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Abstract

The RLC circuit is generalized in such a way that the capacitor has
longitudinal form and the components are all in series with the voltage source
(R−L−C − v). The medium inside the capacitor is dielectric with the index
of refraction n. The change of the amount of charges on the left and right side
of the capacitor generate in dielectric medium special radiation which is not
the Čerenkov radiation, no the Ginzburg transition radiation but the original
radiation which must be confirmed in laboratories.

We have calculated the spectral form of the radiation ofRLC circuit with the
longitudinal capacitor. It depends on the dielectric constant n of the capacitor
medium. The defect in medium is involved in the spectral form and can be
compared with the original medium. Such comparison is the analog of the
Heyrovský-Ilkovič procedure in the quantum electro-chemistry (Heyrovský et
al., 1965).

The article is the preamble for the future investigation of electronic physics
and can be integral part of such institutions as Bell Laboratories, NASA, CERN
and so on.

1 Introduction

An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a

capacitor (C), connected in series, or, in parallel. The circuit forms a harmonic oscillator

for current.

The three circuit elements, R,L and C can be combined in a number of different

topologies. All three elements in series or all three elements in parallel are the simplest
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in concept and the most straightforward to analysis. There are, however, other arrange-

ments, some with practical importance in real circuits. One issue often encountered is the

need to take into account inductor resistance. Inductors are typically constructed from

coils of wire, the resistance of which is not usually desirable, but it often has a significant

effect on the circuit.

2 Series RLC circuit

In the situation where we consider series RLC circuit, the three components are all in

series with the voltage source (R − L − C − v). The governing differential equation can

be found by substituting into the Kirchhoff voltage law (KVL) the constitutive equation

for each of the three elements. From KVL it follows

vR + vL + vC = v(t), (1)

where vR, vL, vC are the voltages across R,L,C respectively and v(t) is the time varying

voltage from the source. Substituting the corresponding physical term, in eq. (1), we get

the following integral differential equation (Nilsson et al., 2008):

Ri(t) + L
di

dt
+

1

C

∫ τ=t

−∞
i(τ)dτ = v(t). (2)

To our goal it is sufficient to consider the more simple situation with v = 0. Then,

instead of eq. (2) we write

LQ̈+RQ̇+Q/C = 0 (3)

with stationary solution

Q = Ae−
R
2L
t sin(ωt+ α), (4)

where

ω =

√
1

LC
− R2

4L2
. (5)

The Thomson formula for the period of oscillations is when R = 0:

T = 2π/ω = 2π
√
LC. (6)

3 Two R− L− C− circuits with the mutual induction

In this case the components R1, L1, C1 are inductive boned with R2, L2, C2 configuration.

The problem was published by Landau et al. (1989) and the frequency of the inductive

system was calculated in the form (for R1 = R2 = 0).
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ω2
1,2 =

L1C1 + L2L2 ± [(L1C1 − L2C2)
2 + 4C1C2L

2
12]

1/2

2C1C2(L1L2 − L2
12)

. (7)

4 Remarks on the Čerenkov and Ginzburg radiation

While the Čerenkov electromagnetic radiation is generated by a fast moving charged
particle in a medium when its speed is faster than the speed of light in this medium,
our bunches of charges are not in linear motion. Nevertheless, the oscillation of the
magnitude of charges cause electromagnetic processes in the dielectric with the emergence
of the electromagnetic radiation of this medium. The radiation is in no case the Čerenkov
radiation or, the Ginzburg transition radiation.

The Ginzburg transition radiation was demonstrated theoretically by Ginzburg and
Frank many decades ago (Ginzburg, 1940; Frank, 1942). They showed the existence of
transition radiation when a charged particle perpendicularly passed through a boundary
between two different homogeneous media. The frequency of radiation emitted in the
backwards direction relative to the particle was mainly in the range of visible light.
The application of the optical transition radiation for the detection and identification
of individual particles is limited due to the low intensity of the radiation.

We derive in this paper1 the spectral formula of the radiation of the longitudinal
capacitor in the framework of the source theory. We suppose that the bunches of charges
are at the ends of the capacitor and the quantity of the total charges is in the accord with
the RLC oscillation, which manifests in the spectral formula.

5 The source theory formulation of the problem

Source theory (Schwinger et al., 1976; 1970; Dittrich, 1978) is the theoretical
construction that uses quantum-mechanical particle language. It was found that the
original formulation simplifies the calculations in the electrodynamics and gravity where
the interactions are mediated by the photon, or, graviton, respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude (Schwinger
et al., 1976):

〈0+|0−〉 = e
i
h̄
W (S), (8)

where the minus and plus signs on the vacuum symbol are causal labels, referring to
any time before and after the space-time region where sources are manipulated. The
exponential form is introduced with regard to the existence of the physically independent
experimental arrangements, which has a simple consequence that the associated proba-
bility amplitudes multiply and corresponding W expressions add (Schwinger et al., 1976;
1970; Dittrich, 1978).

The electromagnetic field is described by the amplitude (4) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (9)

1This contribution is the analogue version of the article: M. Pardy, Phys. Rev. A 55, No. 3, 1647 (1997).
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where the dimensionality of W (J) is the same as the dimensionality of the Planck constant
h̄. Jµ is the charge and current densities. The symbol D+µν(x − x′) is the photon
propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by
the following formula (Schwinger et al., 1976):

|〈0+|0−〉|2 = exp{−2

h̄
ImW} d

= exp{−
∫
dtdω

P (ω, t)

h̄ω
}, (10)

where we have introduced the so-called power spectral function (Schwinger et al., 1976)
P (ω, t). In order to extract this spectral function from ImW , it is necessary to know the
explicit form of the photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is
generated by the four-current Jµ(c%,J) according to the differential equation (Schwinger
et al., 1976) (

∆− µε

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν (11)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
D+(x− x′), (12)

where ηµ ≡ (1,0), µ is the magnetic permeability of the dielectric medium with the
dielectric constant ε, c is the velocity of light in vacuum, n is the index of refraction of
this medium, and D+(x − x′) was derived by Schwinger, Tsai and Erber (Schwinger et
al., 1976) in the following form:

D+(x− x′) =
i

4π2c

∫ ∞
0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t

′|. (13)

Using formulas (9), (10), (12), and (3), we get for the power spectral formula the
following expression (Schwinger et al., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]×

×
{
%(x, t)%(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (14)

Now, we are prepared to apply the last formula to the situations of the two equal
charges moving in the dielectric medium.

6 Radiation of the longitudinal capacitor

While the Čerenkov radiation in electrodynamics is produced by uniformly moving charge
with constant velocity, author (Pardy, 1997) considered the system of two equal charges
e with the constant mutual distance a = |a| moving with velocity v in the dielectric
medium. In this situation the charge and the current densities for this system are given
by following equations:
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% = e[δ(x− vt) + δ(x− a− vt)], (15)

J = ev[δ(x− vt) + δ(x− a− vt)], (16)

where a is the vector going from the left charge to the right charge with the length of
a = |a| in the system S. This system was used by author to determine the Lorentz
contraction from the Čerenkov spectral formula (Pardy, 1997).

The charge of moving particle was constant. We consider here the situation where a
charge in the experiment is dependent on time, or e→ Q(t) and it is at rest. So, instead
of eqs. (15) and (16) we have:

% = Q(t)[δ(x) + δ(x− a], (17)

J = 0 (18)

However, the problem can be simplified if we consider only the left side of the capacitor
in calculation of the spectral density of radiation. Or,

% = Q(t)δ(x), (19)

J = 0. (20)

Then, after insertion of eq. (19) and (20) into eq. (14), putting τ = t′ − t, we get
instead of the formula (14) the following relation

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dτ

sin nω
c
|x− x′|

|x− x′|
cos[ω(τ)]

Q(x, t)Q(x′, τ + t)δ(x)δ(x′). (21)

The density of charges on the left and right side of capacitor are evidently periodic,
so we can write

Q(t) = A sin Ωt, Q(t′) = A sin Ω(τ + t), (22)

where A is some experimental constant.
After some modification of the formula (21) with regard to the formula (22), we get:

P (ω, t) = − ω

4π2

µ

n2

(
nω

c

)
A2 sin Ωt

∫ ∞
−∞

dτ cos(ωτ) sin Ω(τ + t) (23)

where

cos(ωτ) sin Ω(τ − t) = cos(ωτ) [sin(Ωτ) cos(Ωt) + cos(Ωτ) sin(Ωt)] (24)

So we can write formula (23) as a sum:

P (ω, t) = P1(ω, t) + P2(ω, t), (25)

where
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P1(ω, t) = − ω

4π2

µ

n2

(
nω

c

)
A2 sin Ωt cos Ωt

∫ ∞
−∞

dτ cos(ωτ) sin(Ωτ) (26)

P2(ω, t) = − ω

4π2

µ

n2

(
nω

c

)
A2 sin(Ωt) sin(ωt)

∫ ∞
−∞

dτ cos(ωτ) cos(Ωτ) (27)

We have for τ -integrals

∫ ∞
−∞

dτ cos(ωτ) sin(Ωτ) =

[
sin(Ω− ω)τ

2(Ω− ω)
+

sin(Ω + ω)τ

2(Ω + ω)

]∞
−∞

= I1 (28)

∫ ∞
−∞

dτ cos(ωτ) cos(Ωτ) = −
[

sin(Ω + ω)τ

2(Ω + ω)
+

sin(Ω− ω)τ

2(Ω− ω)

]∞
−∞

= I2 (29)

So, with regard to eqs. (26)–(29) we have

P (ω, t) = P1(ω, t) + P2(ω, t) =

[
− ω

4π2

µ

n2

] (
nω

c

)
A2 sin(Ωt) [sin(Ωt)I1 + cos(Ωt)I2] (30)

Now, the problem is only to evaluate integrals I1, I2 using the corresponding regular-
ization technique. Nevertheless, the fundamental information of the original longitudinal
capacitor effect is involved in eq. (30).

7 Discussion

We have calculated the spectral form of the radiation of RLC circuit with the longitudinal
capacitor. It depends on the dielectric constant n of the capacitor medium. The defect in
medium is involved in the spectral form and can be compared with the original medium.
Such comparison is the analog of the Heyrovský-Ilkovič procedure in the quantum electro-
chemistry (Heyrovský et al., 1965).

We have considered only the RLC circuit where the components of it are all in series
with the voltage source, or in the form (R− L− C − v). The generalization to the more
complex situation was not considered.

We have demonstrated that in the case of the system of two equal bunches of charges,
the new original effect was realize which was not still considered in theory and experiment.
After performing the experiment with the RLC circuit the unique effect will be definitely
confirmed.

We have not considered for the sake of simplicity the radiative corrections to the
photon propagator and in order to get the modified power spectral formula of the emitted
radiation. However, the radiative corrections have meaning for the gamma photons rather
than the optical ones. Nevertheless, the possibility of the existence of the gamma radiation
can be considered as the relevant physical effect.

The experiments suggested by us are feasible in the sense that the bunches of charges
are generate in RLC circuit and therefore it is not necessary to prepare substantially
the new arrangement of the equipment for the verification of the new effects. Our result
represents the synergism of the invention and the discovery of the new effect. We hope
that experiments with the RLC circuit with the longitudinal capacitor will be sooner or
later performed by all electronic laboratories over the world.
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The article forms the preamble of the future investigation of electronic systems (Nillson
et al. 2008) and it will be, no doubt, the integral part of such institutions as Bell
Laboratories, NASA, CERN and all laboratories over the world.
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