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Abstract

We propose the electrodynamic model which is consistent with the classical newtonian me-

chanics including invariance under galilean transformations. In our model the aether is assumed

to be a classical continuum medium like a fluid or gas and Maxwell equations in vacuum (aether)

have the (usual) form: 

curlxH ≡ 4π
c
j + 1

c
∂D
∂t

divxD ≡ 4πρ

curlxE + 1
c
∂B
∂t

≡ 0

divxB ≡ 0,

together with the following constitutive relations:E = D− 1
c
v ×B

H = B + 1
c
v ×D,

where v is the field of the aether velocity. The presented model of Maxwell equations and the

Lorentz force are invariant under galilean transformations:x′ = x + tw

t′ = t,

together with the relations: 

D′ = D

B′ = B

E′ = E− 1
c
w ×B

H′ = H + 1
c
w ×D.

Moreover, the form of these equations is preserved in every non-inertial coordinate system.

Further consequences of the model are also derived.

1E-mail: arkady.pol@gmail.com
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1 Introduction

This paper is devoted to establish quantitative relations of Electrodynamics in the frames of Clas-

sical Newtonian Mechanics and the hypothesis of the aether, which is assumed to be a classical

continuum medium. There are various classical aether theories including the theory of stationary

aether, developed by Lorentz; the theory of complete aether drag, proposed by Stokes; the theory

of partial aether drag of Fresnel; the theory of gravitational aether drag, proposed by des Coudres

and Wien; more recent theory of local aether of C.C. Su (see [3]); et.al.

We assume here that the laws of Electrodynamics in the vacuum are invariant under the Galilean

transformations. Furthermore, we suppose the existence of the physical luminiferous aether in the

vacuum moving by the laws of the Newtonian Mechanics. Thus we assume that the velocity of the

motion of the different regions of the aether can vary. So we assume the aether as a continuum

which moves by the laws of the Classical Continuum Mechanics, as a fluid or gas. We also assume

that in the microscopic scale the aether consists of discrete particles - photons. In this paper by the

velocity of the aether in some point we will mean the average (macroscopic) velocity of the aether

as a continuum. Furthermore, the Lorentz Force is assumed to be an electromagnetic force with

which the environing aether acts on charged bodies. We also assume the validity of the Third Law

of Newton. Therefore, we assume that the charged bodies acts on the environing aether with the

electromagnetic force, opposite to the Lorentz Force. Moreover, we assume surface forces inside the

aether, described by certain tensors. Since the aether is assumed to be a classical continuum, it is

also reasonable to assume that the force of gravitation acts on particles of the aether.

In Section 3 of this paper we propose the simple and natural quantitative relations of Elec-

trodynamics, substituting (with minor changes) the classical Maxwell equations in the case of an

arbitrarily moving aether, and invariant under Galilean Transformations. For this propose we appeal

to the Maxwell equations in a medium. It is well known that the classical Maxwell equations in a

medium have the following form in the Gaussian unit system:

curlxH ≡ 4π
c j + 1

c
∂D
∂t

divxD ≡ 4πρ

curlxE + 1
c
∂B
∂t ≡ 0

divxB ≡ 0.

(1.1)

Here x ∈ R3 and t > 0 are the place and the time, E is the electric field, B is the magnetic field,

D is the electric displacement field, H is the H-magnetic field, ρ is the charge density, j is the

current density and c is the universal constant, called speed of light. It is assumed in the Classical

Electrodynamics that for the vacuum we always have D = E and H = B. We assume here that the

Maxwell equations in the vacuum (pure aether) have the usual form (1.1), as in any other medium,
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i.e. 

curlxH ≡ 4π
c j + 1

c
∂D
∂t

divxD ≡ 4πρ

curlxE + 1
c
∂B
∂t ≡ 0

divxB ≡ 0,

(1.2)

however, we assume the relations D = E and H = B in the vacuum to be valid only for the parts of

the space, where the velocity of the motion of the aether is negligible. One can assume that the local

aether is dragged by the Earth and other celestial bodies due to the force of gravitation. Then the

Electrodynamics near the Earth described by the Maxwell Equations with the classical constitutive

relations D = E and H = B.

So we assume that if in some point and at some instant of time the velocity of the local aether

vanishes, then in this point and at this time D = E and H = B. In order to obtain the relations

D ∼ E and H ∼ B in the general case we assume that the equations (1.2) and the Lorentz force

F := σE + σ
c u × B (where σ is the charge of the test particle and u is its velocity) are invariant

under the Galilean Transformations of the Classical Mechanics:x′ = x + tw,

t′ = t.

Then the analysis of our assumptions, presented in section 3, implies that the full system of Elec-

trodynamics in the case of an arbitrarily moving aether has the following form:

curlxH ≡ 4π
c j + 1

c
∂D
∂t

divxD ≡ 4πρ

curlxE + 1
c
∂B
∂t ≡ 0

divxB ≡ 0

E = D− 1
c v ×B

H = B + 1
c v ×D,

(1.3)

where v is the field of velocities of the motion of the aether. It can be easily checked that system

(1.3) and the Lorentz force F := σ(E + u
c ×B) are invariant under the following transformationsx′ = x + tw,

t′ = t.

(1.4)
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and 

D′ = D,

B′ = B,

E′ = E− 1
c w ×B,

H′ = H + 1
c w ×D.

(1.5)

Note here that D and B are invariant under the change of inertial coordinate system. Moreover, we

can write the Lorentz force as F := σ(D + u−v
c ×B), where (u − v) is the relative velocity of the

test particle with respect to the aether. Note also that in the particular case of the complete aether

drag hypothesis, the model of equations (1.3) coincides with the model, proposed by Hertz ([2]),

with the only difference that the vector field E of Hertz’s notations corresponds to our vector field

D. However, the complete aether drag hypothesis contradicts with the well known Sagnac effect.

In section 4 we derive that the laws of Electrodynamics have an invariant form not only in inertial

but also in non-inertial coordinate systems. I.e. the system of Maxwell Equations has the same form:

curlxH ≡ 4π
c j + 1

c
∂D
∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D

(1.6)

in every non-inertial coordinate system. Moreover, the expression of the Lorentz force

F = σE +
σ

c
u×B

is valid in every such coordinate system. Furthermore, if we consider the change of non-inertial

coordinate system of the form: x′ = A(t) · x + z(t),

t′ = t,

(1.7)

where A(t) ∈ SO(3) is a rotation, i.e. A(t) ∈ R3×3, detA(t) > 0 and A(t) ·AT (t) = Id, then we have

the following transformations of the electromagnetic fields:

D′ = A(t) ·D

B′ = A(t) ·B

E′ = A(t) ·E− 1
c

(
dA
dt (t) · x + w(t)

)
×
(
A(t) ·B

)
H′ = A(t) ·H + 1

c

(
dA
dt (t) · x + w(t)

)
×
(
A(t) ·D

)
,

(1.8)

where w(t) = dz
dt (t).
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As an example, if we consider that the local aether rests with respect to some inertial coordinate

system (∗) and the second non-inertial coordinate system (∗∗) rotates with respect to the system

(∗), then the laws of electrodynamics in the system (∗∗) are given by (1.6) with the rotating aether.

This explains the Sagnac effect in the system (∗∗).

In section 5, in the frame of the proposed model we treat the case of electromagnetic fields in the

dielectric and/or magnetic medium. Furthermore, in section 6 we investigate quasistationary fields

in a slowly moving aether.

In section 7 we propose the models of the motion of the aether as a continuum, based on the

second and the third laws of Newton. In particular, due to the third law of Newton, it is assumed

that charged bodies acts on the environing aether with the force, which is opposite to the Lorenz

force. Moreover, tensors of surface electromagnetic forces inside the aether are also assumed. In the

Classical Electrodynamics the Maxwell tensor in the vacuum has the form

1

4π

{
E⊗E + B⊗B− 1

2

(
|E|2 + |B|2

)
I

}
∈ R3×3, (1.9)

where I is the identity matrix. We assume this formula to be valid only for the point where

the velocity of the aether vanishes. Since D and B are invariant under the change of inertial

system of coordinates and the forces must be also invariant, it is assumed that the tensor of surface

electromagnetic forces inside the aether has the form

1

4π

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
. (1.10)

Furthermore, we assume that additional forces of non-electromagnetic nature can act on the particles

of the aether. In particular, the gravitational interaction of the Earth with particles of the environing

aether is assumed. This can be one of explanations why the velocity of the aether near the Earth is

close to zero as was obtained by Michelson-Morley experiment. Note here that due to the Michelson-

Gale-Pearson experiment, the aether cannot rotate together with the Earth. I.e. the velocity of the

aether near the Earth is close to zero only with respect to the non-rotating coordinate system,

related to the Earth. This is still consistent with the hypothesis of the gravitational interaction of

the aether with the Earth.

In subsection 7.1 we derive that the quantity

W :=

∫
R3

|D|2 + |B|2

8π
(1.11)

is the total potential energy of all electromagnetic interactions in the vacuum.

Finally, in subsection 7.3, under some additional assumptions on the nature of non-electromagnetic

forces, acting on the particles of the aether, we derive an estimation of the curl of the aether velocity

field in an inertial coordinate system.

5



2 Notations

• By Rp×q we denote the set of p× q-matrixes with real coefficients.

• For a p × q matrix A with ij-th entry aij and for a q × d matrix B with ij-th entry bij we

denote by AB := A ·B their product, i.e. the p× d matrix, with ij-th entry
q∑

k=1

aikbkj .

• We identify a vector u = (u1, . . . , uq) ∈ Rq with the q × 1 matrix having i1-th entry ui, so

that for the p× q matrix A with ij-th entry aij and for v = (v1, v2, . . . , vq) ∈ Rq we denote by

Av := A · v the p-dimensional vector u = (u1, . . . , up) ∈ Rp, given by ui =
q∑

k=1

aikvk for every

1 ≤ i ≤ p.

• For a p× q matrix A with ij-th entry aij denote by AT the transpose q × p matrix with ij-th

entry aji.

• For a p × p matrix A with ij-th entry aij denote tr(A) :=
∑p
k=1 akk (the trace of the matrix

A).

• For u = (u1, . . . , up) ∈ Rp and v = (v1, . . . , vp) ∈ Rp we denote by uv := u · v :=
p∑
k=1

ukvk the

standard scalar product. We also note that uv = uTv = vTu as products of matrices.

• For u = (u1, u2, u3) ∈ R3 and v = (v1, v2, v3) ∈ R3 we denote

u× v :=
(
u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1

)
∈ R3.

• For u = (u1, . . . , up) ∈ Rp and v = (v1, . . . , vq) ∈ Rq we denote by u⊗v the p× q matrix with

ij-th entry uivj (i.e. u⊗ v = u vT as a product of matrices).

• Given a vector valued function f(x) =
(
f1(x), . . . , fk(x)

)
: Ω → Rk (Ω ⊂ RN ) we denote by

Df the k ×N matrix with ij-th entry ∂fi
∂xj

. In the case of a scalar valued function ψ(x) : Ω ⊂

RN → R we associate with Dψ (which, by definition, belongs to R1×N ) the corresponding

vector ∇ψ :=
(
∂ψ
∂x1

, . . . , ∂ψ
∂xN

)
.

• Given a matrix valued function F (x) := {Fij(x)} : Ω ⊂ RN → Rk×N , we denote by divF the

Rk-valued vector field defined by div F (x) := (l1, . . . , lk)(x) where li(x) =
N∑
j=1

∂Fij

∂xj
(x). Given a

vector valued function f(x) :=
(
f1(x), . . . , fN (x)

)
: Ω ⊂ RN → RN we denote div f :=

N∑
j=1

∂fj
∂xj

.

• Given a vector valued function f(x) =
(
f1(x), f2(x), f3(x)

)
: G ⊂ R3 → R3 we denote

curl f(x) :=

(
∂f3

∂x2
− ∂f2

∂x3
,
∂f1

∂x3
− ∂f3

∂x1
,
∂f2

∂x1
− ∂f1

∂x2

)
(x).
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We have the following trivial identities:

a× b = −b× a and a · (b× c) = (a× b) · c ∀a,b, c ∈ R3, (2.1)

a× (b× c) = (a · c) b− (a · b) c ∀a,b, c ∈ R3, (2.2)

(A · b)× c− (A · c)× b = tr(A) (b× c)−AT · (b× c) ∀A ∈ R3×3, ∀b, c ∈ R3, (2.3)

div(f × g) = g · curl f − f · curl g ∀ f ,g : G ⊂ R3 → R3, (2.4)

div(ψf) = ψ div f +∇ψ · f ∀ψ : G ⊂ R3 → R, ∀ f : G ⊂ R3 → R3, (2.5)

curl (ψf) = ψ curl f +∇ψ × f ∀ψ : G ⊂ R3 → R, ∀ f : G ⊂ R3 → R3, (2.6)

div
(
curl f

)
= 0 ∀ f : G ⊂ R3 → R3, (2.7)

curl
(
curl f

)
= ∇

(
div f

)
−∆f ∀ f : G ⊂ R3 → R3, (2.8)

curl (f × g) = (div g) f − (div f) g + (Df) · g − (Dg) · f ∀ f ,g : G ⊂ R3 → R3, (2.9)

∇(f · g) = (Df)T · g + (Dg)T · f ∀ f ,g : G ⊂ R3 → R3, (2.10)

f × (curl g) = (Dg)T · f − (Dg) · f ∀ f ,g : G ⊂ R3 → R3, (2.11)

∇(f · g) = f × (curl g) + g × (curl f) + (Df) · g + (Dg) · f ∀ f ,g : G ⊂ R3 → R3, (2.12)

where we mean by A · l the usual product of matrix A ∈ R3×3 and vector l ∈ R3 and by AT we

mean the transpose of matrix A.

3 Maxwell equations revised

We would like to make the laws of Electrodynamics in the vacuum to be invariant under the Galilean

transformations of the classical Newtonian Mechanics. For this purpose we refer to the analogy with

the Maxwell equations in a medium. It is well known that the classical Maxwell equations in a

medium are the following:

curlxH ≡ 4π
c j + 1

c
∂D
∂t for (x, t) ∈ R3 × [0,+∞),

divxD ≡ 4πρ for (x, t) ∈ R3 × [0,+∞),

curlxE + 1
c
∂B
∂t ≡ 0 for (x, t) ∈ R3 × [0,+∞),

divxB ≡ 0 for (x, t) ∈ R3 × [0,+∞).

(3.1)

Here E is the electric field, B is the magnetic field, D is the electric displacement field, H is the

H-magnetic field, ρ is the charge density, j is the current density and c is the universal constant,

called speed of light. It is assumed in the Classical Electrodynamics that for the vacuum we always

have D ≡ E and H ≡ B.

We assume here the existence of the physical luminiferous aether in the vacuum which can move.

Furthermore we assume that the velocity of the motion of the different regions of the aether can

vary. So we assume the aether as a continuum which moves by the laws of Classical Mechanics as a
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fluid or gas. We also assume that in the microscopic scale the aether consists of discrete particles -

photons. In this paper by the velocity of the aether in the point x at the time t we will mean the

average (macroscopic) velocity of the aether as a continuum.

Next we assume that the Maxwell equations in the vacuum (pure aether) have the usual form

(3.1), as in any other medium, i.e.

curlxH ≡ 4π
c j + 1

c
∂D
∂t for (x, t) ∈ R3 × [0,+∞),

divxD ≡ 4πρ for (x, t) ∈ R3 × [0,+∞),

curlxE + 1
c
∂B
∂t ≡ 0 for (x, t) ∈ R3 × [0,+∞),

divxB ≡ 0 for (x, t) ∈ R3 × [0,+∞),

(3.2)

however we assume that D(x, t) = E(x, t) and H(x, t) = B(x, t) in the vacuum only in the case

where the velocity of the motion of the aether on the point x at the time t equals to zero i.e.

If v(x, t) = 0 for some (x, t) ∈ R3×[0,+∞) then D(x, t) = E(x, t) and H(x, t) = B(x, t), (3.3)

where v(x, t) is the velocity of the motion of the aether on the point x at the time t. In order to

obtain the relations D ∼ E and H ∼ B in the general case we assume that the equations (3.2) and

the Lorentz force F := σE + σ
c u×B (where σ is the charge of the test particle and u is its velocity)

are invariant under the Galilean Transformations of the Classical Mechanics:x′ = x + tw,

t′ = t.

(3.4)

First observe that if u is a velocity of the test particle then u′ = u + w. Thus since we assumed

that the Lorentz force F := σE + σ
cu×B is invariant under Galilean transformation we infer

σE′ +
σ

c
(u + w)×B′ = σE′ +

σ

c
u′ ×B′ = F′ = F = σE +

σ

c
u×B.

Therefore, we obtain the following identities:E′ = E− 1
c w ×B,

B′ = B.

(3.5)

It is easy to check that, under transformations (3.4) and (3.5), the last two equations in (3.2)

are invariant. Next observe that in the absents of currents and charges the first two equations in

(3.2) for H and D will be the same as the last two for E and B if we will change the sign of the

time there. Therefore, it can be assumed that the first two equations will stay invariant under the

transformation: H′ = H + 1
c w ×D,

D′ = D.

(3.6)
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Indeed, since ρ′ = ρ and j′ = j + ρw, it can be easily checked that under the transformations

(3.4) and (3.6) the first two equations will stay invariant also in the case of charges and currents.

Therefore, we obtained that all equations in (3.2) are invariant under the transformationsx′ = x + tw,

t′ = t.

(3.7)

and 

D′ = D,

B′ = B,

E′ = E− 1
c w ×B,

H′ = H + 1
c w ×D.

(3.8)

Next fix some point (x0, t0) ∈ R3 × [0,+∞) and consider w := −v(x0, t0), where v is a velocity of

the aether. Then since v′ = v + w we obtain that at the point (x′0, t
′
0) we have v′ = 0. Therefore,

by the assumption (3.3) we must have E′ = D′ and H′ = B′ at this point. Plugging it into (3.8),

for this point we obtain

E(x0, t0) +
v(x0, t0)

c
×B(x0, t0) = E(x0, t0)− w

c
×B(x0, t0) = E′(x′0, t

′
0) = D′(x′0, t

′
0) = D(x0, t0)

H(x0, t0)− v(x0, t0)

c
×D(x0, t0) = H(x0, t0) +

w

c
×D(x0, t0) = H′(x′0, t

′
0) = B′(x′0, t

′
0) = B(x0, t0).

(3.9)

Thus since the point (x0, t0) ∈ R3× [0,+∞) was arbitrarily chosen, by (3.9) we obtain the following

relations E(x, t) = D(x, t)− 1
c v(x, t)×B(x, t) ∀(x, t) ∈ R3 × [0,+∞)

H(x, t) = B(x, t) + 1
c v(x, t)×D(x, t) ∀(x, t) ∈ R3 × [0,+∞).

(3.10)

Plugging (3.10) into (3.2) we obtain the full system of Electrodynamics in the case of an arbitrarily

moving aether: 

curlxH ≡ 4π
c j + 1

c
∂D
∂t for (x, t) ∈ R3 × [0,+∞),

divxD ≡ 4πρ for (x, t) ∈ R3 × [0,+∞),

curlxE + 1
c
∂B
∂t ≡ 0 for (x, t) ∈ R3 × [0,+∞),

divxB ≡ 0 for (x, t) ∈ R3 × [0,+∞),

E = D− 1
c v ×B for (x, t) ∈ R3 × [0,+∞)

H = B + 1
c v ×D for (x, t) ∈ R3 × [0,+∞),

(3.11)

where v is the aether velocity field. It can be easily checked that system (3.11) and the Lorentz

force F := σ(E + u
c ×B) are invariant under the following transformationsx′ = x + tw,

t′ = t.

(3.12)
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and 

D′ = D,

B′ = B,

E′ = E− 1
c w ×B,

H′ = H + 1
c w ×D.

(3.13)

Note here that D and B are invariant under the change of inertial coordinate system. Moreover, we

can write the Lorentz force as F := σ(D + u−v
c ×B), where (u − v) is the relative velocity of the

test particle with respect to the aether.

4 Maxwell equations in non-inertial coordinate systems

Consider the change of certain non-inertial coordinate system (∗) to another coordinate system (∗∗):x′ = A(t) · x + z(t),

t′ = t,

(4.1)

where A(t) ∈ SO(3) is a rotation i.e. A(t) ∈ R3×3, detA(t) > 0 and A(t) ·AT (t) = I (here AT is the

transpose matrix of A and I is the identity matrix). Next assume that in coordinate system (∗∗) we

observe a validity of Maxwell Equations for the vacuum in the form:

curlx′H′ ≡ 4π
c j′ + 1

c
∂D′

∂t′ ,

divx′D′ ≡ 4πρ′,

curlx′E′ + 1
c
∂B′

∂t′ ≡ 0,

divx′B′ ≡ 0,

E′ = D′ − 1
c v′ ×B′,

H′ = B′ + 1
c v′ ×D′

(4.2)

Moreover, we assume that in coordinate system (∗∗) we observe a validity of expression for the

Lorentz force

F′ := σ′E′ +
σ′

c
u′ ×B′ (4.3)

(where σ′ is the charge of the test particle and u′ is its velocity in coordinate system (∗∗)). All

above happens, in particular, if coordinate system (∗∗) is inertial. Observe that if F is the force in

coordinate system (∗) which corresponds to the Lorentz force F′ in coordinate system (∗∗), then we

must have F′ = A(t) · F. Moreover, denoting w(t) = z′(t), we have the following obvious relations
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between the physical characteristics in coordinate systems (∗) and (∗∗):

F′ = A(t) · F, (4.4)

σ′ = σ, (4.5)

u′ = A(t) · u +A′(t) · x + w(t), (4.6)

ρ′ = ρ, (4.7)

v′ = A(t) · v +A′(t) · x + w(t), (4.8)

j′ = A(t) · j + ρA′(t) · x + ρw(t) (4.9)

(where A′(t) is a derivative of A(t)). We consider the fields E and B in the coordinate system (∗)

to be defined by the expression of Lorentz force:

F = σE +
σ

c
u×B. (4.10)

Plugging it into (4.3) and using (4.4), (4.5) and (4.6) we deduce

σ

(
E′+

1

c

(
A′(t) ·x + w(t)

)
×B′

)
+
σ

c

(
A(t) ·u

)
×B′ = σE′+

σ

c

(
A(t) ·u +A′(t) ·x + w(t)

)
×B′

= σ′E′ +
σ′

c
u′ ×B′ = F′ = A(t) · F = σA(t) ·E +

σ

c
A(t) ·

(
u×B

)
(4.11)

Thus using the trivial identity

A ·
(
a× b

)
=
(
A · a

)
×
(
A · b

)
∀a ∈ R3, ∀b ∈ R3, ∀A ∈ SO(3), (4.12)

by (4.11) we deduce

σ

(
E′ +

1

c

(
A′(t) · x + w(t)

)
×B′

)
+
σ

c

(
A(t) · u

)
×B′

= σA(t) ·E +
σ

c

(
A(t) · u

)
×
(
A(t) ·B

)
. (4.13)

Therefore, since (4.13) must be valid for arbitrary choices of u we deduceB′ = A(t) ·B

E′ + 1
c

(
A′(t) · x + w(t)

)
×B′ = A(t) ·E

Therefore,

E′ = A(t) · E − 1

c

(
A′(t) · x + w(t)

)
× B′ = A(t) · E − 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) · B

)
.

So we obtained the following relations linking the fields E,B in coordinate system (∗) and E′,B′ in

coordinate system (∗∗):E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
B′ = A(t) ·B

(4.14)
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Next, by (4.2) in coordinate system (∗∗) we have the relationsD′ = E′ + 1
c v′ ×B′,

H′ = B′ + 1
c v′ ×D′

Analogously we define D and H in coordinate system (∗) by the formulas:D = E + 1
c v ×B,

H = B + 1
c v ×D.

(4.15)

Then with the help of (4.14), (4.8) and (4.12) we deduce:

D′ = E′ +
1

c
v′ ×B′ = A(t) ·E− 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
+

1

c
v′ ×

(
A(t) ·B

)
=

A(t) ·E− 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
+

1

c

(
A(t) · v +A′(t) · x + w(t)

)
×
(
A(t) ·B

)
=

A(t) ·E +
1

c

(
A(t) · v

)
×
(
A(t) ·B

)
= A(t) ·

(
E +

1

c
v ×B

)
= A(t) ·D,

and thus

H′ = B′ +
1

c
v′ ×D′ = A(t) ·B +

1

c

(
A(t) · v +A′(t) · x + w(t)

)
×
(
A(t) ·D

)
=

A(t) ·B +
1

c

(
A(t) · v

)
×
(
A(t) ·D

)
+

1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
=

A(t)·
(

B+
1

c
v×D

)
+

1

c

(
A′(t)·x+w(t)

)
×
(
A(t)·D

)
= A(t)·H+

1

c

(
A′(t)·x+w(t)

)
×
(
A(t)·D

)
.

I.e. the following relations are valid:

D′ = A(t) ·D

B′ = A(t) ·B

E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
H′ = A(t) ·H + 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
.

(4.16)

Next by (4.1) for every vector field Γ : R3 × [0,+∞)→ R3 we have
dx′Γ =

(
dxΓ

)
·A−1(t)

curlx′
(
A(t) · Γ

)
= A(t) · curlxΓ

divx′
(
A(t) · Γ

)
= divxΓ.

(4.17)

Furthermore, by the chain rule we obtain

∂Γ

∂t
=
∂Γ

∂t′
+
(
dx′Γ

)
·
(
A′(t) · x + w(t)

)
and therefore,

∂Γ

∂t′
=
∂Γ

∂t
−
(
dxΓ

)
·
(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

)
(4.18)
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Moreover, by (4.17), (4.18), (4.8) and (4.12) for every vector field Γ : R3 × [0,+∞)→ R3 we get:

∂
(
A(t) · Γ

)
∂t′

− curlx′

(
v′ ×

(
A(t) · Γ

))
+
(

divx′
(
A(t) · Γ

))
v′ =(

A(t) · ∂Γ

∂t
+A′(t) · Γ−A(t) ·

(
dxΓ

)
·
(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

))

−A(t) · curlx
((

v +A−1(t) ·A′(t) · x +A−1(t) ·w(t)
)
×Γ

)
+
(

divx Γ
)(
A(t) · v +A′(t) · x + w(t)

)
= A(t) ·

(
∂Γ

∂t
− curlx

(
v × Γ

)
+
(

divx Γ
)
v

)
+A(t) ·

(
dx

(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

))
· Γ

−A(t) ·
(
dxΓ

)
·
(
A−1(t) ·A′(t) ·x+A−1(t) ·w(t)

)
+A(t) ·

((
divx Γ

)(
A−1(t) ·A′(t) ·x+A−1(t) ·w(t)

))
−A(t) · curlx

((
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

)
× Γ

)
. (4.19)

On the other hand, by (2.9) we have,(
dx

(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

))
· Γ−

(
dxΓ

)
·
(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

)
+
(

divx Γ
)(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

)
− curlx

((
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

)
× Γ

)
=

(
divx

(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

))
Γ (4.20)

Therefore, by (4.19) and (4.20) we deduce:

∂
(
A(t) · Γ

)
∂t′

− curlx′

(
v′ ×

(
A(t) · Γ

))
+
(

divx′
(
A(t) · Γ

))
v′ =

A(t) ·

(
∂Γ

∂t
− curlx

(
v× Γ

)
+
(

divx Γ
)
v

)
+A(t) ·

((
divx

(
A−1(t) ·A′(t) · x +A−1(t) ·w(t)

))
Γ

)

= A(t) ·

(
∂Γ

∂t
− curlx

(
v × Γ

)
+
(

divx Γ
)
v

)
+

(
tr
(
A−1(t) ·A′(t)

))
A(t) · Γ, (4.21)

where tr
(
A−1(t)·A′(t)

)
is the trace of the matrix A−1(t)·A′(t) (sum of diagonal elements). However,

since AT (t) · A(t) = I we have A−1(t) = AT (t) and A−1(t) · A′(t) = S(t), where ST (t) = −S(t). In

particular trS(t) = 0 and thus tr
(
A−1(t) · A′(t)

)
= 0. Therefore, by (4.21) for every vector field

Γ : R3 × [0,+∞)→ R3 we have:

∂
(
A(t) · Γ

)
∂t′

−curlx′

(
v′×

(
A(t)·Γ

))
+
(

divx′
(
A(t)·Γ

))
v′ = A(t)·

(
∂Γ

∂t
−curlx

(
v×Γ

)
+
(

divx Γ
)
v

)
.

(4.22)
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Next by (4.2) we have

curlx′B′ − 4π

c

(
j′ − ρ′v′

)
− 1

c

(
∂D′

∂t′
− curlx′

(
v′ ×D′

)
+
(

divx′ D′
)
v′

)
= curlx′H′ − 4π

c
j′ − 1

c

∂D′

∂t′
= 0

(4.23)

curlx′D′ +
1

c

(
∂B′

∂t′
− curlx′

(
v′ ×B′

)
+
(

divx′ B′
)
v′

)
= curlx′E′ +

1

c

∂B′

∂t′
= 0

(4.24)

Thus plugging (4.23) and (4.24) into (4.22) and using (4.15), (4.7), (4.8), (4.9) and (4.17) gives

A(t) ·

(
curlxH− 4π

c
j− 1

c

∂D

∂t
+

1

c

(
4πρ− divx D

)
v

)
=

A(t) ·

(
curlxB− 4π

c

(
j− ρv

)
− 1

c

(
∂D

∂t
− curlx

(
v ×D

)
+
(

divx D
)
v

))
=

curlx′B′ − 4π

c

(
j′ − ρ′v′

)
− 1

c

(
∂D′

∂t′
− curlx′

(
v′ ×D′

)
+
(

divx′ D
)
v′

)
= 0 (4.25)

Similarly

A(t)

(
curlxE +

1

c

∂B

∂t
+

1

c

(
divx B

)
v

)
= A(t)

(
curlxD +

1

c

(
∂B

∂t
− curlx

(
v×B

)
+
(

divx B
)
v

))

= curlx′D′ +
1

c

(
∂B′

∂t′
− curlx′

(
v′ ×B′

)
+
(

divx′ B
)
v′

)
= 0 (4.26)

On the other hand, by (4.2), (4.17) and (4.7) we obtain:

4πρ = 4πρ′ = divx′D′ = divxD and 0 = divx′B′ = divxB. (4.27)

Thus plugging (4.25), (4.26) and (4.27) we obtain

curlxH = 4π
c j + 1

c
∂D
∂t

divxD = 4πρ

curlxE + 1
c
∂B
∂t = 0

divxB = 0.

(4.28)

Then, plugging (4.28) into (4.15), we finally obtain that in coordinate system (∗) the Maxwell

equations have the same form as in system (∗∗) i.e.

curlxH ≡ 4π
c j + 1

c
∂D
∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D

(4.29)
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Therefore, since the assumption, that coordinate system (∗∗) is inertial, implies the relations of

(4.2), we deduce that the Maxwell equations in the form (4.29) and the expression of the Lorentz

force

F := σE +
σ

c
u×B (4.30)

are valid in every non-inertial coordinate system. Moreover, under the change of the coordinate

system of the form x′ = A(t) · x + z(t),

t′ = t,

(4.31)

we have the following transformations of the electromagnetic fields:

D′ = A(t) ·D

B′ = A(t) ·B

E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
H′ = A(t) ·H + 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
,

(4.32)

where w(t) = z′(t).

So the laws of Electrodynamics are invariant not only in inertial but also in non-inertial coordinate

systems.

5 Presence of Dielectrics and Magnetics

5.1 General setting

Consider system (4.29) in some inertial or non-inertial coordinate system inside a dielectric and/or

magnetic medium:

curlxH0 ≡ 4π
c

(
j + jm + jp

)
+ 1

c
∂D0

∂t for (x, t) ∈ R3 × [0,+∞),

divxD0 ≡ 4π
(
ρ+ ρp

)
for (x, t) ∈ R3 × [0,+∞),

curlxE + 1
c
∂B
∂t ≡ 0 for (x, t) ∈ R3 × [0,+∞),

divxB ≡ 0 for (x, t) ∈ R3 × [0,+∞),

(5.1)

where E is the electric field, B is the magnetic field, v := v(x, t) is the aether velocity field, ρ is the

average (macroscopic) charge density, ρp is the density of the charge of polarization, j is the average

(macroscopic) current density, jm is the density of the current of magnetization, jp is the density of

the current of polarization and

D0 := E +
1

c
v ×B and H0 := B +

1

c
v ×D0 (5.2)
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It is well known from the Lorentz theory that in the case of a moving dielectric/magnetic medium

ρp = −divxP and jp =
∂P

∂t
− curlx

(
u×P

)
, (5.3)

where P : R3 × [0,+∞)→ R3 is the field of polarization and u := u(x, t) is the field of velocities of

the dielectric medium (see also [1], page 610). Furthermore,

jm = c curlxM, (5.4)

where M : R3 × [0,+∞)→ R3 is the field of magnetization. Thus if we consider

D := D0 + 4πP = E +
1

c
v ×B + 4πP, (5.5)

and

H := H0 − 4πM +
4π

c
u×P = B +

1

c
v ×D0 +

4π

c
u×P− 4πM

= B +
4π

c
u×P +

1

c
v ×E +

1

c
v ×

(1

c
v ×B

)
− 4πM, (5.6)

we obtain 

curlxH ≡ 4π
c j + 1

c
∂D
∂t for (x, t) ∈ R3 × [0,+∞),

divxD ≡ 4πρ for (x, t) ∈ R3 × [0,+∞),

curlxE + 1
c
∂B
∂t ≡ 0 for (x, t) ∈ R3 × [0,+∞),

divxB ≡ 0 for (x, t) ∈ R3 × [0,+∞),

(5.7)

We call D by the electric displacement field and H by the H-magnetic field in a medium.

5.2 Change of inertial coordinate system

Consider the Galilean transformation x′ = x + tw,

t′ = t.

(5.8)

Then since 

D′0 = D0,

B′ = B,

E′ = E− 1
c w ×B,

H′0 = H0 + 1
c w ×D0,

(5.9)

and since P′ = P and M′ = M, by (5.5) and (5.6) we deduce

D′ = D,

B′ = B,

E′ = E− 1
c w ×B,

H′ = H + 1
c w ×D.

(5.10)
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So we get exactly the same expressions of transformations in a dielectric/magnetic medium as in

the vacuum.

5.3 Non-inertial coordinate systems

Consider the change of certain non-inertial coordinate system (∗) to another coordinate system (∗∗):x′ = A(t) · x + z(t),

t′ = t,

where A(t) ∈ SO(3) is a rotation. Then, as before in (4.32), denoting w(t) = z′(t), we have the

following relations between the physical characteristics in coordinate systems (∗) and (∗∗):

E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
B′ = A(t) ·B

D′0 = A(t) ·D0

H′0 = A(t) ·H0 + 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D0

)
P′ = A(t) ·P

M′ = A(t) ·M

u′ = A(t) · u +A′(t) · x + w(t).

(5.11)

Plugging it into (5.5) and (5.6) we deduce

D′ := D′0 + 4πP′ = A(t) ·
(
D0 + 4πP

)
= A(t) ·D, (5.12)

and

H′ := H′0 − 4πM′ +
4π

c
u′ ×P′ =

A(t) ·H0 +
1

c

(
A′(t) ·x+w(t)

)
×
(
A(t) ·D0

)
−4πA(t) ·M+

4π

c

(
A(t) ·u+A′(t) ·x+w(t)

)
×
(
A(t) ·P

)
= A(t) ·

(
H0 − 4πM +

4π

c
u×P

)
+

1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·

(
D0 + 4πP

))
= A(t) ·H +

1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
, (5.13)

So the expressions of transformations under the change of non-inertial coordinate system in a di-

electric/magnetic medium exactly the same as in the vacuum:

D′ = A(t) ·D

B′ = A(t) ·B

E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
H′ = A(t) ·H + 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
.

(5.14)
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5.4 Case of simplest dielectrics/magnetics

It is well known that in the case of simplest homogenous isotropic dielectrics and/or magnetics we

have P = γ
(
E + 1

c u×B
)
,

M = κB,

(5.15)

where γ and κ are material coefficients. Using (5.11), it can be easily seen that the laws in (5.15)

are invariant under the changes of inertial or non inertial coordinate system. Next, plugging (5.15)

into (5.5) and (5.6) gives,

D = E +
1

c
v ×B + 4πγ

(
E +

1

c
u×B

)
, (5.16)

and

H =
(
1− 4πκ

)
B +

4πγ

c
u×

(
E +

1

c
u×B

)
+

1

c
v ×

(
E +

1

c
v ×B

)
. (5.17)

These equations take much simpler forms in the case u = v i.e. in the case when the velocity of

the aether equals to the velocity of the dielectric/magnetic medium (Conjecture of complete aether

drag supposes u = v everywhere). Indeed in this case

D =
(
1 + 4πγ

)(
E +

1

c
u×B

)
,

and

H =
(
1− 4πκ

)
B +

1 + 4πγ

c
u×

(
E +

1

c
u×B

)
=
(
1− 4πκ

)
B +

1

c
u×D.

Thus denoting γ0 = 1
1+4πγ and κ0 = 1− 4πκ, in the later case we obtain the following relations:

E = γ0D−
1

c
u×B, (5.18)

H = κ0B +
1

c
u×D. (5.19)

5.5 Ohm’s Law in a conducting medium

It is well known that the Ohm’s Law in a conducting medium has the form

j− ρu = ε
(
E +

1

c
u×B

)
, (5.20)

where u is the velocity of the medium and ε is a material coefficient. As before, using (5.11), it

can be easily seen that the Ohm’s Law is invariant under the changes of inertial or non inertial

coordinate system.
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6 Quasistationary Electromagnetic fields in a slowly moving

aether

6.1 Some consequences of Maxwell Equations

Consider the system of Maxwell equations in the moving aether (vacuum):

curlxH ≡ 4π
c j + 1

c
∂D
∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D.

(6.1)

Next let ψ0(x, t) be the Coulomb’s potential which satisfies

−∆xψ0 ≡ 4πρ. (6.2)

Then defining

D̃ := D +∇xψ0, (6.3)

we rewrite (6.1) as 

curlxB ≡ 4π
c j̃ + 1

c
∂D̃
∂t −

1
c curlx(v × D̃),

divxD̃ ≡ 0,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

D̃ ≡ ∇xψ0 + E + 1
c v ×B,

(6.4)

where we set the reduced current:

j̃ := j− 1

4π

∂

∂t

(
∇xψ0

)
+

1

4π
curlx

(
v ×∇xψ0

)
. (6.5)

Note that by the Continuum Equation of the Conservation of Charges

∂ρ

∂t
+ divxj ≡ 0, (6.6)

the reduced current clearly satisfies:

divxj̃ ≡ 0. (6.7)

Next by the third and the fourth equations in (6.4) we can write:
B ≡ curlxA,

E ≡ −∇xΨ− 1
c
∂A
∂t ,

divxA ≡ 0,

(6.8)
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where Ψ and A are the scalar and the vectorial electromagnetic potentials. Therefore, we rewrite

(6.4) as 

curlx
(
curlxA

)
≡ 4π

c j̃ + 1
c
∂D̃
∂t −

1
c curlx(v × D̃),

divxD̃ ≡ 0,

D̃ ≡ ∇xψ0 −∇xΨ− 1
c
∂A
∂t + 1

c v × curlxA,

divxA ≡ 0.

(6.9)

Then defining

Φ := cΨ− cψ0, (6.10)

by (6.9) we deduce −∆xΦ ≡ −divx
(
v × curlxA

)
,

divxA ≡ 0.

(6.11)

and

−∆xA ≡ 4π

c
j̃− 1

c2
∂2A

∂t2
− 1

c2
∂

∂t

(
∇xΦ

)
+

1

c2
∂

∂t

(
v × curlxA

)
+

1

c2
curlx

(
v × ∂A

∂t

)
+

1

c2
curlx

(
v ×∇xΦ

)
− 1

c2
curlx

(
v ×

(
v × curlxA

))
, (6.12)

6.2 The case of quasistationary fields in a slow aether

Assume that we have a slow motion of the aether that means that at any instant on every point:

v2
0

c2
� 1 (6.13)

where

v0 := sup
(x,t)

∣∣v(x, t)
∣∣ (6.14)

Furthermore, consider quasistationary fields. This means the following: Assume that the changes in

time of the physical characteristics of the electromagnetic fields become essential only after certain

interval of time T . Then we assume that

c2T 2 � 1. (6.15)

Furthermore, defining

ṽ :=
1

v0
v(x, t) (6.16)

and

Φ̃(x, t) :=
1

v0
Φ(x, t), (6.17)

we rewrite (6.11) as −∆xΦ̃ ≡ −divx
(
ṽ × curlxA

)
,

divxA ≡ 0.

(6.18)
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and (6.12) as

−∆xA ≡ 4π

c
j̃− 1

c2
∂2A

∂t2
− v0

c

1

c

∂

∂t

(
∇xΦ̃

)
+
v0

c

1

c

∂

∂t

(
ṽ × curlxA

)
+
v0

c
curlx

(
ṽ × 1

c

∂A

∂t

)
+
v2

0

c2
curlx

(
ṽ ×∇xΦ̃

)
− v2

0

c2
curlx

(
ṽ ×

(
ṽ × curlxA

))
, (6.19)

Then using (6.13), (6.15) and the fact |ṽ| ≤ 1, by (6.18) and (6.19) we obtain

−∆xA ≈ 4π

c
j̃. (6.20)

Plugging it into (6.11) and using (6.10) and (6.2) we deduce−∆xA ≈ 4π
c j̃,

−∆xΨ = 4πρ− 1
c divx

(
v × curlxA

)
.

(6.21)

where j̃ := j− 1
4π

∂
∂t

(
∇xψ0

)
+ 1

4π curlx
(
v ×∇xψ0

)
,

−∆xψ0 = 4πρ.

(6.22)

So in order to find the scalar and the vectorial potential we just need to solve Laplace equations.

Knowing the potential we can find E and B by the formulasB = curlxA,

E = −∇xΨ− 1
c
∂A
∂t .

(6.23)

Moreover, using the relations D = E + 1
c v ×B

H = B + 1
c v ×D,

(6.24)

by (6.23) we obtain:

D = −∇xΨ− 1
c
∂A
∂t + 1

c v ×
(
curlxA

)
B = curlxA

E = −∇xΨ− 1
c
∂A
∂t

H = curlxA + 1
c v ×

(
−∇xΨ− 1

c
∂A
∂t + 1

c v ×
(
curlxA

))
.

(6.25)

Remark 6.1. The solutions of (6.21) and (6.25) satisfy the following equations:

curlx

(
B + 1

c v ×
(
−∇xψ0

))
≡ 4π

c j + 1
c
∂(−∇xψ0)

∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D,

(6.26)
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that differ from the original Maxwell equations (6.1) only by neglecting the divergence-free part of

the vector field D on the first equation.

6.3 Change of inertial coordinate system for the approximate solutions

Under the Galilean Transformations: x′ = x + tw,

t′ = t,

(6.27)

using (6.22) and the fact that

ρ′ = ρ and j′ = j + ρw,

we obtain

j̃′ = j̃. (6.28)

Therefore, by (6.21) we obtain A′ ≈ A,

Ψ′ ≈ Ψ + 1
c w ·A.

(6.29)

Thus by (6.25) we deduce that the approximations of E and B satisfy:E′ = E− 1
c w ×B,

B′ = B.

(6.30)

Then plugging it into (6.24), we deduce that the approximate solutions in the case of quasistationary

fields in a slow aether satisfy the same transformation (3.13) as the exact solutions i.e.

D′ = D,

B′ = B,

E′ = E− 1
c w ×B,

H′ = H + 1
c w ×D.

(6.31)

6.4 Non-inertial coordinate systems

Consider the change of certain non-inertial coordinate system (∗) to another coordinate system (∗∗):x′ = A(t) · x + z(t),

t′ = t,

where A(t) ∈ SO(3) is a rotation. Then, as before, denoting w(t) = z′(t), we have:
ρ′ = ρ,

v′ = A(t) · v +A′(t) · x + w(t),

j′ = A(t) · j + ρA′(t) · x + ρw(t)

(6.32)
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Next let ψ0 and ψ′0 be the Coulomb’s potentials in the systems (∗∗) and (∗), that satisfy−∆xψ0 ≡ 4πρ,

−∆x′ψ′0 ≡ 4πρ′.

(6.33)

Then, using (4.17) and the facts that ρ′ = ρ and A−1(t) = AT (t), we deduce from (6.33) that,ψ
′
0 = ψ0,

∇x′ψ′0 = A(t) · ∇xψ0.

(6.34)

Thus, plugging (4.22), (6.34) and (6.32) and using the fact that −∆xψ0 = 4πρ, we deduce

j̃′ = A(t) · j̃. (6.35)

where j̃ := j− 1
4π

∂
∂t

(
∇xψ0

)
+ 1

4π curlx
(
v ×∇xψ0

)
,

j̃′ := j′ − 1
4π

∂
∂t′

(
∇x′ψ′0

)
+ 1

4π curlx′
(
v′ ×∇x′ψ′0

)
.

(6.36)

Moreover, divx′ j̃′ = divxj̃ = 0. Next let A,Ψ be solutions of−∆xA = 4π
c j̃,

−∆xΨ = 4πρ− 1
c divx

(
v × curlxA

)
,

(6.37)

and 

E = −∇xΨ− 1
c
∂A
∂t

B = curlxA

D = E + 1
c v ×B

H = B + 1
c v ×D,

(6.38)

and let and A′,Ψ′ be solutions of−∆x′A′ = 4π
c j̃′,

−∆x′Ψ′ = 4πρ′ − 1
c divx′

(
v′ × curlx′A′

)
.

(6.39)

and 

E′ = −∇x′Ψ′ − 1
c
∂A′

∂t′

B′ = curlx′A′

D′ = E′ + 1
c v′ ×B′

H′ = B′ + 1
c v′ ×D′.

(6.40)

Then, plugging (6.35) and (4.17) into (6.37) and (6.39), we obtain

A′ = A(t) ·A. (6.41)
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and therefore, by (6.38), (6.40) and (4.17) we have

B′ = A(t) ·B. (6.42)

Next by (6.37), (6.39) and (6.38), (6.40), using the facts that divxA = 0 and divx′A′ = 0 we obtain

divxD = 4πρ,

curlxD = − 1
c
∂B
∂t + 1

c curlx
(
v ×B

)
,

divx′D′ = 4πρ′,

curlx′D′ = − 1
c
∂B′

∂t′ + 1
c curlx′

(
v′ ×B′

)
,

divxB = 0,

divx′B′ = 0.

(6.43)

Plugging (6.43) and (6.42) into (4.17) and (4.22) we deduce:divx
′D′ = divx′

(
A(t) ·D

)
,

curlx′D′ = curlx′
(
A(t) ·D

)
.

(6.44)

Therefore,

D′ = A(t) ·D. (6.45)

Then using the relations 

E = D− 1
c v ×B

H = B + 1
c v ×D

E′ = D′ − 1
c v′ ×B′

H′ = B′ + 1
c v′ ×D′,

(6.46)

and (6.45), (6.42) and (6.32), we finally deduce:

D′ = A(t) ·D

B′ = A(t) ·B

E′ = A(t) ·E− 1
c

(
A′(t) · x + w(t)

)
×
(
A(t) ·B

)
H′ = A(t) ·H + 1

c

(
A′(t) · x + w(t)

)
×
(
A(t) ·D

)
,

(6.47)

So the approximate solutions in the case of quasistationary fields in a slow aether satisfy the same

transformation as the exact solutions of Maxwell Equations (see (4.32)). Therefore, if in coordinate

system (∗∗) we can use the quasistationary and slow aether approximation, given by (6.39) and

(6.40), we can use the approximation, given by (6.37) and (6.38) also in coordinate system (∗), even

in the case when in system (∗) the aether does not move slowly or/and electromagnetic fields are

not quasistationary.
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7 Aether dynamics

Consider the full system of Maxwell equations in the vacuum of the form:

curlxH ≡ 4π
c j + 1

c
∂D
∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D.

(7.1)

We assume the validity of the third law of Newton. Therefore, we assume that the charged test

particle acts on the environing aether with the electromagnetic force, opposite to the Lorentz force:

−F = −σ
(
E +

1

c
u×B

)
. (7.2)

Furthermore, we assume tensions inside the aether i.e. the tensors of surface forces acting inside the

aether.

In the Classical Electrodynamics the Maxwell tensor in the vacuum has the form

T0 :=
1

4π

{
E⊗E + B⊗B− 1

2

(
|E|2 + |B|2

)
I

}
∈ R3×3, (7.3)

where I is the identity matrix. We assume this formula to be valid only for the point where the

velocity of the aether vanishes. Thus since D and B are invariant under the change of inertial system

of coordinates and the forces must be also invariant, we assume the interaction inside the aether

with the tensor of the surface electromagnetic forces of the form

T :=
1

4π

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
∈ R3×3. (7.4)

Thus by (7.2) and (7.4) we have the electromagnetic force which acts on the aether with the following

volume density

F =
1

4π
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− ρE− 1

c
j×B. (7.5)

Finally one can assume additional non-electromagnetic tension T+ inside the aether and additional

interaction of the aether with other matter which can produce additional non-electromagnetic ex-

ternal force acting on the aether with the volume density G+. Thus the equations of the motion of

the aether in an inertial coordinate system will be

∂(µv)

∂t
+ divx

(
µv ⊗ v

)
=

1

4π
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− ρE− 1

c
j×B + divxT+ + G+, (7.6)
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where µ is the volume density of the mass of the aether, which satisfies the continuum equation

∂µ

∂t
+ divx

(
µv
)
≡ 0. (7.7)

(in the case of incompressibility hypothesis µ is a constant and thus (7.7) becomes divxv ≡ 0).

7.1 Conservation of the Energy

By Lemma 8.1 from Appendix we have

∂

∂t

(
|D|2 + |B|2

8π

)
+divx

{(
|D|2 + |B|2

8π

)
v

}
=

1

4π
divx

{
(D⊗D+B⊗B)·v−1

2

(
|D|2+|B|2

)
v−cD×B

}

−

{
1

4π

(
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I
})
−
(
ρE +

1

c
j×B

)}
· v − j ·E. (7.8)

Integrating this equality over R3 × (0, τ) gives∫
R3

|D(x, 0)|2 + |B(x, 0)|2

8π
dx−

∫
R3

|D(x, τ)|2 + |B(x, τ)|2

8π
dx =∫

R3

∫ τ

0

j·E dxdt+

∫
R3

∫ τ

0

{
1

4π

(
divx

{
D⊗D+B⊗B−1

2

(
|D|2+|B|2

)
I
})
−
(
ρE+

1

c
j×B

)}
·v dxdt.

(7.9)

Observe that the first integral in the right hand side of (7.9) is the total work till the instant τ of the

Lorentz forces on all charged bodies and the second integral is the total work of the electromagnetic

forces, opposite to the Lorentz forces, on the aether plus the work of the electromagnetic forces of

the Maxwell tensions on the aether. Thus the quantity

W (t) :=

∫
R3

|D(x, t)|2 + |B(x, t)|2

8π
dx (7.10)

is the total potential energy of the electromagnetic interaction.

7.2 Additional conjectures

One of the conjectures that could be made is that the celestial bodies acts on the aether with the

forces of gravitation. In this case, consistently with (7.6), we assume that

• Conjecture I:

G+ = µ(∇xΨ), (7.11)

where, in our case, Ψ is the gravitational potential. This can be one of explanations why the velocity

of the aether near the Earth is close to zero as was obtained by Michelson-Morley experiment.

Another possible conjecture is that the aether is an incompressible medium i.e. it satisfies

divxv ≡ 0 and we have an additional pressure p in the aether as in an incompressible fluid. An

alternative conjecture is that the aether is compressible and the additional pressure in the aether is a
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function of µ only i.e. p := p(µ), like in the case of isothermal compressible fluid. Then, since in the

incompressible case µ ≡ const and in the case p := p(µ) we have ∇xp = µ(p′(µ)/µ)∇xµ = µ(∇xQ),

in both cases we obtain divxT+ = ∇xp = µ(∇xQ). I.e. the following conjecture is valid,

• Conjecture II:

divxT+ = µ(∇xQ). (7.12)

In the case of Conjectures I-II the additional force acting on the aether has the form

F+ = µ(∇xΦ), (7.13)

where

F+ = divxT+ + G+. (7.14)

In the later case we can rewrite (7.6) as

∂(µv)

∂t
+divx

(
µv⊗v

)
=

1

4π
divx

{
D⊗D+B⊗B− 1

2

(
|D|2+|B|2

)
I

}
−ρE− 1

c
j×B+µ(∇xΦ) (7.15)

or in another form as

∂v

∂t
+ (dxv) ·v =

1

4πµ
divx

{
D⊗D+B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− 1

µ

(
ρE+

1

c
j×B

)
+∇xΦ. (7.16)

Remark 7.1. If we assume the hypothesis of the incompressible aether, then its motion cannot

be affected by the force of gravitation and one can meet certain difficulties with the explanation

of Michelson-Morley experiment. In the literature one can meet the incorrect statement that the

hypothesis of the compressible aether will imply the essential dependence of the constant c in the

Maxwell Equations on the density of the aether. However, we can consider the following analogy: as

it is well known the speed of light in the static air vary insignificantly with the change of its density

and it is very close to the constant c. Thus, one can assume that in the compressible aether the

dependence on the density for the coefficient c of the Maxwell Equations in the vacuum can be also

insignificant. One of the explanations of this could be in the assumption of the very heavy aether.

7.3 Estimation of curlxv

Proposition 7.1. Let D,B,E,H, ρ, j,v be solutions of (7.1) µ is a mass density of the aether,

satisfying (7.7), and the velocity of the aether satisfies (7.16). Consider the quantity

L :=
1

4πcµ
D×B− v. (7.17)

Then
∂L

∂t
− v × (curlxL) +∇x

(1

2
|v|2 + v · L + Φ

)
= 0. (7.18)
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In particular,

the assumption that curlx

(
1

4πcµ(x, 0)
D(x, 0)×B(x, 0)

)
≡ curlxv(x, 0) implies

curlx

(
1

4πcµ(x, t)
D(x, t)×B(x, t)

)
≡ curlxv(x, t) for every instant t > 0. (7.19)

Moreover, in the latter case there exists Θ(x, t) : R3 × [0,+∞)→ R such that

v(x, t) =
1

4πcµ(x, t)
D(x, t)×B(x, t) +∇xΘ(x, t) ∀ (x, t) ∈ R3 × (0,+∞), (7.20)

and Θ(x, t) is a solution of

∂Θ

∂t
+

1

2

∣∣∇xΘ
∣∣2 =

1

2

∣∣∣∣ 1

4πcµ
D×B

∣∣∣∣2 + Φ ∀ (x, t) ∈ R3 × (0,+∞). (7.21)

Proof. By Lemma 8.2 we have

∂

∂t

( 1

4πc
D×B

)
+ divx

{( 1

4πc
D×B

)
⊗ v

}
=

− (dxv)T ·
( 1

4πc
D×B

)
+

1

4π
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
−
(
ρE +

1

c
j×B

)
.

(7.22)

Therefore, by (7.7) and (7.22) we deduce

∂

∂t

( 1

4πcµ
D×B

)
+

(
dx

{ 1

4πcµ
D×B

})
· v =

− (dxv)T ·
( 1

4πcµ
D×B

)
+

1

4πµ
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− 1

µ

(
ρE +

1

c
j×B

)
.

(7.23)

Then subtracting (7.16) from (7.23) we deduce

∂L

∂t
+ (dxL) · v = −(dxv)T · L−∇x

(1

2
|v|2 + Φ

)
= (dxL)T · v −∇x

(1

2
|v|2 + v · L + Φ

)
. (7.24)

Thus using (2.11) we can rewrite (7.24) as (7.18) i.e.

∂L

∂t
− v × (curlxL) +∇x

(1

2
|v|2 + v · L + Φ

)
= 0. (7.25)

Next assume that curlxL(x, 0) ≡ 0. Let V (x, t) be a solution to ∆xV (x, t) = divxL(x, t), which

satisfies V (x, t) → 0 as |x| → +∞. Then set R(x, t) = L(x, t) − ∇xV (x, t). Thus divxR ≡ 0 and

curlxR = curlxL. In particular R(x, 0) ≡ 0. Moreover, by (7.25) R satisfies

∂R

∂t
− v × (curlxR) +∇x

(1

2
|v|2 + v · L + Φ + ∂tV

)
= 0. (7.26)

28



Thus since divxR ≡ 0 and R(x, 0) ≡ 0, using (2.12) and (7.26) we deduce

1

2

∫
R3

∣∣R(x, τ)
∣∣2dx +

∫ τ

0

∫
R3

{
R ·

(
(dxv) ·R

)
− 1

2
|R|2divxv

}
dxdt =

1

2

∫
R3

∣∣R(x, τ)
∣∣2dx +

∫ τ

0

∫
R3

divx

(1

2
|R|2I −R⊗R

)
· v dxdt =

1

2

∫
R3

∣∣R(x, τ)
∣∣2dx +

∫ τ

0

∫
R3

(
R× curlxR

)
· v dxdt =∫ τ

0

∫
R3

{
∂R

∂t
− v × (curlxR)

}
·R dxdt =

−
∫ τ

0

∫
R3

R ·∇x

(1

2
|v|2 +v ·L+Φ+∂tV

)
dxdt =

∫ τ

0

∫
R3

(1

2
|v|2 +v ·L+Φ+∂tV

)
divxR dxdt = 0.

(7.27)

Therefore, if we assume v to be a smooth vector field, by (7.27) we deduce that for every instant

τ0 > 0 there exists a constant C such that∫
R3

∣∣R(x, τ)
∣∣2dx ≤ C ∫ τ

0

∫
R3

∣∣R(x, t)
∣∣2dxdt for every τ ≤ τ0. (7.28)

Setting

f(τ) :=

∫ τ

0

∫
R3

∣∣R(x, t)
∣∣2dxdt (7.29)

we deduce f(0) = 0 and
df

dτ
(τ)− Cf(τ) ≤ 0 for every τ ≤ τ0. (7.30)

Thus
d

dτ

{
f(τ)e−Cτ

}
≤ 0 for every τ ≤ τ0. (7.31)

Thus f(τ)e−Cτ is a nondecreasing function and therefore, f(τ)e−Cτ ≤ f(0) = 0. So∫ τ

0

∫
R3

∣∣R(x, t)
∣∣2dxdt ≤ 0 for every τ ≤ τ0 (7.32)

and this is possible only if

R(x, τ) ≡ 0 for every x ∈ R3 and every τ ≤ τ0. (7.33)

Since by the definition curlxL ≡ curlxR ≡ 0, (7.19) follows for t ≤ τ0. Finally since τ0 was chosen

arbitrary (7.19) follows.

Next assume that for every (x, t) we have curlxL = 0. Then there exists Θ̃(x, t) : R3× [0,+∞)→

R such that L(x, t) ≡ −∇xΘ̃(x, t) i.e.

v =
1

4πcµ
D×B +∇xΘ̃, (7.34)

and (7.18) reads

∂(∇xΘ̃)

∂t
+∇x

(
v · ∇xΘ̃− 1

2
|v|2 − Φ

)
= 0. (7.35)
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I.e. there exists a function σ(t) : R→ R of t only, such that

∂Θ̃

∂t
+
(
v · ∇xΘ̃− 1

2
|v|2 − Φ

)
= σ(t), (7.36)

Then plugging (7.34) into (7.36) gives

∂Θ̃

∂t
+

(
1

2

∣∣∇xΘ̃
∣∣2 − 1

2

∣∣∣∣ 1

4πcµ
D×B

∣∣∣∣2 − Φ

)
= σ(t). (7.37)

Next denote Θ(x, t) := Θ̃(x, t) −
∫ t

0
σ(s)ds. Then since ∇xΘ ≡ ∇xΘ̃ and ∂Θ

∂t ≡
∂Θ̃
∂t − σ(t), from

(7.34) and (7.37) we obtain (7.20) and (7.21).

8 Appendix

Consider the system: 

curlxH ≡ 4π
c j + 1

c
∂D
∂t ,

divxD ≡ 4πρ,

curlxE + 1
c
∂B
∂t ≡ 0,

divxB ≡ 0,

E = D− 1
c v ×B,

H = B + 1
c v ×D.

(8.1)

Lemma 8.1. Let D,B,E,H, ρ, j,v be solutions of (8.1). Then

∂

∂t

(
|D|2 + |B|2

8π

)
+divx

{(
|D|2 + |B|2

8π

)
v

}
=

1

4π
divx

{
(D⊗D+B⊗B)·v−1

2

(
|D|2+|B|2

)
v−cD×B

}

−

{
1

4π

(
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I
})
−
(
ρE +

1

c
j×B

)}
· v − j ·E, (8.2)

where I is the identity matrix.

Proof. By (8.1) and (2.4) we infer:

1

2c

∂

∂t

(
|D|2 + |B|2

)
=

1

c

∂D

∂t
·D +

1

c

∂B

∂t
·B =

(
curlxH− 4π

c
j
)
·D− (curlxE) ·B ={

curlx

(
B +

1

c
v ×D

)}
·D−

{
curlx

(
D− 1

c
v ×B

)}
·B− 4π

c
j ·D =

1

c
D · curlx(v ×D) +

1

c
B · curlx(v ×B) + D · curlxB−B · curlxD− 4π

c
j ·D =

1

c
D · curlx(v ×D) +

1

c
B · curlx(v ×B)− divx(D×B)− 4π

c
j ·D. (8.3)
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On the other hand, by (2.9) and (8.1) we obtain

1

c
D · curlx(v ×D) +

1

c
B · curlx(v ×B) =

1

c
(divxD) v ·D− 1

c
(divxv)|D|2 +

1

c
D ·

{
(dxv) ·D

}
− 1

2c
v · ∇x|D|2

+ (divxB)
1

c
v ·B− (divxv)

1

c
|B|2 +

1

c
B ·
{

(dxv) ·B
}
− 1

2c
v · ∇x|B|2 =

4πρ

c
v ·D− (divxv)

1

c

(
|D|2 + |B|2

)
+

1

c
B ·
{

(dxv) ·B
}

+
1

c
D ·
{

(dxv) ·D
}
− 1

2c

{
v ·∇x

(
|D|2 + |B|2

)}
=

4πρ

c
v·D−1

c

(
divx

{
D⊗D+B⊗B−1

2

(
|D|2+|B|2

)
I
})
·v+

1

c
divx

{
(D⊗D+B⊗B)·v−

(
|D|2+|B|2

)
v

}
.

(8.4)

Therefore,

1

2c

∂

∂t

(
|D|2+|B|2

)
+

1

2c
divx

{(
|D|2+|B|2

)
v

}
=

1

c
divx

{
(D⊗D+B⊗B)·v−1

2

(
|D|2+|B|2

)
v−cD×B

}
− 1

c

(
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I
})
· v − 4π

c
(j− ρv) ·D. (8.5)

Thus, since

(j− ρv) ·D = (j− ρv) ·
(
E +

1

c
v ×B

)
= j ·E− v ·

(
ρE +

1

c
j×B

)
, (8.6)

we rewrite (8.5) in the form (8.2).

Lemma 8.2. Let D,B,E,H, ρ, j,v be solutions of (8.1). Then

∂

∂t

( 1

4πc
D×B

)
+ divx

{( 1

4πc
D×B

)
⊗ v

}
=

− (dxv)T ·
( 1

4πc
D×B

)
+

1

4π
divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
−
(
ρE +

1

c
j×B

)
.

(8.7)

Proof. By (8.1) we have:

∂

∂t

(1

c
D×B

)
=

1

c

∂D

∂t
×B + D× 1

c

∂B

∂t
=
(
curlxH− 4π

c
j
)
×B−D× curlxE =

curlx

(
B +

1

c
v ×D

)
×B−D× curlx

(
D− 1

c
v ×B

)
− 4π

c
j×B =

1

c
D× curlx(v ×B) +

1

c
curlx(v ×D)×B−D× curlxD−B× curlxB− 4π

c
j×B. (8.8)
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On the other hand, by (2.9) and (8.1) we obtain

1

c
D× curlx(v ×B) +

1

c
curlx(v ×D)×B =

(divxB)
1

c
D× v − (divxv)

1

c
D×B +

1

c
D×

{
(dxv) ·B

}
− 1

c
D×

{
(dxB) · v

}
+

1

c
(divxD) v ×B− 1

c
(divxv) D×B +

1

c

{
(dxv) ·D

}
×B− 1

c

{
(dxD) · v

}
×B =

1

c
D×

{
(dxv) ·B

}
+

1

c

{
(dxv) ·D

}
×B− 2(divxv)

1

c
D×B− 1

c

{
dx(D×B)

}
· v +

4πρ

c
v ×B =

1

c
D×

{
(dxv) ·B

}
+

1

c

{
(dxv) ·D

}
×B− (divxv)

1

c
D×B− 1

c
divx

{
(D×B)⊗ v

}
+

4πρ

c
v×B,

(8.9)

and by (2.12) and (8.1) we deduce

−D× curlxD−B× curlxB = (dxD) ·D− 1

2
∇x|D|2 + (dxB) ·B− 1

2
∇x|B|2

= divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− 4πρD, (8.10)

where I ∈ R3×3 is the unit matrix (identity linear operator). Thus, plugging (8.9) and (8.10) into

(8.8) and using (2.3), we obtain

∂

∂t

(1

c
D×B

)
+divx

{(1

c
D×B

)
⊗v

}
=

1

c
D×

{
(dxv) ·B

}
+

1

c

{
(dxv) ·D

}
×B−(divxv)

1

c
D×B

+ divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− 4πρD− 4π

c
(j− ρv)×B

= −1

c
(dxv)T · (D×B) + divx

{
D⊗D + B⊗B− 1

2

(
|D|2 + |B|2

)
I

}
− 4πρE− 4π

c
j×B =

1

c

{
dx(D×B)

}T ·v +divx

{
D⊗D+B⊗B− 1

2

(
|D|2 + |B|2 +

2

c
v · (D×B)

)
I

}
−4πρE− 4π

c
j×B.

(8.11)
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