is not projective, but
it is still a direct sum of some k€-modules k€a’s with each a being unfactorizable
by Lemma 6.4. Thus the projective resolutions of k& is completely determined by
the projective resolutions of those k€a’s.

Lemma 6.9. Let £ be a finite free EI category and o : x — y be an unfac-
torizable morphism. Grade the k€-module kEa by putting « in degree 1, namely,
(k€a)1 = kAute (y)a. Then Q(kEw) is 0 or is generated in degree 1, and QkEa); =
Q(kEa)(y), the value of Q(kEa) on y.

Proof. Let H = Autg(y) and Hy = Stabpg(a). If |Hp| is invertible in k, then
by Lemma 6.3, k€« is a projective k€-module, so Q(kfa) = 0 for all i > 1, in
particular Q(k€a) = 0. The conclusion is trivially true. Thus we only need to deal
with the case that |Hy| is not invertible.

Consider the projective presentation

0——= N —k€1,[1] X—>kfa —=0

where p maps 1, to a. Since Q(k€a) is isomorphic to a direct summand of N, it is
enough to show that N is generated in degree 1, and Ny = N(y).

Notice that k€1, is spanned by all morphisms in £ with source y, and k€« is
spanned by all morphisms in £ of the form Sa where £ is a morphism in £ with
source y. We claim that IV is spanned by vectors of the form 81 — s with f1a = Saa,
where 81 and (2 are two morphisms with source y.

Clearly, every such difference is contained in N. Conversely, let v € N. Then v
can be written as Z?:l AiBi with \; € k and (; being pairwise different morphisms
with source y. By the definition of p, Z;;l Aifiacc = 0. Those [B;ar might not
be pairwise different in £. Now we apply the same technique used in the proof of
Lemma 6.1. By changing the indices if necessary, we can group the same morphisms

together and suppose that fio = ... = s, @, Bs, 4100 = ... = B, and so on, until
B 1+100 = ... =[50
We have:

p(V) =AM+ ...+ As)Bs,a+ oo+ Qs 41+ -+ Ag,) Bs,a = 0.
Therefore,
M4+ A = o= A 41+ A, =0,

and hence

v=_[A2(B2 = B1)+ ... + s, (Bs; — B1)] + ...
+ [>\5l—1+2(/85l—1+2 - le—l‘f’l) +.o. )\Sl (551 - 551—1‘1‘1)]‘

So v can be written as a sum of these differences.

Now we can prove the lemma. Take an arbitrary object z € Ob & and consider
the value N(z). If it is 0, the conclusion holds trivially. Suppose that N(z) # 0.
By the above description, N(z) is spanned by vectors f; — B2 such that (i, (2
are two morphisms from y to z, and fia = Paa. By the equivalent definition
of UFP described in Remark 6.5, there is an automorphism h € Autg(y) such
that 81 = fah and @ = h™'a. Therefore ha = a, and 1 — h € N(y). Thus
B1— B2 = B(1 —h) € k€ - N(y). Since z is taken to be an arbitrary object, N is
generated by N(y), which is clearly equal to Nj. O

From this lemma we can get:
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Proposition 6.10. Let £ be a finite free EI category, then Ext: o (k&Ey, k&) = 0.

Proof. Since Q(kEy) = J, it is enough to show Extjo(J,kE) = 0. The conclusion
holds trivially if J is projective. Otherwise, since J is the direct sum of some k€a’s
with a being unfactorizable, by the above lemma we know that 2J is generated in
degree 1.

Applying the functor Homyg(—, k&) to 0 — QJ — P — J — 0 we get

0 — Homye(J, k&) — Homye (P, kEy) — Homye (U, kEy) — Extrg(J, kEy) — 0.
Since all modules are generated in degree 1, the sequence
(6.1) 0 — Homye (J, k&y) — Homge (P, k&) — Homye (QJ, k&)
is isomorphic to the sequence
0 — Homyg, (J1, k&) — Homyg, (P1, k&) — Homye, (2T)1, kEo)

obtained by applying the exact functor Homyg, (—, k&p) to the exact sequence 0 —
(QJ)y — P — J; — 0. Thus the last map in sequence 6.1 is surjective, so
Ext}q(J, k&) = 0. O

The fact that 2J is generated in degree 1 implies Ext? . (k€o, k€) = 0. Actually
the converse statement is also true. Indeed, consider the exact sequence 0 — QJ —
P — J = 0. If Ext}(k&, kE) = 0, applying the exact functor Homyg, (—, k&)
we get the exact sequence

0— HomkgO(J, k‘go) — Homkgo (P, ]f&)) — Homkgo (QJ, k'go) — 0,
which is isomorphic to
0— Homkgo (Jl, kg()) — Homkgo (Pl, ]{350) — Homkgo (QJ/J(QJ), kgg) —0

since both J and P are generated in degree 1. Applying the functor Homyg, (—, k&)
again, we recover 0 — QJ/J(QJ) = P — J; — 0. Therefore, QJ/J(QJ) = (2J)1,
so QJ is generated in degree 1.

Finite free EI categories with quasi-Koszul category algebras have very special
homological properties. For example:

Proposition 6.11. Let £ be a finite free EI category. Then the following are
equivalent:
(1) Ext o (kEy, kEy) =0 for all i > 2; 4
(2) for every unfactorizable morphism o : x — y and i > 0, either Q'(kfa) are
all 0, or they are all generated in degree 1 (in which case it is generated by

Y (kEa)(y));
(8) k& is a quasi-Koszul algebra.

Proof. If k€ is a quasi-Koszul algebra, then
EXt;"cg (kgo, kg()) = Extig(k‘&), kgo) : EX‘EZ}Q (kgo, kgo)

for every i > 2. But Ext}z(k&y, k€) = 0 by Proposition 6.10, so (3) implies (1).
Clearly, (1) implies (3).

Notice that k€« is a isomorphic to a direct summand of J = Q(k&y). Thus we
only need to prove the equivalence of the following two statements:
(1) Extio(J, k&) = 0 for every i > 1;

(2) Q¥(J) =0 or is generated in degree 1 for every i > 1.

Since the technique we use is similar to that in the proof of Proposition 6.10,
we only give a sketched proof. In the case that J is projective, i.e., £ is standardly
stratified, then (1’) and (2’) are trivially true, hence they are equivalent. Now
suppose that J is not projective. From the proof of Proposition 6.10 and the
paragraph after it we conclude that €J is generated in degree 1 if and only if
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Ext}o(J, k&) = 0. Replacing J by QJ (which is also generated in degree 1 either
by the induction hypothesis or by the hypothesis Ext}¢(.J, k&) = 0) and using the
same technique, we get Q?(.J) is generated in degree 1 if and only if Ext?.(J, k&) =
0. The equivalence of (1’) and (2’), and hence the equivalence of (1) and (2), come
from induction. O

The reader may guess that the category algebra of a finite free EI category is
always quasi-Koszul in our sense because of the following reasons: Finite free EI
categories generalize finite groups and acyclic quivers, for which the associated
algebras are all quasi-Koszul; by Proposition 6.6 and Theorem 6.8, for an arbitrary
finite EI category &, k€ is Koszul if £ is standardly stratified and one of the following
condition holds: k€ is quasi-Koszul, or £ is a finite free EI category; and we have
proved that Ext?.(k&o, kEy) = 0 if £ is a finite free EI category. Unfortunately,
this conjecture is false, as shown by the following example.

Example 6.12. Let £ be the following finite EI category where: Autg(x) = (1,),
Aute(z) = (1,), Autg(y) = (h) is a group of order 2; E(x,y) = {a}, E(y,z) = {5}
and E(x,z) = {Ba}. The reader can check that £ is a finite free EI category and
then the length grading can be applied on it. Let k be an algebraically closed field
with characteristic 2.

o
r—>Y —— z.

The indecomposable direct summands of k€ and k&y are:

Zo
P, =1, Py: Yo R P, = 2z, kgog.ﬁo@Zo@yo.
2 Yo 21 Yo

We use indices to mark the degrees of composition factors. The reader should bear
in mind that the two simple modules y appearing in Py have the same degree.
Take the summand xg of kEy. By computation, we get

Qo) =2, DPla)=u, La)=nsa

Applying Homye(—, k&) to the exact sequence
0 ——= Q%(z0) P[] 0% (29) —>0

we get Bxty o (k&o, k&) # 0. Consequently, kE is not a quasi-Koszul algebra in our
sense by the previous proposition.

We aim to characterize finite free EI categories with quasi-Koszul category alge-
bras. For this goal, we make the following definition:

Definition 6.13. Let £ be a finite EI category. An object x € ObE is called left
regular if for every morphism « with target x, the stabilizer of a in Aute(x) has an
order invertible in k. Similarly, x is called right reqular if for every morphism f3
with source x, the stabilizer of B in Autg(x) has an order invertible in k.

Remark 6.14. We make some comments for this definition.

(1) If v € Ob& is maximal, i.e., there is no non-isomorphisms with source x,
then x is right reqular by convention; similarly, if x is minimal, then it is
trivially left reqular.

(2) The category & is standardly stratified if and only if every object x € ObE is
left regular; similarly, £°P is standardly stratified if and only if every object
x € 0bE& is right reqular
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(8) If € is a finite free EI category and x € ObE. Then x is left reqular if and
only if for every a with target x, the k€-module k€« is a left projective kE-
module. Similarly, x is right regular if and only if for every B with source
x, the right kE-module B(kE) is a right projective kE-module.

Lemma 6.15. Let £ be a finite free EI category and B : x — y be a morphism
with x € ObE being right reqular. Then there exists some idempotent e in kE
such that B(kE) = e(kE) as right kE-modules by sending e to B. In particular,
B(kG)a = e(kG)a as vector spaces for every morphism « with target x, where
G = Autg(x).

Proof. Let Go = Stabg(a) and e = > 5 g/|Go|. This is well defined since x
is right regular. Then we can prove 3(k€) = e(k&) as right k€-modules in a way
similar to the proof of Lemma 6.3. The isomorphism is given by sending er to Sr
for r € k€. Since the image of e(kG)a C k€ is exactly 8(k€)a, we deduce that
e(kG)a = B(kG)a as vector spaces. O

Using these concepts, we can get a sufficient condition for the category algebra
of a finite free EI category to be quasi-Koszul.

Theorem 6.16. Let £ be a finite free EI category such that every object x € ObE
is either left reqular or right reqular. Then kE is quasi-Koszul.

Proof. By the second statement of Proposition 6.11, it is enough to show that for
each unfactorizable a : z — y and every i > 1, Q% (k€a) is 0 or generated by
Qi (kEa)(y). Let H = Autg(y) and Hy = Staby (). If |Hp| is invertible in k, then
k€a is a projective k€-module, and the conclusion follows. So we only need to deal
with the case that the order of Hy is not invertible in k.

By Lemma 6.9, Q(k€«) is generated in degree 1, or equivalently, generated by its
value Q(k€a)(y) = 1,Q(k€a) on y. Now suppose that Q¢ (kfa) is also generated
in degree 1, or equivalently, generated by its value Q' (kfa)(y) = 1,9(k€a) on
y, where i > 1. We claim that QT (kfa) is generated by Q1 (k€a)(y), which is
clearly equal to Qi1 (k€«),. If this is true, then conclusion follows from Proposition
6.11.

Take an arbitrary object z € Ob € such that £(y, z) # 0. (In the case E(y, z) = 0,
0 (kfa)(z) = 0 for s > 0, and the claim is trivially true.) The morphisms in
E(y, z) form a disjoint union of orbits under the right action of H. By taking
a representative f3; from each orbit we have &(y,z) = ||, B;H. Since |Hy| is
not invertible, y is not left regular. By the assumption, y must be right regular.
Therefore, by the previous lemma, for each representative morphism S,, 1 < s < n,
there exist some idempotent e; such that 55(kE) = e (kE) as right projective kE-
modules, and 8, (k€)a = ez (k€)a as vector spaces.

Consider the exact sequence

0 —> Qi+ (k€a) —> pi —> Qi(kEa) —= 0,

where we assume inductively that Q¢(k€«) is generated in degree 1, or equivalently
generated by its value on y. Thus P’ € add(kE1,[1]). Observe that the segment of
a minimal projective resolution of the k€-module k€«

pitl pi e PO kfa 0
induces a minimal projective resolution of the kH-module kHa:

Pi(y) Pi(y) e PO(y) kHa 0.

Thus @ (k€a); = Y (kEa)(y) = Q) (kHa) for 1 <j <i+ 1.
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Applying the exact functor Homyg (k€1,, —) to the exact sequence
(6.2) 0 — Qi (kEa) — pi — Qi(kEa) — 0 ,
we get an exact sequence
0 —— QH(kEa)(y) — 1,P' —— Qi(kEa)(y) —= 0,
which can be identified with
0 —> QU (bHa) —> Pi(y) —= Q (kHa) —= 0.

Applying the exact functor Homyy (D)_, kHes, —) to the above sequence, we have
another exact sequence

(6.3) 0— @esQﬂ}(kHa) — @esPi(y) — @eSQZH(kHa) -0
s=1 s=1 s=1
Since Qf(kfa) is generated by Q' (k€a)(y) = Q5 (kHa) by the induction hy-
pothesis, the value of Q' (kfa) on z is > o, B - Qi (kHa) (this is well defined as
Qi y(kHa) C (kH)®™ for some m > 0). We check that this sum is actually direct
by the UFP of £. In conclusion,

(6.4) Q' (kEa)(z @ﬁs Uy (kHo) = (P ey (kHa).

= s=1

Similarly, the value of P? on z is

(6.5) @55 Pi(y @e Pi(y

Restricted to z, sequence 6.2 gives rise to
(6.6) 0 — Q1 (kEa)(z) — Pi(z) — Q4 (kfa)(z) —=0 .
On one hand, @7_, B:Qit (kHa) € Q1 (k€a)(2). On the other hand, we have:

i Qi (kHa) = di Qi (kH L 1
dlkm@ﬁs vy (KHa) dlkm@es wp (kHo) by Lemma 6.15

s=1 s=1

= dlm@ es P dlm@ esQ y(kHa) by sequence 6.3
s=1

= dlka (z) - dlkm Q'(kfa)(z) by identities 6.4 and 6.5
= dikm Q" (kEa)(z) by sequence 6.6.

Therefore, Q1(kfa)(z) = @, Bl (kHa) = @I_, Bt (k€a)(y) since
Qi (kHa) = Qit'(k€a)(y). That is, the value of Q7! (kfa) on 2 is generated
by Qi1 (k€a)(y). Since z is arbitrary, our claim holds, and the conclusion follows
from induction. O

7. STANDARDLY STRATIFIED ALGEBRAS WITH LINEAR STANDARD MODULES

Theorem 5.10 tells us that the Yoneda category E(Cp) of a directed Koszul
category C is still a directed Koszul category, so is standardly stratified as well.
Moreover, the homological dual functor E interchanges standard modules and in-
decomposable projective modules. Let A be a Koszul algebra which is standardly
stratified with respect to a poset of orthogonal primitive idempotents ({ex }rea, <)-
We may ask a similar question: is the Koszul dual algebra I' = Ext’ (A, Ag) stan-
dardly stratified with respect to ({ex}rea, <) (or ({ex}trea, <)) as well? (Here
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we identify the primitive idempotents of A and I' in the following way: let e be a
primitive idempotent of A. Then it is also a primitive idempotent of Ag. Therefore,
Ape is a projective Ag-module, and Ext*% (Age, Ap) is an indecomposable summand
of I'. This summand corresponds to a primitive idempotent of I', which we still
denote by e.) This question has been studied in [I] [2] [8] [17] [18]. However, in
all these papers A is supposed to be a semisimple algebra. By modifying the
technique used in [I], we get a sufficient condition for the Yoneda algebra I' to be
standardly stratified with respect to the opposite order.

Throughout this section A is a graded finite-dimensional basic k-algebra with Ag
being self-injective. We choose a complete set of orthogonal primitive idempotents
{ex}rea and let < be a partial order on this set.

Theorem 7.1. If A is standardly stratified with respect to < such that all stan-
dard modules are concentrated in degree 0 and linear. Then Ag =2 A and I' =
Exty (Ao, Ao) is standardly stratified with respect to the poset ({ex}rea, <°P), where
A is the direct sum of all standard modules.

We show the first statement since it is relatively easier and leave the proof of
the second statement to the end of this section. Let Ay be a standard module with
graded projective cover Py. Since A is a linear A-module and concentrated in
degree 0, Ay = (Ay)o is a projective Ag-module by Corollary 2.5. The surjection
P, — A, induces a surjection (Py)g — Ay, so Ay is a summand of (Py)g, and
hence is isomorphic to (Py)g since (Py)o is indecomposable. Put all these standard
modules together we find Ag = A.

Take a minimal element ¢ € A and let e = e,. Let Ay = A\ {u} and € =
ZAeAl ex. Viewed as an idempotent of I', e is maximal with respect to <°?. The
basic idea to prove the second statement is to show that I'el’ is a projective I'-
module and the quotient algebra I'/Tel’ is standardly stratified with respect to the
poset ({ex}ren,, <°P). Then the conclusion follows from induction.

We collect a list of preliminary results in the following lemmas, where the algebra
A is the same as in Theorem 7.1 if we do not specify it particularly.

Lemma 7.2. The algebra eAe is standardly stratified with respect to the poset
({ex}ren,, <) and has standard modules €eAgex, A € Ay, which are all concentrated
in degree 0. Moreover,

(ede)g = @ eApey = eApe = €A
AEA,

is a self-injective algebra. If M is a linear A-module, then eM is a linear eAe-
module. In particular, all standard modules of eAe are linear.

Proof. The algebra eAe has projective modules eAey, A € A;. Notice that each
Aey has a A-filtration and the standard module Age = A, cannot appear in the
filtration since e is a minimal primitive idempotent. We conclude that eAe has
standard modules eAy = eApey, and eAe has a filtration formed by eAgex, A € A;.
This proves the first statement.
Clearly,
(eAe)g = €Age = @ eApey.
AEA
We claim eAge = 0, which implies eAg = eAge + eAge = €Age. Indeed,

eApe = Homy, (Ape, Age) = @ Homy4(Ax,AL) =0
AEA,

Since A is standardly stratified and g is minimal in A.
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By Proposition 2.5 on page 35 of [3], the exact functor F' = Hom 4, (Age, —) gives
an equivalence between a subcategory M of Ag-mod and the category eAge-mod.
Since all projective (injective as well) modules Agey with A € A; are contained in
M, and F sends these projective (injective, resp) modules to projective (injective,
resp) modules of eAge. Consequently, eAge = €Ay is self-injective.

Let M be a linear A-module and

P! B M 0

be a linear projective resolution of M. That is, each P’ is generated in degree 1.
Applying the exact functor Hom 4 (Ae, —) we get a linear projective resolution of
eM as follows

eP! eP? eM 0.

Thus eM is a linear eAe-module. Since the standard modules of eAe are indecom-
posable summands of €Ay, and Ay = A is a linear A-module, we conclude that
every standard module of €Ae is a linear e Ae-module as well. O

Lemma 7.3. Let M be a linear A-module up to a degree shift. Then

(1) M has a A-filtration.

(2) Exty (M, Age) =0 fori > 0.

(3) (M) : A,] = 0 for each i > 1, where [Q'(M) : A,] is the number of
A-filtration factors of M isomorphic to A,,.

(4) M = AeM if and only if [M : A,] = 0.

Proof. Without loss of generality we assume that M is linear. By Corollary 2.18
M is a projective Ag-module, and hence has a A-filtration since 4y = A.

To prove the second statement, it is enough to show Extl (M, Age) = 0. Indeed,
for i > 1, by Corollary 2.5 and using Lemma 2.10 recursively we have

Extfax(M, Ape) = EXtiA_l(QM7 Age) = ... = EXt}A(Qi_l(M>’A0€)'

Since M is linear, Q*~!(M) is also linear up to a degree shift. Therefore we can
replace M by Q'~1(M) and use induction.

The projective presentation 0 — QM — P — M — 0 gives a surjective
map Homu (QM, Age) — Extl (M, Age). The syzygy QM is linear up to a de-
gree shift and hence has a A-filtration. Since e is minimal and the algebra A is
standardly stratified with respect to the poset ({ex}rea, <), every A-filtration of
JP = EBZ;l P; has no factors isomorphic to Age. Therefore, the A-filtration of
QM C @@1 P; has no factors isomorphic to Age either. But Homa (A, A,) =0
for X # p. Thus Homu(QM,A,) = 0, so Exth (M, Age) = 0. This proves the
second statement.

To prove (3), it suffices to show [QM : A,] = 0 and the conclusion comes from
induction. But this fact has been established in last paragraph.

Now we prove (4). Notice that AeM is the trace of Ae in M. If [M : A,] =0,
then in particular My € add(Ape), and M is in the trace of Ae since it is generated in
degree 0. Conversely, if M = AeM , then M is in the trace of Ae, i.e., M is a quotient
module of some (Ae)®™. Since [Ae: A,] =0, we deduce that [M : A,] = 0. O

We define an operator II on A-gmod as follows:
| AeM if M # AeM,
(M) = { QM if M = AeM.

Lemma 7.4. Suppose that M and AeM are linear A-modules up to a common
degree shift. Then
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(1) For alli>1,

oo V(M) if M = A€M,
(M) = { Qi~1(AeM) if M # AelM.

(2) There is some | € Z such that II'(M) = 0.

Proof. If M = AeM, then II(M) = QM. By the previous lemma, [QM : A,] =0,
so QM = AeQM and TI(QM) = Q?(M). Using induction we get IT¢(M) = Q(M).

If M # AeM, then II(M) = AeM. Clearly, Ae(AeM) = AeM, so I?(M) =
Q(AeM) by the definition. Applying statements (3) and (4) of the previous lemma
recursively, we get IT'(M) = Q'~(AeM).

To prove (2), it suffices to show that there is a number | € Z such that IT'(TI(M)) =
QYII(M)) = 0. Since II(M) = QM or II(M) = AeM, both of which are linear up to
a degree shift, II(M) has a A-filtration by the above lemma. Since A is standardly
stratified and finite-dimensional, Ay = A has finite projective dimension and every
A-filtration of II(M) is of finite length. Thus the projective dimension of II(M) is
finite. O

Recall T' = Ext’ (Ag, Ag) and the indecomposable summands of " are precisely
EXtZ(Aoe)\, Ao), A €A

Lemma 7.5. Suppose that M and AeM are linear A-modules up to a common
degree shift. Then the trace TeExty (M, Ay) of Te in Exty (M, Ag) is a projective
I'-module. Moreover,

dimy Exty (M, Ag) — dimgTeExty (M, Ay) = dimy Ext, 4 (e M, €Ayp).

Proof. Without loss of generality we suppose that M is generated in degree 0 and
prove this lemma by induction on the least number [ such that II'(M) = 0, which
always exists by Lemma 7.4. If [ = 0, then M = 0 and the conclusion holds trivially.
Now suppose that it holds for I < n — 1 and let M be a linear A-module for which
this least number is n. There are two cases.

(1). If M # AeM, then II(M) = AeM. This happens if and only if [M : A,] #
0. Since e = e, is a minimal primitive idempotent, those factors isomorphic to
A, = Age can only appear as direct summands of My by the second statement of
Lemma 7.3. Therefore we get an exact sequence 0 — AeM — M — (Age)®* — 0,
where all terms are linear by our assumption. By Proposition 2.11, this sequence
gives rise to:

0— EXtZ((A()e)@a, Ao) — EXt*A(M, Ao) — EXt*A(AGM, Ao) — 0,
that is:
(7.1) 0 —— (Fe)®* —— Ext’y (M, Ap) — s Ext’(AeM, 4g) — 0.

By taking the trace of I'e in those terms appearing in this exact sequence, we get
another exact sequence:

(72) 00— (Te)®* ——=TeExt}y (M, Ag) — T'eExt’ (AeM, Ag) — 0.

Notice that AeM is linear, AeAeM = AeM, and 11"~ (AeM) = 1I"(M) = 0. By

the induction hypothesis, TeExt’ (AeM, Ay) is a projective I'-module. Then the

above sequence splits and TeExt% (M, A) is a projective I'-module as well.
Comparing sequence 7.1 to sequence 7.2, we get:

dimgExt (M, Ag) — dimgTeExt (M, Ag)
= dim,Ext’ (AeM, Ag) — dimyTeExt’ (AeM, Ap)
= dimkEXtZAe(EAGMa €AO)
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by the induction hypothesis. But eAe M = eM. Thus the conclusion is true for M
by induction.

(2). It M = AeM, ie., [M : A,] = 0, then II(M) = QM. Let P be a graded
projective cover of M. Then P € add(Ae) and Py € add(Age). Since M is linear,
My = Py, so Ext’y (M, Ag) = Ext’y H(QM, Ag) for i > 0 by Lemma 2.10, and

Hom 4 (M, Ag) = Homy, (Mo, Ag) = Hom 4, (Py, Ag) = Hom 4 (Fo, Ap).

Therefore, the following exact sequence:
0 — ;5 Ext’y (M, Ag) — Ext’y (M, Ag) — Homa(M, Ag) —=0
is isomorphic to
(7.3) 0 ——BExt’ (QM, Ay) — Ext’y (M, Ag) — Hom4 (P, Ag) — 0.
Applying the exact functor Homp(T'e, —) to the above sequence, we get
0 — eExt’ (QM, Ag) — eExty (M, Ag) — eHom 4 (Py, Ag) — 0.

Notice that eHom 4 (FPy, Ag) = 0 since Age = A, Py € add(Age) and [Age : A,] = 0.
Thus eExt’ (M, Ag) = eExt’y (QM, Ag)[—1] (as graded I'-modules) and
(7.4) TeExt’ (M, Ag) = TeExt (QM, Ap)

Since [QM : A,] =0, by Lemma 7.3, AeQM = QM. So I'eExt; (QM, Ay) is a pro-
jective T-module by the induction hypothesis on II(M) = QM and TeExt’ (M, Ay)
is projective as well.

The exact sequence 0 — QM — P — M — 0 gives the exact sequence 0 —
eQM — eP — eM — 0. Clearly, eP is a projective cover of eM, so eQM = Q(eM).
Since eM is a linear eAe-module by Lemma 7.2, we have an exact sequence similar
to (7.3):

(7.5)  0— Extl, (QeM),edy) = Extl 4 (eM,eAy) — Homeac(ePy, €Ag) — 0.
Therefore,

dim;Ext’y (M, Ag) — dimgTeExt’ (M, Ag) by (7.3) and (7.4)

= dimExt% (QM, Ap) + dimiHom 4 (P, Ag) — dimgTeExt’ (M, Ap)

= dimgExt] 4. (eQM, eAy) + dimpHom4 (P, Ag) by induction on QM

= dimgExt’ (e M, eAp) + dimiHom 4 (P, Ag) — dimiHom, 4. (e Py, €Ap),
where the last identity comes from (7.5).

We establish the identity dimgHom 4 (P, Ag) = dimgHoma.(ePy, €Ap) and fin-
ish the proof by induction. Take an arbitrary indecomposable summand of Py,

~

which is isomorphic to a certain Agey. Since AeM = M, Py = M, has no sum-
mands isomorphic to Age. Therefore A € A; and eye = e). Now
Hom 4 (Agex, Ag) = Homa, (Agex, Ag) = exAg = exedp
> Homea,c(€Agen, €Ag) = Homea(eApen, €Ap).
Since Py is a direct sum of these summands, the identity holds. O

Now we can prove the second statement of Theorem 7.1.

Proof. We use induction on the size of the poset A. If this number is 1, then A and
I' = A°? both are local algebra. Clearly I' is standardly stratified. Suppose that
the conclusion is true for posets with sizes at most m — 1 and let A be an poset
with m elements. Take e be a minimal idempotent and define €, A; as before.
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Let M = Ag in the previous lemma. We conclude that I'el’ is a projective I'-
module. By Lemma 7.2 eAe satisfies all the conditions in the theorem and A; has
only m—1 elements. Therefore, by the induction hypothesis, IV = Ext, 4. (eAo, €Ao)
is standardly stratified with respect to the poset ({ex}aea,, <°?). Thus it is enough
to show I'/Tel’ 2 T".

There is an algebra homomorphism ¢ : I' — T' induced by the exact functor
F = Homy(Ae, —) in the following way: ¢ sends an n-fold exact sequence

0 AO M . Ml AO 0

representing an element g € I',, to an n-fold exact sequence

OHEAOHGMTL GMl EAO 0

representing an element ¢' € I} for all n > 0. Every element z € (Te),, =
Ext" (Ape, Ag) can be represented by an exact sequence:

0 AO M™ . Ml Aoe 0.

Since Hom 4 (A€, —) sends Age to Homy (A€, Ape) = 0, ¢ maps every (I'e), and
hence I'e to 0. Thus the ideal I'el’ generated by I'e is also sent to 0, and ¢ gives
rise to an algebra homomorphism @ : I'/Tel’ — T".

Clearly, ¢ maps I'g = Enda,(Ag) onto Endcac(eAg) = el'pe. Moreover, we have

EXt}L‘(Ao, Ao) =~ HOIHA(@ Ai, Ao) =~ HOHIA0 (Al, Ao) = HOIn(.;AOe(GAl, GA()),
i>1
where the last isomorphism is induced by the functor F' (see the last paragraph of
the proof of Lemma 7.5). But

Hom,a,c (€A1, €Ap) & HomeAe(@ €A;,eAg) = ExtiAE(er, €Ap).

i>1

Thus, the homomorphism ¢ induced by F maps Ext} (4o, Ao) to Ext!, (eAo, €Ao)
surjectively. Since Ag (eAp, resp.) is a linear A-module (e Ae-module, resp.), both
I' = Ext’ (Ag, Ag) and IV = Ext? 4. (e Age, eAge) are generated in degree 0 and degree
1 as algebras. Therefore, the map ¢ : I' — I is a surjective algebra homomorphism,
so @ : T'/Tel’ = I is surjective as well.

Let M = Ap in the previous lemma. We get dimiI” = dimg’ — dimglel.
Therefore, as a surjective homomorphism between two k-algebras with the same
dimension, @ must be an isomorphism. This completes the proof. O

There is a similar conclusion in the case that A is a quasi-hereditary algebra, the
definition for which can be found in [7].

Corollary 7.6. Let A be the same as in the previous theorem. If A is quasi-
hereditary with respect to the poset ({ex}aea, <), then T' = Exty (Ao, Ag) is also
quasi-hereditary with respect to the poset ({ex}ren, <°P).

Proof. We already proved that I' is standardly stratified with respect to the poset
({ex}taren, <°P). It suffices to check that the ideal T'el is a hereditary ideal, i.e, the
endomorphism algebra of I'e is one-dimensional.

Since e is maximal as an idempotent of I', the standard I'-module corresponding
to e is exactly I'e. Thus

Homr(Te, Te) = ele = Ext’ (Age, Age) = Hom 4 (Age, Age)

where the last identity follows from (2) of Lemma 7.3. Since Age is a standard
module of the quasi-hereditary algebra A, Homy(Agpe, Age) = k. The conclusion
follows from induction. O



1]
2]
3]
(4]

[5]

(10]
(11]
(12]

[13]
14]

[15]
[16]
(17]
(18]
19]
20]
21]

(22]

A GENERALIZED KOSZUL THEORY AND ITS APPLICATION 45

REFERENCES

I. Agoston, V. Dlab, and E. Lukés, Quasi-hereditary Extension Algebras, Algebras and Rep-
resentation Theorey 6 (2003), 97-117;

I. Agoston, V. Dlab, and E. Lukas, Standardly Stratified Extension Algebras, Comm. Algebras
33 (2005), 1357-1368;

M. Auslander, I. Reiten, and S. Smalg, Representation Theory of Artin Algebras, Cambridge
Studies in Advanced Mathematics (36), Cambridege University Press, Cambridge, 1997;

A. Beilinson, V. Ginzburg, and W. Soergel, Kosuzl Duality Patterns in Representation The-
ory, J. Amer. Math. Soc. 9 (1996), 473-527;

D.J. Benson, Representations and Cohomology I: Basic Representation Theory of Finite
Groups and Associative Algebras, 2nd edition, Cambridge Studies in Advanced Mathematics
(30), Cambridge University Press, Cambridge, 1998;

E. Cline, B. Parshall, and L. Scott, Stratifying Endomorphism Algebras, Mem. Amer. Math.
Sco. 124 (1996), no. 591;

V. Dlab, Quasi-hereditary Algebras Revisited, An. S. Univ. Ovidius Constantza 4 (1996),
43-54;

Y. Drozd and V. Mazorchuk, Koszul Duality for Extension Algebras of Standard Modules, J.
Pure Appl. Algebra 211 (2007), 484-496;

E. L. Green and R. Martinez-Villa, Koszul and Yoneda Algebras, Representation theory of
algebras (Cocoyoc, 1994), 247-297, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI,
1996;

E. L. Green and R. Martinez-Villa, Koszul and Yoneda Algebras II: Algebras and Modules
11, Geiranger, 1996, 227-244, CMS Conf. Proc., 24, Amer. Math. Soc., Providence, RI, 1998;
E. L. Green, I. Reiten, and @. Solberg, Dualities on Generalized Koszul Algebras, Mem.
Amer. Math. Soc. 159 (2002), xvi+67pp;

L. Li, A Chracterization of Finite EI Categories with Hereditary Category Algebras, J. Al-
gebra 345 (2011), 213-241;

D. Madsen, Ezt-algebras and Derived Equivalences, Colloq. Math. 104 (2006), 113-140;

D. Madsen, On a Common Generalization of Koszul Duality and Tilting Equivalence,
preprint, available at arxiv:1007.3428;

R. Martinez-Villa, Introduction to Koszul Algebras, Rev. Un. Mat. Argentina 48 (2007), 67-
95;

V. Mazorchuk, S. Ovsienko, and C. Stroppel, Quadratic Duals, Koszul Dual Functors, and
Applications, Trans. Amer. Math. Soc. 361 (2009), 1129-1172;

V. Mazorchuk, Koszul Duality for Stratified Algebras I: Balanced Quasi-hereditary Algebras,
Manuscripta Math. 131 (2010), 1-10;

V. Mazorchuk,Koszul Duality for Stratified Algebras II: Standardly Stratified Algebras, J.
Aust. Math. Soc. 89 (2010), 23-49;

V. Reiner and D. I. Stamate, Koszul Incidence Algebras, Affine Semigroups, and Stanley-
Reisner Ideals, Adv. Math. 224 (2010), 2312-2345;

P. Webb, Standard Stratifications of EI Categories and Alperin’s Weight Conjecture, J. Al-
gebra 320 (2008), 4073-4091;

D. Woodcock, Cohen-Macaulay Complezes and Koszul Rings, J. London Math. Soc. (2) 57
(1998), 398-410;

F. Xu, Representations of Categories and Their Applications, J. Algebra 317 (2007), 153-183.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MN, 55455, USA
E-mail address: 1ixxx480@math.umn.edu



	1. Introduction
	2. Generalized Koszul Modules
	3. Generalized Koszul Algebras
	4. Generalized Koszul Duality
	5. Application to Directed Categories
	6. Finite EI Categories
	7. Standardly Stratified Algebras with Linear Standard Modules
	References

