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1 Introduction

Aspects of gauge theory, Hamiltonian mechanics, relgtatd quantum mechanics arise natu-
rally in the mathematics of a non-commutative frameworkdalculus and differential geome-
try. In this paper, we first give a review of our previous résabout discrete phyics and non-
commutative worlds. The simplest discrete system cormedpalirectly to the square root of
minus one, seen as an oscillation between one and minus timeway thinking about as an
iterantis explained below. By starting with a discrete time seriegasitions, one has immedi-
ately a non-commutativity of observations since the mesament of velocity involves the tick of
the clock and the measurment of position does not demandctheftthe clock. Commutators
that arise from discrete observation suggest a non-contiveitalculus, and this calculus leads
to a generalization of standard advanced calculus in tefson-commutative world. In a non-
commutative world, all derivatives are represented by catators. We then give our version
of Feynman-Dyson derivation of the formalism of electrometgc gauge theory. The rest of the
paper investigates algebraic constraints that bind thexaatiative and non-commutative worlds.

Section 2 is a self-contained miniature version of the wistdey in this paper, starting with
the square root of minus one seen as a discrete oscillatidock. We proceed from there and
analyze the position of the square root of minus one in @l discrete systems and quantum
mechanics. We end this section by fitting together theserehsens into the structure of the
Heisenberg commutator

[p,q| = ih.

Section 3 is a review of the context of non-commutative wemdth a preview of part of the
Feynman-Dyson derivation. This section generalizes tineeuts in Section 2 and places them
in the wider context of non-commutative worlds. The key tg tieneralization is our method of
embedding discrete calculus into non-commutative catcuBection 4 is a discussion of iterants



and matrix algebra. We show how matrix algebra in any dinemean be regarded as describ-
ing the pattern of acts of observation (time shifting open®torresponding to permutations) on
periodic time series. Section 5 gives a complete treatnfemirogeneralization of the Feynman-
Dyson derivation of Maxwell’s equations in a non-commuafiramework. This section is the
first foray into the consequences of constraints. This waref the Feynman-Dyson derivation
depends entirely on the postulation of a full time derivaiir the non-commutative world that
matches the corresponding formula in ordinary commutattkeanced calculus. Section 6 dis-
cusses constraints on non-commutative worlds that aresetpby asking for correspondences
between forms of classical differentiation and the denrest represented by commutators in a
correpsondent non-commutative world. This discussionaoistraints parallels work of Tony
Deakin [3,[4] and will be continued in joint work of the authand Deakin. At the level of
the second constraint we encounter issues related to deaktavity. Section 7 continues the
constraints discussion in Section 5, showing how to geizerad higher-order constraints and
obtains a commutator formula for the third order constrairte first appendix, Section 8, is a
very condensed review of the relationship of the Bianchniiig in differential geometry and
the Einstein equations for general relativity. We then olese¢hat every derivation in a non-
commutative world comes equipped with its own Bianchi idgnT his observation suggests one
way to investigate general relativity in the non-commuwmtiontext. Section 9 is a philosophical
appendix.

2 Quantum Mechanics - The Square Root of Minus One is a
Clock

The purpose of this section is to plaéethe square root of minus one, and its algebra in a
context of discrete recursive systems. We begin by stawitiga simple periodic process that is
associated directly with the classical attempt to solve fas a solution to a quadratic equation.
We take the point of view that solving’ = ax + b is the same (when # 0) as solving

r=a+b/z,
and hence is a matter of finding a fixed point. In the casensd# have
2 =—1

and so desire a fixed point
x=—1/x.

There are no real numbers that are fixed points for this opeaat so we consider the oscillatory
process generated by
R(x) = —1/x.

The fixed point would satisfy
i=—1/i
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and multiplying, we get that
1= —1.

On the other hand the iteration of R yields
1,R(1)=—1,R(R(1)) =+1,R(R(R(1))) = —=1,+1,—1,+1,—1,-- - .

The square root of minus one is a perfect example of an eigartftat occurs in a new and wider
domain than the original context in which its recursive gsxarose. The process has no fixed
point in the original domain.

Looking at the oscillation betweenr1 and —1, we see that there are naturally two phase-
shifted viewpoints. We denote these two views of the ogmlteby [+1, —1] and—1, +1]. These
viewpoints correspond to whether one regards the osoifiat time zero as starting withl or
with —1. See Figure 1.

We shall let7{+1, —1} stand for an undisclosed alternation or ambiguity betweérand
—1and call/I{+1, —1} an iterant. There are two iterant views:1, —1] and[—1, +1].

Given an iteranja, b], we can think oflb, a| as the same process with a shift of one time step.
These two iterant views, seen as points of view of an alterg@rocess, will become the square
roots of negative unity, and—i.

We introduce a temporal shift operatpsuch that

[a, b]n = n[b, a]
and
nm =1

for any iteranta, b], so that concatenated observations can include a time stapedfalf period
of the process
---abababab - - - .

We combine iterant views term-by-term as in
[a, b][c, d] = [ac, bd].
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We now define i by the equation
i=[1,—1n.
This makes both a value and an operator that takes into account a stepen t
We calculate

i =[1,—-1n[l,—1n = [1, -1][-1,1pp = [-1,-1] = 1.

Thus we have constructed the square root of minus one by asinggrant viewpoint. In this
view i represents a discrete oscillating temporal process asait eigenform foR(z) = —1/xz,
participating in the algebraic structure of the complex bers. In fact the corresponding algebra
structure of linear combinatiorie, b] + [c, d|n is isomorphic with2 x 2 matrix algebra and iterants
can be used to construetx n matrix algebra. We treat this generalization in Section thif
paper.

The Temporal Nexus.We take as a matter of principle that the usual real variabler time is
better represented as so that time is seen to be a process, an observation and a todgrall at
once. This principle of “imaginary time” is justified by the eiger approach to the structure
of time and the structure of the square root of minus one.

As an example of the use of the Temporal Nexus, consider {hiessions? + 3% + 2% + t2,
the square of the Euclidean distance of a pdinty, z,¢) from the origin in Euclidean four-
dimensional space. Now replatey it, and find

$2+y2+22+(it)2:l'2+y2—|—22—t2,

the squared distance in hyperbolic metric for special ingtgt By replacing t by its process
operator valuet we make the transition to the physical mathematics of spesativity.

2.1 Quantum Physics, Eigenvalue and Eigenform

In quantum modeling, the state of a physical system is repted by a vector in a Hilbert space.
As time goes on the vector undergoes a unitary evolutionarHitbert space. Observable quanti-
ties correspond to Hermitian operatdfsand vectors that have the property that the application
of H to v results in a new vector that is a multiplewby a real factor\. Thus

Hv = \v.

One says that v is an eigenvector for the operatoand that\ is the eigenvalue.

2.2 The Wave Function in Quantum Mechanics and The Square Rdaf
Minus One

One can regard a wave function suchws,t) = exp(i(kx — wt)) as containing a micro-
oscillatory system with the special synchronizations efitarant viewi = [+1, —1]n . Itis these
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synchronizations that make the big eigenform of the exptalenork correctly with respect to
differentiation, allowing it to create the appearance d¢étional behaviour, wave behaviour and
the semblance of the continuum. In other words, we are stigge¢bhat once can take a temporal
view of the well-known equation of Euler:

e = cos(0) + isin(0)

by regarding the in this equation as an iterant, as discrete oscillation betw-1 and+1. One
can blend the classical geometrical view of the complex rensith the iterant view by thinking
of a point that orbits the origin of the complex plane, inéeteng the real axis periodically and
producing, in the real axis, a periodic oscillation in reatto its orbital movement in the two
dimensional space. The special synchronization is théoedgaf the time shift embodied in

nm =1
and
[a, b = n[b, ]
that makes the algebra of= [1, —1]n imply thati> = —1. This interpretation does not change

the formalism of these complex-valued functions, but itddodeange one’s point of view and we
now show how the properties ofis a discrete dynamical systerm are found in any such system.

2.3 Time Series and Discrete Physics

We have just reformulated the complex numbers and expaheambhtext of matrix algebra to an
interpretation of as an oscillatory process and matrix elements as combiraidkpnd temporal
oscillatory processes (in the sense that| is not affected in its order by a time step, whiteb]n
includes the time dynamic in its interactive capabilityd@nx 2 matrix algebra is the algebra of
iterant viewsja, b] + [c, d]n).

We now consider elementary discrete physics in one dimangtonsider a time series of
positions

x(t) : t =0, At, 2At, 3AE, - - .

We can define the velocity(¢) by the formula
v(t) = (z(t + At) — x(t)) /At = Dx(t)

where D denotes this discrete derivative. In order to obtgi) we need at least one tick¢ of
the discrete clock. Just as in the iterant algebra, we nerdeaghift operator to handle the fact
that once we have observeft), the time has moved up by one tick.

We adjust the discrete derivative.We shall add an operator J that in this context accomplishes
the time shift:
x(t)J = Jx(t + At).
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We then redefine the derivative to include this shift:
Dz(t) = J(z(t + At) — x(t))/At.

This readjustment of the derivative rewrites it so that #maporal properties of successive obser-
vations are handled automatically.

Discrete observations do not commutel.et A and B denote quantities that we wish to observe
in the discrete system. LetB denote the result of first observirigjand then observing. The
result of this definition is that a successive observatiothefformz(Dx) is distinct from an
observation of the forniDz)x. In the first case, we first observe the velocity at titmand then
x is measured at+ At. In the second case, we measuratt and then measure the velocity.

We measure the difference between these two results bygtakiommutator
[A,B] = AB — BA
and we get the following computations where we wrke = x(t + At) — z(t).
z(Dx) = x(t)J(x(t + At) — x(t)) = Jo(t + At)(z(t + At) — x(t)).
(Dz)x = J(x(t + At) — x(t))z(t).
[z, Dz] = x(Dx) — (Dx)x = (J/A)(z(t + At) — 2(t))* = J(Ax)? /At
This final result is worth recording:
[z, Dz] = J(Az)?/At.

From this result we see that the commutatos @ndDx will be constant if(Az)? /At = K is a
constant. For a given time-step, this means that

(Az)* = KAt

Az = +4/(KAt)
This is a Brownian process with diffusion constant equakto

Thus we arrive at the result that any discrete process viewéas framework of discrete
observation has the basic commutator

[z, Dz] = J(Az)?/At,

generalizing a Brownian process and containing the fagtar)?/At that corresponds to the
classical diffusion constant. It is worth noting that thguadhent that we have made to the
discrete derivative makes it into a commutator as follows:

Da(t) = J(x(t + At) — 2(t)) /At = (x(t)] — Jo(t)At = [x(t), J]/At.

By replacing discrete derivatives by commutators we camesgpdiscrete physics in many vari-
ables in a context of non-commutative algebra. We entergieralization in the next section
of the paper.

We now use the temporal nexus (the square root of minus onelaslg and rewrite these
commutators to match quantum mechanics.

so that



2.4 Simplicity and the Heisenberg Commutator

Finally, we arrive at the simplest place. Time and the squaoé of minus one are inseparable
in the temporal nexus. The square root of minus one is a syaribhlgebraic operator for the
simplest oscillatory process. As a symbolic form, i is areafgrm satisfying the equation

i=—1/i.

One does not have an increment of time all alone as in cldgsiCame hast, a combination of
an interval and the elemental dynamic that is time. With timderstanding, we can return to the
commutator for a discrete process and itder the temporal increment.

We found that discrete observation led to the commutatoaisou
[z, Dz] = J(Az)? /At

which we will simplify to
g, p/m] = (Ax)?/At.

taking ¢ for the positionz andp/m for velocity, the time derivative of position and ignorirtget
time shifting operator on the right hand side of the equation

Understanding thaf\¢t should be replaced ¢, and that, by comparison with the physics
of a process at the Planck scale one can take

(Az)?/At = l/m,

we have
[q, p/m] = (Ax)? /iAt = —ihi/m,
whence
[p,q] = ih,

and we have arrived at Heisenberg’s fundamental relatiiprizetween position and momentum.
This mode of arrival is predicated on the recognition thdy an represents a true interval of
time. In the notion of time there is an inherent clock or arer@mt shift of phase that is making
a synchrony in our ability to observe, a precise dynamic aimtehe apparent dynamic of the
observed process. Once this substitution is made, onceothect imaginary value is placed in
the temporal circuit, the patterns of guantum mechanicsappn this way, quantum mechanics
can be seen to emerge from the discrete.

The problem that we have examined in this section is the prmoltb understand the nature
of quantum mechanics. In fact, we hope that the problem is sedisappear the more we enter
into the present viewpoint. A viewpoint is only on the peeppn The iterant from which the
viewpoint emerges is in a superposition of indistinguisbapand can only be approached by
varying the viewpoint until one is released from the pattdties that a point of view contains.



3 Review of Non-Commutative Worlds

Now we begin the introduction to non-commutative worlds argkneral discrete calculus. Our
approach begins in an algebraic framework that naturaltyains the formalism of the calculus,
but not its notions of limits or constructions of spaces sjpecific locations, points and trajecto-
ries. Many patterns of physical law fit well into such an afstframework. In this viewpoint one
dispenses with continuum spacetime and replaces it by mgesiructure. Behind that structure,
space stands ready to be constructed, by discrete deesaivd patterns of steps, or by start-
ing with a discrete pattern in the form of a diagram, a netwarlattice, a knot, or a simplicial
complex, and elaborating that structure until the spetyfi spatio-temporal locations appear.

Poisson brackets allow one to connect classical notioroation with the non-commutative
algebra used herein. Below the level of the Poisson brad&edstreatment of processes and
operators as though they were variables in the same condetkteavariables in the classical
calculus. In different degrees one lets go of the notion atsical variables and yet retains
their form, as one makes a descent into the discrete. Theetisworld of non-commutative
operators is a world linked to our familiar world of contirugopand commutative variables. This
linkage is traditionally exploited in quantum mechanicsrake the transition from the classical
to the quantum. One can make the journey in the other directrom the discrete and non-
commutative to the “classical” and commutative, but thatry@y requires powers of invention
and ingenuity that are the subject of this exploration. dusconviction that the world is basically
simple. To find simplicity in the complex requires speciatation and care.

In starting from a discrete point of view one thinks of a segeeof states of the world
S,8',8”, 8", ... whereS’ denotes the state succeedim discrete time. Itis natural to suppose
that there is some measure of differedzg™ = S+ — 5" and some way that stat€sand
T might be combined to form a new statd”. We can thus think of world-states as operators
in a non-commutative algebra with a temoporal derivative€ = S’ — S. At this bare level
of the formalism the derivative does not satisfy the Leibmile. In fact it is easy to verify
that D(ST) = D(S)T + S'D(T). Remarkably, the Leibniz rule, and hence the formalisms of
Newtonian calculus can be restored with the addition of oneeneperatot/. In this instance/
is a temporal shift operator with the property tlsat = JS’ for any stateS. We then see that if
VS = JD(S) = J(S" = 5).thenV(ST) = V(S)T + SV(T) for any statess and7. In fact
V(S)=JS"—JS =5J—JS =[S, J], so that this adjusted derivative is a commutator in
the general calculus of states. This, in a nutshell, is opragch to non-commutative worlds.
We begin with a very general framework that is a non-numécialeulus of states and operators.
It is then fascinating and a topic of research to see how phyand mathematics fit into the
frameworks so constructed.

A simplest and fundamental instance of these ideas is sete istructure of = /—1. We
view i as aniterant (see Section 4), a discrete elementary dynamical systeeatieg in time
the valueg--- —1,+1,—1,+1,--- }. One can think of this system as resulting from the attempt
to solvei? = —1 in the formi = —1/i. Then one iterates the transformation— —1/x and
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finds the oscillation from a starting value #fl or —1. In this sensé is identical in concept to a
primordial time. Furthermore the algebraic structure of the complex numbmerges from two
conjugate views of this discrete series[ad, +1] and[+1, —1]. We introduce a temporal shift
operatom such thay)[—1, +1] = [+1, —1]p andn? = 1 (sufficient to this purpose). Then we can
definei = [—1,+1]n, endowing it with one view of the discrete oscillation and gemsitivity

to shift the clock when interacting with itself or with anethoperator. See Sections 2 and 4 for
the details of this reconstruction of the complex numberse point of the reconstruction for
our purposes is thatbecomes inextricably identified with elemental time, andrsophysical
substituion ofit for ¢ (Wick rotation) becomes, in this epistemology, an act obggation of the
nature of time.

Constructions are performed in a Lie algebtaOne may taked to be a specific matrix Lie
algebra, or abstract Lie algebra.Afis taken to be an abstract Lie algebra, then it is convenient
to use the universal enveloping algebra so that the Lie mtazhn be expressed as a commutator.
In making general constructions of operators satisfyimtpaerelations, it is understood that one
can always begin with a free algebra and make a quotienti@gdlere the relations are satisfied.

On A, a variant of calculus is built by defining derivations as cautetors (or more generally
as Lie products). For a fixetf in A one defines

VNIA—>.A

by the formula
VyF =[F,N]=FN — NF.

V y Is a derivation satisfying the Leibniz rule.
VN(FG) =VN(F)G+ FVN(G).

Discrete Derivatives are Replaced by CommutatorsThere are many motivations for replacing
derivatives by commutators. f(z) denotes (say) a function of a real variableand f(z) =
f(xz + h) for a fixed increment, define thediscrete derivativeD f by the formulaD f = (f —
f)/h, and find that the Leibniz rule is not satisfied. One has thectfasmula for the discrete

derivative of a product: .
D(fg) = D(f)g+ fD(g).

Correct this deviation from the Leibniz rule by introduciaghew non-commutative operatér
with the property that

fJ=Jf.
Define a new discrete derivative in an extended non-comimatalgebra by the formula
V(f) = JD(f).

It follows at once that
V(fg) = JD(f)g+JfD(g) = JD(f)g+ fID(g) = V(f)g+ [V(g).
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Note that )

V() =UF=Jf)/h=(f]=Jf)/h=]f J/h]
In the extended algebra, discrete derivatives are repiebdsyy commutators, and satisfy the
Leibniz rule. One can regard discrete calculus as a subsettommutative calculus based on
commutators.

Advanced Calculus and Hamiltonian Mechanics or Quantum Mebanics in a Non-Commutative
World. In A there are as many derivations as there are elements of gleralgnd these deriva-
tions behave quite wildly with respect to one another. If takes the concept @urvatureas the
non-commutation of derivations, thehis a highly curved world indeed. Withid one can build

a tame world of derivations that mimics the behaviour of fladrdinates in Euclidean space.
The description of the structure gf with respect to these flat coordinates contains many of the
equations and patterns of mathematical physics.

The flat coordinate®’ satisfy the equations below with tii& chosen to represent differentiation
with respect tay’:

Q. Q=0
[P, Pl =0
[Q", Pj] = 6.

Hered;; is the Kronecker delta, equal lowhen: = j and equal td) otherwise. Derivatives are
represented by commutators. 4

0;F =0F/0Q" = [F, P,

O, F = OF/OP, = [Q', F).
Our choice of commutators guarantees that the derivatige\afriable with respect to itself is
one and that the derivative of a variable with respect to tindisvariable is zero. Furthermore,
the commuting of the variables with one another guarantegisnixed partial derivatives are
independent of the order of differentiation. This is a flahfommmutative world.

Temporal derivative is represented by commutation withexisph (Hamiltonian) element?
of the algebra:
dF/dt = [F, H).
(For quantum mechanics, takilA/dt = [A, H].) These non-commutative coordinates are the
simplest flat set of coordinates for description of temp@tanomena in a non-commutative
world.

Hamilton’s Equations are Part of the Mathematical Structure of Non-Commutative Ad-
vanced Calculus. '
dP;/dt = [P, H| = —[H, P;] = —0H/0Q"

dQ'/dt = [Q', H] = OH/OP;.
These are exactly Hamilton’s equations of motion. The paté Hamilton’s equations is built
into the system.
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The Simplest Time Series Leads to the Diffusion Constant an#leisenberg’s Commuator.
Consider a time serieg), ', Q”, ...} with commuting scalar values. Let

Q=VQ=JDQ=JQ -Q)/r

wherer is an elementary time step (@@ denotes a times series value at timéhen(’ denotes
the value of the series at timier 7.). The shift operatoy is defined by the equatioRJ = JQ’
where this refers to any point in the time series so thét.] = JQ™+Y for any non-negative
integern. Moving J across a variable from left to right, corresponds to onedidke clock. This
discrete, non-commutative time derivative satisfies thierie rule.

This derivativeV also fits a significant pattern of discrete observation. @emghe act of
observing? at a given time and the act of observing (or obtainibhg) at a given time. Sinc&
and@’ are ingredients in computing)’ — @) /7, the numerical value associated with)), it is
necessary to let the clock tick once, Thus, if one first olsérand then obtain® (@), the result
is different (for the() measurement) if one first obtaif¥?), and then observeas. In the second
case, one finds the valdg instead of the valu€), due to the tick of the clock.

1. LetQQ denote the sequence: obse¥gthen obtairt).

2. LetQQ denote the sequence: obténthen observe).

The commutatof@), Q] expresses the difference between these two orders of wistea-
surement. In the simplest case, where the elements of tieesemes are commuting scalars, one
has

[Q.Q] = QQ - QQ = J(Q — Q)*/r.

Thus one can interpret the equation

Q,Q] = Jk
(k a constant scalar) as
(@ - Q)3/T =k
This means that the process is a walk with spatial step
A=+Vkr

wherek is a constant. In other words, one has the equation
k=A%)t

This is the diffusion constant for a Brownian walk. A walk wgpatial step siz& and time step
7 will satisfy the commutator equation above exactly whensitpgare of the spatial step divided
by the time step remains constant. This shows that the dffinstant of a Brownian process is
a structural property of that process, independent of denations of probability and continuum
limits.
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Thus we can write (ignoring the timeshift operatfr

(@, Q) = (AQ)*/7.

If we work with physics at the Planck scale, then we can ta&s the Planck time anf() as the
Planck length. Then

(AQ)*/7 = h/m

wherem is the Planck mass. However, we shall also Wick rotate the from 7 to i justifying
17 on the principle (described above) thashould be multiplied by to bring time into coinci-
dence with an elemental time that is both a temporal ope(gt@and a value#). With this we
obtain

[Q,Q] = —ih/m
or
mQ. Q] = ih,
and takingP = m(), we have finally
[P.Q] = ih.

Heisenberg’s commutator for quantum mechanics is seereiméius of discrete physics and
imaginary time.

Schroedinger’s Equation is Discrete Here is how the Heisenberg form of Schroedinger’s equa-
tion fits in this context. Let/ = (1 + ihHAt). ThenVy = [¢, J/At], and we calculate

Vi = [(1 +ihHAL) /At — [(1 + ihHAL) /Aty = ih[y, H].
This is exactly the form of the Heisenberg equation.

Dynamical Equations Generalize Gauge Theory and Curvature One can take the general
dynamical equation in the form ‘
dQ*/dt = G;

where{G,, - -- ,G,} is a collection of elements od. Write G; relative to the flat coordinates via
G; = P, — A,;. This is a definition ofd; and0F/9Q" = [F, ;. The formalism of gauge theory
appears naturally. In particular, if

Vz(F) = [F7 gi]u

then one has the curvature
Vi, V|F = [Rij, F]
and
Rij — @Aj - 8]AZ + [AZ, AJ]

This is the well-known formula for the curvature of a gaugerection. Aspects of geometry
arise naturally in this context, including the Levi-Civitannection (which is seen as a conse-
guence of the Jacobi identity in an appropriate non-comtivetevorld).
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One can consider the consequences of the commL@@ic(@j] = g;;, deriving that

QT = Gr + Frst + FrsthQt7

whereG,. is the analogue of a scalar field,, is the analogue of a gauge field ahd, is the
Levi-Civita connection associated wit;. This decompositon of the acceleration is uniquely
determined by the given framework.

Non-commutative Electromagnetism and Gauge TheoryOne can use this context to revisit
the Feynman-Dyson derivation of electromagnetism from rmoomator equations, showing that
most of the derivation is independent of any choice of conataus, but highly dependent upon
the choice of definitions of the derivatives involved. Witthany assumptions about initial com-
mutator equations, but taking the right (in some sense sistptlefinitions of the derivatives
one obtains a significant generalization of the result oihregn-Dyson. We give this derivation
in Section 5 of the present paper, using diagrammatic adgebclarify the structure. In this

derivation we useX to denote the position vector rather th@gnas above.

Theorem With the appropriate [see below] definitions of the opegtand taking
VP=?+92+02, H=XxX and E = 9,X, one has
1. X=E+XxH
2.VeH =0
3.00H+VxE=HXxH
4. O E -V x H=(8?-V)X

The key to the proof of this Theorem is the definition of thediderivative. This definition
is as follows ‘ ' ‘ ' '
@F - F - ZZXZ@(F) - F - ZiXi [F, XZ]

for all elements or vectors of elementsThe definition creates a distinction between space and
time in the non-commutative world. A calculation revealatth

X =0,X 4+ X x (X x X).

This suggests takin§ = §,X as the electric field, an® = X x X as the magnetic field so that
the Lorentz force law ) ‘
X=F+XxB

is satisfied.

This result is applied to produce many discrete models oTtteorem. These models show that,
just as the commutatdX, X| = Jk describes Brownian motion in one dimension, a generaliza-
tion of electromagnetism describes the interaction ofdsf time series in three dimensions.
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Takingd, F = F — %, X,0;(F) = F — %, X;[F, X,] as a definition of the partial derivative with
respect to time is a natural move in this context because ik@o time variablel in this non-
commutative world. A formal move of this kind, matching atpat from the commutative world
to the mathematics of the non-commuative world is the thehtleeoSection 6 of this paper. In
that section we consider the well known way to associate anadgr to a product of commutative
variables by taking a sum over all permutations of produtte@operators corresponding to the
individual variables. This provides a way to associate ajpeexpressions with expressions in the
commuative algebra, and hence to let a classical world gpored or map to a non-commutative
world. To bind these worlds more closely, we can ask thatéh@dlas for taking derivatives in
the commuative world should have symmetrized operatorymiodorrespondences in the non-
commuative world. In Section 6 we show how the resulting trangs are related to having a
guadratic Hamiltonian (first order constraint) and to hgwanversion of general relativity [3] 4]
(second order constraint). Such constraints can be cawiedl orders of derivatives, but the
algebra of such constraints is, at the present time, in apanyitive state. We discuss some of
the complexities of the constraint algebra in the Appendithts paper.

In Section 7 we discuss the relationship of the Bianchi idgim non-commutative worlds
and its role in the classical derivation of Einstein’s equa. This suggests other avenues of
relationship between general relativity and non-commeatiorlds. The reader may well aske at
this point if we propose quantum gravity via this framewdrkour judgement, it is too early to
tell.

Remark. While there is a large literature on non-commutative geoyneimanating from the

idea of replacing a space by its ring of functions, work désad herein is not written in that
tradition. Non-commutative geometry does occur here, énsinse of geometry occuring in the
context of non-commutative algebra. Derivations are r&gmeed by commutators. There are
relationships between the present work and the traditiooaicommutative geometry, but that
is a subject for further exploration. In no way is this papgended to be an introduction to

that subject. The present summary is based on[[15, 17, 1&0121,[22[ 23, 24, 25] and the
references cited therein.

The following references in relation to non-commutativécohus are useful in comparing
with the present approach! [2,(5,[7] 29]. Much of the presemkugothe fruit of a long series of
discussions with Pierre Noyes. paper![27] also works withimal coupling for the Feynman-
Dyson derivation. The first remark about the minimal couplatcurs in the original paper by
Dyson [1], in the context of Poisson brackets. The paperd8Jarth reading as a companion to
Dyson. It is the purpose of this summary to indicate how nomimutative calculus can be used
in foundations.

14



4 lterants, Discrete Processes and Matrix Algebra
The primitive idea behind an iterant is a periodic time sede“waveform”
-« - abababababab - - - .

The elements of the waveform can be any mathematically oireralty well-defined objects.
We can regard the ordered pajrsb] and [b, a| as abbreviations for the waveform or as two
points of view about the waveform €irst or b first). Call[a, b] aniterant One has the collection
of transformations of the forrid'[a, b] = [ka, k~'b] leaving the productb invariant. This tiny
model contains the seeds of special relativity, and tharitisrcontain the seeds of general matrix
algebra! Since this paper has been a combination of dismssi non-commutativity and time
series, we include this appendix on iterants. A more coragletcussion will appear elsewhere.
For related discussion see [9] 10] 11,[12,13[ 14,16, 28].

Define products and sums of iterants as follows
la, b][c,d] = [ac, bd]
and
la,b] + [c,d] = [a+ ¢, b+ d].

The operation of juxtapostion is multiplication while denotes ordinary addition in a category
appropriate to these entities. These operations are hatiinarespect to the structural juxtapo-
sition of iterants:

...abababababab...

...cdededededed. ..

Structures combine at the points where they correspondeidans combine at the times where
they correspond. Iterants conmbine in juxtaposition.

If e denotes any form of binary compositon for the ingredients,.(.) of iterants, then we
can extena to the iterants themselves by the definitjan| e [c, d| = [a e c, bed]. In this section
we shall first apply this idea to Lorentz transformationgl #ven generalize it to other contexts.

So, to work: We have
[t —a,t+ x| = [t,t] + [z, 2] = t[1, 1] + 2[-1,1].
Since[l, 1][a, b] = [la, 1b] = [a, b] and[0, 0][a, b] = [0, 0], we shall write
1=11,1]

and
0 =[0,0].

15



Let
o=[-1,1].

o is a significant iterant that we shall refer to agdarity. Note that
oo = 1.

Note also that
[t —a,t+z]=t+ 0.

Thus the points of spacetime form an algebra analogous tmtin@lex numbers whose elements
are of the formt + xo with oo = 1 so that

(t+zo)(t' +2'c) = tt' + z2’ + (ta' + zt')o.

In the case of the Lorentz transformation it is easy to seeldraents of the forrfk, k1] translate
into elements of the form

T()=[1+v)/V(1-v?),(1=v)/vV(1—-v?)]=[kE].

Further analysis shows thats the relative velocity of the two reference frames in thegital
context. Multiplication now yields the usual form of the leoitz transform

Ti(t+ xo) =T (v)(t+ xo)

= (1/v/(1 = 0v2) —vo/+/(1 —v?))(t + z0)
=(t—av)/v/ (1 =02+ (x —vt)o/+/(1 —v?)

=t + 20

The algebra that underlies this iterant presentation oiapeelativity is a relative of the
complex numbers with a special elemenof square one rather than minus ore£ —1 in the
complex numbers).

The appearance of a square root of minus one unfolds nat@rath iterant considerations.
Define the “shift” operatorn on iterants by the equation

77[&7 b] = [bv 0]77

with > = 1. Sometimes it is convenient to think gfas a delay opeator, since it shifts the
waveform...ababab... by one internal time step. Now define

i=[-1,1]n
We see at once that

i = [_17 1]77[_17 1]77 = [_17 1”17 _1]772 = [_17 1”17 _1] = [_17 _1] = -1
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Thus

1= —1.

Here we have describeédn anewway as the superposition of the waveforra: [—1, 1] and the
temporal shift operatay. By writing i = en we recognize an active version of the waveform that
shifts temporally when it is observed. This theme of inahgdihe result of time in observations
of a discrete system occurs at the foundation of our cortsbruc

4.1 MATRIX ALGEBRA VIA ITERANTS

Matrix algebra has some strange wisdom built into its vemydso Consider a two dimensional
periodic pattern or “waveform.”

...abababababababab...
...cdededcededededed. ..
...abababababababab...
...cdcdcedededededcd...
...abababababababab...

() (a) (i) ()

Above are some of the matrices apparent in this array. Cagrtparmatrix with the “two dimen-
sional waveform” shown above. A given matrix freezes out g teaview the infinite waveform.
In order to keep track of this patterning, lets write

la,d] + [b, dn = (i 2)

[mAz(ﬁ 2)
=(10)

The four matrices that can be framed in the two-dimensiosabform are all obtained from the
two iterantsja, d| and|b, ¢] via the shift operatiom[z, y| = [y, x|n which we shall denote by an
overbar as shown below

where

and

[z, y] = [y, z].
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Letting A = [a, d] and B = [b, ¢|, we see that the four matrices seen in the grid are
A+ Bn, B+ An, B + An, A+ Bn.

The operator has the effect of rotating an iterant by ninety degrees irfidhmal plane. Ordinary
matrix multiplication can be written in a concise form usthg following rules:

mm =1
nQ=Qn
where Q is any two element iterant.
For example, let = [—1, 1] so thatt = —e andee = [1,1] = 1. Let
1= €n.

Then
i1 = enen = eenn = €(—e€) = —ee = —1.

We have reconstructed the square root of minus one in thedbthe matrix

izenz[—li]n:((l] _01)

More generally, we see that
(A+ Bn)(C+ Dn) = (AC + BD) + (AD + BC)n
writing the2 x 2 matrix algebra as a system of hypercomplex numbers. Note tha
(A+ Bn)(A— Bn)=AA— BB

The formula on the right corresponds to the determinant efrttatrix. Thus we define the
conjugateof A + Bn by the formula

A+ Bn=A- Bn.
These patterns generalize to higher dimensional matrebaéy
It is worth pointing out the first precursor to the quatersiohhis precursor is the system
{£1, te, £n, £i}.

Hereee = 1 = nn while i = en so thatii = —1. The basic operations in this algebra are those of
epsilon and eta. Eta is the delay shift operator that reg¢hgecomponents of the iterant. Epsilon
negates one of the components, and leaves the order unchahige quaternions arise directly
from these two operations once we construct an extra sqoatef minus one that commutes
with them. Call this extra root of minus oRé—1. Then the quaternions are generated by

{i=en,j=+v—1€k=+v—1n}
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with
PP ==k =ijk=—1.

The “right” way to generate the quaternions is to start atibgom iterant level with boolean
values of 0 and 1 and the operation EXOR (exclusive or). Bidchnts on this, and matrix
algebra from these iterants. This gives the square rootg#tien. Now take pairs of values from
this new algebra and builzix 2 matrices again. The coefficients include square roots ity
that commute with constructions at the next level and soajoains appear in the third level of
this hierarchy.

4.2 Matrix Algebra in General

Construction of matrix algebra in general proceeds asvald_et M be ann x n matrix over a
ring R. Let M = (m;;) denote the matrix entries. Letbe an element of the symmetric group
S, so thatry, m, - - - , 7, iS a permuation of, 2, - - - . n. Letv = (v, v9,- - - ,v,) denote a vector
with these components. Lét(v) denote the diagonal matrix whose- th diagonal entry is);.
Letv™ = (vgy, -+, 0y, ). Lt A™(v) = A(v™). Let A denote any diagonal matrix ankl™ denote
the corresponding permuted diagonal matrix as just destrithet|r| denote the permutation
matrix obtained by taking the— th row of x| to be ther; — th row of the identity matrix. Note
that[7]A = A™[r]. For each element of S,, define the vectov(M, 7) = (Mmiry, -+ , My, ) @nd
the diagonal matrixA[M], = A(v(M, 7)).

Theorem. M = (1/(n — 1)) X, cs, A[M].[7].

The proof of this theorem is omitted here. Note that the thepexpresses any square matrix
as a sum of products of diagonal matrices and permutationigesat Diagonal matrices add
and multiply by adding and multiplying their correspondiegtries. They are acted upon by
permutations as described above. This means that any nadgebra can be embedded in an
algebra that has the structure of a group ring of the permontgroup with coefficients\ in an
algebra (here the diagonal matrices) that are acted updmeljyermutation group, and following
the rule[r]A = A™[x]. Thisis a full generalization of the case= 2 described in the last section.

For example, we have the following expansion &f a 3 matrix:

a b c 1aOO 0 b 0 0 0 ¢
def:§[060+00f+d00+
g h k “\N0 0 Kk g 0 0 0O h O

0 0 ¢ 0 b 0 a 0 0

0O eO |+ dO0O0]|+[00O0 f]]

g 0 0 0 0 k 0 h O



Here, each term factors as a diagonal matrix multiplied bgranpitation matrix as in

a 00 a 0 0 100
00 f|=(07fo0 00 1
0 h 0 00 h 010

It is amusing to note that this theorem tells us that up todleeof of1/(n — 1)! a unitary matrix
that has unit complex numbers as its entries is a sum of sirapleary transformations factored
into diagonal and permutation matrices. In quantum comguyiarlance, such a unitary matrix is
a sum of products of phase gates and products of swap gates é&ich permutation is a product
of transpositions).

A reason for discussing these formulations of matrix algebthe present context is that one
sees that matrix algebra is generated by the simple opesadiguxtaposed addition and multi-
plication, and by the use of permutations as operators. eTaesunavoidable discrete elements,
and so the operations of matrix algebra can be motivatedebdkis of discrete physical ideas
and non-commutativity. The richness of continuum formuola, infinite matrix algebra, and
symmetry grows naturally out of finite matrix algebra anddesaut of the discrete.

5 Generalized Feynman Dyson Derivation

In this section we assume that specific time-varying coateéielements(;, X,, X3 of the alge-
bra.A are givenWe do not assume any commutation relations aboutX,, Xs.

In this section we no longer avail ourselves of the commaitatelations that are in back of
the original Feynman-Dyson derivation. We do take the d&dimé of the derivations from that
previous context. Surprisingly, the result is very simitathe one of Feynman and Dyson, as we
shall see.

Here A x B is the non-commutative vector cross product:
(A X B)k = E?’jzleijkAiBj.

(We will drop this summation sign for vector cross productsrf now on.) Then, withB =
X x X, we have o o

By = €1 Xi X = (1/2)€5u[ X5, X].
The epsilon tensay;, is defined for the indice§:, j, £} ranging froml to 3, and is equal t® if
there is a repeated index and is ortherwise equal to the $itre ermutation ofi23 given by
1jk. We represent dot products and cross products in diagramteasor notation as indicated
in Figure 2 and Figure 3. In Figure 2 we indicate the epsiloisd¢e by a trivalent vertex. The
indices of the tensor correspond to labels for the three etigge impinge on the vertex. The
diagram is drawn in the plane, and is well-defined since ttel@ptensor is invariant under
cyclic permutation of its indices.
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We will define the fields® and B by the equations
B=XxX and E = 9,X.

We will see thatE and B obey a generalization of the Maxwell Equations, and that ¢j@n-
eralization describes specific discrete models. The regldenld note that this means that a
significant part of théorm of electromagnetism is the consequence of choosing th@dicates

of space, and the definitions of spatial and temporal devesitvith respect to them. The back-
ground process that is being described is otherwise ailgjtand yet appears to obey physical
laws once these choices are made.

In this section we will use diagrammatic matrix methods taoycaut the mathematics. In
general, in a diagram for matrix or tensor composition, wa swer all indices labeling any edge
in the diagram that has no free ends. Thus matrix multipbcatorresponds to the connecting of
edges between diagrams, and to the summation over commigesndlVith this interpretation of
compositions, view the first identity in Figure 2. This is afimental identity about the epsilon,
and corresponds to the following lemma.

a b a. ,b a, ,b a b
_ = - +
Vo
d c d c d C
c

|
¥
7]

Figure 2:Epsilon Identity

Lemma. (View Figure 2) Lete;;;, be the epsilon tensor taking valuesl and—1 as follows:
Whenijk is a permuation ol23, thene,;; is equal to the sign of the permutation. Whigh
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contains a repetition froni1, 2, 3}, then the value of epsilon is zero. Theratisfies the labeled
identity in Figure 2 in terms of the Kronecker delta.

Zz’ €abi€edi = _6ad5bc + 5ac(sbd-

The proof of this identity is left to the reader. The identigelf will be referred to as thepsilon
identity. The epsilon identity is a key structure in the work of thists®n, and indeed in all
formulas involving the vector cross product.

The reader should compare the formula in this Lemma with thgrdms in Figure 2. The
first two diagram are two versions of the Lemma. In the thimbdam the labels are capitalized
and refer to vectorsl, B andC. We then see that the epsilon identity becomes the formula

Ax (BxC)=(Ae(C)B—(AeB)C

for vectors in three-dimensional space (with commutingdoates, and a generalization of this
identity to our non-commutative context. Refer to FigureoBthe diagrammatic definitions of
dot and cross product of vectors. We take these definitioitk (mplicit order of multiplication)

in the non-commutative context.

AeB = A B °
U || OF =IF.X]
AxB =A B . .
Ry
VXF:,aF

Y

=[F,X] =-[F,X]

Figure 3:Defining Derivatives

Remarks on the Derivatives.
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1. Since we do not assume tHaf;, X;] = d;;, nor do we assumgX;, X,] = 0, it will not
follow that &/’ and B commute with theX;.

2. We define
0;(F) = [F, Xy,

and the reader should note that, these spatial derivatrenscalonger flat in the sense of
section 1 (nor were they in the original Feynman-Dyson @iown). See Figure 3 for the
diagrammatic version of this definition.

3. We define), = 9/t by the equation

for all elements or vectors of elementsWe take this equation as the global definition of
the temporal partial derivative, even for elements thanatecommuting with theX;. This
notion of temporal partial derivativ@ is a least relation that we can write to describe the
temporal relationship of an arbitrary non-commutativetoeé¢’ and the non-commutative
coordinate vectoX. See Figure 3 for the diagrammatic version of this definition.

4. In defining

we are using the definition itself to obtain a notion of thaatwon of " with respect to time.
The definition itself creates a distinction between spacktiane in the non-commutative
world.

5. The reader will have no difficulty verifying the followirfgrmula:

This formula shows that, does not satisfy the Leibniz rule in our non-commutative-con
text. This is true for the original Feynman-Dyson contexid &r our generalization of
it. All derivations in this theory that are defined directly @mmutators do satisfy the
Leibniz rule. Thus), is an operator in our theory that does not have a representasi a
commutator.

6. We define divergence and curl by the equations
VeB =% 0(B)

and

See Figure 3 and Figure 5 for the diagrammatic versions dfoar divergence.
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Now view Figure 4. We see from this Figure that it follows dittg from the definition of the
time derivatives (as discussed above) that

X =0,X + X x (X x X).

This is our motivation for defining '
E - 8tX

and ‘ ‘
B=X xX.
With these definition in place we have
X=E+X xB,
giving an analog of the Lorentz force law for this theory.
Just for the record, look at the following algebraic caltiokafor this derivative:
F = 0,F + %, X,[F, X
= O,F + S X, FX; — X; X, F)
= O,F + %X, FX; — X;F,X) + X;F,X — X;X,F

Hence . . . . . .
F=0F+XXxF+(XeNX—(XeX)F

(using the epsilon identity). Thus we have
X=0X+Xx(XxX)+(XeX)X — (X eX)X,

Whence .. . . . .
X=0X+X x(X xX).

In Figure 5, we give the derivation th& has zero divergence.
Figures 6 and 7 compute derivativesi®fand the Curl ofF, culminating in the formula

0:B+V xE =B xB.

In classical electromagnetism, there is no tenx B. This term is an artifact of our non-
commutative context. In discrete models, as we shall sekeatmd of this section, there is
no escaping the effects of this term.

Finally, Figure 8 gives the diagrammatic proof that
OFE -V xB=(8#-V)X.

This completes the proof of the Theorem below.
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[ ] [ ) L4
X = DX+ X x (X xX)

Figure 4:The Formula for Acceleration

Electromagnetic TheoremWith the above definitions of the operators, and taking
VZ=0?4+02+02, B=XxX and E = 0,X we have
1. X=E+XxB
2.VeB =0
3.0B+VxE=BxB
4. O, E -V x B=(? — V)X

Remark. Note that this Theorem is a non-trivial generalization efffl@ynman-Dyson derivation

of electromagnetic equations. In the Feynman-Dyson caseassumes that the commutation
relations

[Xi, X5] =0
and '
(X, X;] = i

are givenandthat the principle of commutativity is assumed, so that &éind B commute with
the X; thenA and B commute with each other. One then can interpyets a standard derivative
with 0;(X;) = §;;. Furthermore, one can verify that; and B; both commute with the(;. From
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Figure 5:Divergence ofB

this it follows thato,(F) ando,(B) have standard intepretations and tBak B = 0. The above
formulation of the Theorem adds the descriptiorﬂb&s@t(X), a non-standard use of in the
original context of Feyman-Dyson, whefle would only be defined for thosd that commute
with X;. In the same vein, the last formulaEl — V x B = (9? — V?)X gives a way to express
the remaining Maxwell Equation in the Feynman-Dyson cantex

Remark. Note the role played by the epsilon tensgy, throughout the construction of gener-
alized electromagnetism in this section. The epsilon teissthe structure constant for the Lie
algebra of the rotation groufO(3). If we replace the epsilon tensor by a structure constant
fijx for a Lie algebrajof dimensiond such that the tensor is invariant under cyclic permutation
(fijk = frij), then most of the work in this section will go over to that tax. We would then
haved operator/variableX, - - - X; and a generalized cross product defined on vectors of length
d by the equation

(A X B)k = fzgkAsz
The Jacobi identity for the Lie algebéimplies that this cross product will satisfy
Ax(Bx(C)=(AxB)xC+[Bx (A xC)
where
([B x (Al x C)y = fur fijeAi BiC;.

This extension of the Jacobi identity holds as well for theecaf non-commutative cross product
defined by the epsilon tensor. It is therefore of interestquiage the structure of generalized
non-commutative electromagnetism over other Lie algefangtbe above sense). This will be the
subject of another paper.
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@tB:E+).([).(,B]
)
B=w2[X. X" = X, X]

Y

[E,).(] +[XxB,).<]

Y

-VXE+[).(B,X]

Figure 6:Computing B

5.1 Discrete Thoughts

In the hypotheses of the Electromagnetic Theorem, we aestfréake any non-commutative
world, and the Electromagnetic Theorem will satisfied irt tharld. For example, we can take
eachX; to be an arbitary time series of real or complex numbers,tetriyigs of zeroes and ones.
The global time derivative is defined by

F=JF —F)=[FJ],

whereF'J = JF'. This is the non-commutative discrete context discusseé@dtians 2 and 3.
We will write '
F=JA(F)

whereA(F') denotes the classical discrete derivative
A(F)=F —F.
With this interpretationX is a vector with three real or complex coordinates at each,tand
B=XxX=JAX") x A(X)

while
E=X—-Xx (X xX)=J2A%X) - JPAX") x (A(X') x A(X)).

Note how the non-commutative vector cross products are osatpthrough time shifts in this
context of temporal sequences of scalars. The advantageeajdaneralization now becomes
apparent. We can create very simple models of generalizdremagnetism with only the
simplest of discrete materials. In the case of the modelnmgeof triples of time series, the
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Figure 7:Curl of £

generalized electromagnetic theory is a theory of measem&sof the time series whose key
guantities are
A(X') x A(X)

and
A(X") x (A(X") x A(X)).

It is worth noting the forms of the basic derivations in thisdel. We have, assuming that
is a commuting scalar (or vector of scalars) and taking= X! — X;

and for the temporal derivative we have
OF = J[1— JA" e AJA(F)

whereA = (A, Ay, Ag).

6 Constraints - Classical Physics and General Relativity
The program here is to investigate restrictions in a nonroatative world that are imposed by

asking for a specific correspondence between classicalblas acting in the usual context of
continuum calculus, and non-commutative operators cporeding to these classical variables.
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Figure 8:Curl of B

By asking for the simplest constraints we find the need foradoatic Hamiltonian and a remark-
able relationship with Einstein’s equations for generédtreity [3] 4]. There is a hierarchy of
constraints of which we only analyze the first two levels. Apendix to this paper indicates a
direction for exploring the algebra of the higher constisin

If, for example, we let: andy be classical variables and andY the corresponding non-
commutative operators, then we ask thatcorrespond toX™ and thaty™ correspond ta’” for
positive integers:.. We further ask that linear combinations of classical vdesitorrespond to
linear combinations of the corresponding operators. Thestictions tell us what happens to
products. For example, we have classically that- y)? = 2* + 2zy + y?. This, in turn must
correspond td X +Y)? = X2 + XY + Y X + Y2 From this it follows thaRzy corresponds to
XY + Y X. Hencexy corresponds to

(XY} = (XY +VX)/2.

By a similar calculation, ifc{, x5, - - - , z;,, are classical variables, then the produgt, - - - z,,
corresponds to
{XiXo- - X} = (1/n)E0es, Xoy Xoy -+ Xo,, -

wheresS,, denotes all permutations ©f2, - - - , n. Note that we use curly brackets for these sym-
metrizers and square brackets for commutators &4.,i8] = AB — BA.

We can formulate constraints in the non-commutative woylégking for a correspondence
between familiar differentiation formulas in continuunmiadus and the corresponding formulas
in the non-commutative calculus, where all derivativeseagressed via commutators. We will
detail how this constraint algebra works in the first few sadeéxploration of these constraints
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has been pioneered by Tony Deakin[3, 4]. The author of tipgpand Tony Deakin are planning
a comprehensive paper on the consequences of these ctminahme interface between classical
and quantum mechanics.

Recall that the temporal derivative in a non-commutativeavis represented by commutator
with an operatof{ that can be intrepreted as the Hamiltonian operator inicectantexts.

© =[O, H].
For this discussion, we shall take a collecti@h, 2, - - - , Q" of operators to represent spatial
coordinateg!, ¢%, - - - , ¢". TheQ’ commute with one another, and the derivatives with respect t

Q' are represented by operatdrsso that
00/0Q" = ©; = [0, P].
We also write ' ' '
00/0P' = 0" = Q" 0.
To this purpose, we assume thaX', P/] = §“ and that the”’ commute with one another (so
that mixed partial derivatives with respect to theare independent of order of differentiation).

Note that

Q' =[Q', H] = H".

It will be convenient for us to writé/? in place ofQ’ in the calculations to follow.

The First Constraint. Thefirst constraintis the equation
0 = {Q©;} = {H'O;}.

This equation expresses the symmetrized version of the oalaulus formulad = ¢i6;. It is
worth noting that the first constraint is satisfied by the qaid Hamiltonian

1 o
H = Z(gijpzpj + P'Pg;;)

whereg;; = g;; and theg;; commute with the)*. We leave the verification of this point to the
reader, and note that the fact that the quadratic Hamiltoshaoees satisfy the first constraint shows
how the constraints bind properties of classical physitshiis case Hamiltonian mechanics) to
the non-commutative world.

The Second Constraint.Thesecond constrairis the symmetrized analog of the second tempo-
ral derivative: ) ' o
However, by differentiating the first constraint we have
© = {H'0;} + {H'{H'6,}}
Thus the second constraint is equivalent to the equation
{H'{H'©;}} = {H'H'©y}.

We now reformulate this version of the constraint in thedaiing theorem.
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Theorem. The second constraint in the forfd/*{ H0,;}} = {H'H’©,;} is equivalent to the
equation

H@inj]»Hi] =0.

Proof. We can shortcut the calculations involved in proving thiediem by looking at the
properties of symbolsl, B, C' such thatAB = BA, ACB = BCA. Formally these mimic
the behaviour oA = H', B = H/,C = ©,; in the expression&l‘H’©,; and H'©,; H’ since

0,; = 0;;, and the Einstein summation convention is in place. Then

(A{BC}} = %(A(BC 4+ CB)+ (BC + CB)A)

— i(ABC + ACB + BCA + CBA),

{ABC} = =(ABC + ACB + BAC + BCA + CAB + CBA).

1
6
So

(ABC} — {A{BC}} = %(—ABC _ ACB +2BAC — BCA +2CAB — CBA)

- 11—2(ABC — 2ACB + CAB)

1
12

= (A(BC ~CB) + (OB~ BC)A)

(ABC — 2BCA + CBA)

1
— 5 (AIB.C) = [B.C14)

= SIA[B.C])
Thus the second constraint is equivalent to the equation
[H',[H7,0,]] = 0.
This in turn is equivalent to the equation
[0, H’], H'] = 0,

completing the proof of the Theorem.
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Remark. If we define ‘ ‘ '

Vi(©) =1[6,H]=[0,Q]
then this is the natural covariant derivative that was dieedrin the introduction to this paper.
Thus the second order constraint is

Note that o o
VI(V(0y) = [[©4, 1], H']
= —[[H", 0], H’] — [[H?, H"], 0;]
= V/(V(©y) + [[H', H], 0;]
= VI(V/(05) + [[H', H], 0;].
Hence the second order constraint is equivalent to the iegquat
[[H', H],0;] = 0.
This equation weaves the curvatureNowvith the flat derivatives 0.
A Relationship with General Relativity. Again, if we define
V(©) =[O, H'] = [0,

then this is the natural covariant derivative that was dieedrin the introduction to this paper.
Thus the second order constraint is

Vi(Vi(0;) = 0.

If we use the quadratic Hamiltoniai = 1(g;;P'P? + P'P’g;;) as above, then withh = '™
the second constraint becomes the equation

guv(g]k:g’l;?]zu)v —0.

Deakin and Kilmister[[4] observe that this last equationcsglezes to a fourth order version of
Einstein’s field equation for vacuum general relativity:

2
Ky = gef(Rab;ef + §Raebe) =0

wherea, b, e, f = 1,2,---n andR is the curvature tensor corresponding to the metric This
equation has been studied by Deakin[ih [4]. It remains to lea sehat the consequences for
general relativity are in relation to this formulation, amdemains to be seen what the further
consequences of higher order constraints will be.

The algebra of the higher order constraints is under inyastin at this time.
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7 Onthe Algebra of Constraints

We have the usual advanced calculus formiuta ¢i6;. We shall defing’ = ¢ so that we can
write § = h'6,. We can then calculate successive derivatives @ithdenoting the:-th temporal
derivative ofd.
o) = p'e,
0@ = h'Vo;, + h'h 0
0B = h'@0, + 3" Wnig;; + h'hIR%0,),

The equality of mixed partial derivatives in these caldolad makes it evident that one can use a
formalism that hides all the superscripts and subscripisk, - - - )). In that simplified formalism,

we can write
00 = ho

0@ = LM 1+ K20
0¥ = hP9 + 3hVho + K0
W = n*0 + 6R20RM) + 30hM% + 4hORP + 61

Each successive row is obained from the previous row by amplhe identityd™ = hf in
conjunction with the product rule for the derivative.

This procedure can be automated so that one can obtain thelés for higher order deriva-
tives as far as one desires. These can then be convertechenttoh-commutative constraint
algebra and the consequences examined. Further analykis kind will be done in a sequel to
this paper.

The interested reader may enjoy seeing how this formalisnbeacarried out. Below we il-
lustrate a calculation usinty athematica®™ , where the program already knows how to formally
differentiate using the product rule and so only needs tmlmkthatd) = h6. This is said in
the equatior?”[x] = H[z|T[x] whereT[z] stands of) and H [z] stands forh with x a dummy
variable for the differentiation. HerB[T'[z], | denotes the derivative @f[x] with respect tar,
as doed"[x],

In the calculation below we have indicated five levels of wive. The structure of the
coefficients in this recursion is interesting and complesittay. For example, the coefficients of
H[z|"T'[z]H'[x] = h"6K’ are the triangular numbefd, 3, 6, 10, 15,21, - - - } but the next series
are the coefficients off [x]"T'[z] H'[x]* = h"0h/?, and these form the series

{1,3,15,45,105, 210, 378, 630, 990, 1485, 2145, - - - }.

This series is eventually constant after four discreteediifitiations. This is the next simplest
series that occurs in this structure after the triangulanivers. To penetrate the full algebra
of constraints we need to understand the structure of thesseatives and their corresponding
non-commutative symmetrizations.
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T'[z]:=H|[z]T[x]

D[Tz), ]

D[D[Tz], z], ]

D[D[D[Tz], z], z], z]
D[D[D[D[Tx], z], z], z], z]
D[D[D[D[DI[T[z], z], z], ], 2], z]
Hla|Tx]

H[z)*T[z] + T[z]H'|z]
H[x]3T[x] + 3H [z|T[z|H'[z] + T|x|H"|z]
H2)*T[x] + 6H [2)*T (2] H'[x] + 3T [x) H'[x]? + 4H[2]T [x] H" 2] + T[x]H®[x]

H[x]’T[x)+10H [z]*T[z)H'[z] + 15H []T [x] H'[x]* + 10H [x]*T 2| H" [x] + 10T [z| H'[x) H" [x] +
5H[x)T[z]H®[z] + T[] HW[x]

7.1 Algebra of Constraints

In this section we work with the hidden index conventionsctdiégd before in the paper. In this
form, the classical versions of the first two constraint éiqus are

1. 0 =0h
2. 0= 0h%+0h

In order to obtain the non-commutative versions of thesataojs, we replacé by H and
0 by © where the capitalized versions are non-commuting opeyaffine first and second con-
straints then become

1. {0} ={0H} = 1(0H + HO)
2. {6} ={0H?} +{eH} = L{(OH*+ HOH + H?O) + L(0H + HO)
Proposition. The Second Constraint is equivalent to the commutator exuat
[©, H], H] = 0.

Proof. We identify ‘ i
{0} ={o}
and ' '
{0} ={{eH}H} +{6H}.
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So we need
{en*} = {{6H}H}.

The explicit formula fo{{OH } H } is
{({6HYH} = %({@H}H + H{OH}) = i(@HH + HOH + HOH + HHO).
Thus we require that
%(@H2 + HOH + H*0) = i(@HH + HOH + HOH + HHO).

which is equivalent to
OH? + H*© —2HOH = 0.

We then note that
[[©,H],H] = (6H — HO)H — H(OH — HO) = OH? + H*© — 2HOH.
Thus the final form of the second constraint is the equation
6, H],H]=0.//

The Third Constraint. We now go on to an analysis of the third constraint. The thinalstraint
consists in the the two equations

1. {6} = {0H?) + 3{OHH} + {0H}
2. {6} = {6}* where
{6} = ({6H}YH*} + 2{0HH} + {{OH}H} + {61}
Proposition. The Third Constraint is equivalent to the commutator equnati
1%, [H,0]] = [H,[H,6]] - 2[H, [H,6].
Proof. We demand thaf&} = {©}* and this becomes the longer equation
{0H%} + 3{0HH} + {0} = {{©0H}H*} + 2{0HH} + {{6H}H} + {0H}
This is equivalent to the equation
{en®} + {eHHO} = {{6H}H?} + {{6H}H}
This, in turn is equivalent to
{oH°} — {{0H} 1} = {{OH}H} — {0H 11}

35



This is equivalent to
(1/4)(H*©0+H*OH+HOH*+OH*)—(1/6)(H*(HO+OH)+H(HO+OH)H-+(HO+OH)H?)
= (1/2)(H(1/2)(HO+OH)+(1/2)(HO+OH)H)—(1/6)(HHO+HOH+HHO+HOH+OHH+OHH)
This is equivalent to

3(H*© + H*OH + HOH? + OH?) — 2(H?0© + 2H?OH + 2HOH” + O H?)

—3(HHO+ HOH + HOH +©OHH) —2(HHO + HOH + HHO + HOH + ©HH + ©HH)

This is equivalent to
H?© — H?©H — HOH* + OH®

= (HHO + HOH + HOH + ©OHH) — 2(HHO + ©HH)
The reader can now easily verify that
[H? [H,O]] = H*© — H*OH — HOH? + O H®
and that
[H,[H,0)] —2[H,[H,0]] = (HHO + HOH + HOH + OHH) — 2(HHO + ©OHH)
Thus we have proved that the third constraint equationscane@ent to the commutator equation
(H2,[H,6]] = [H,[H,6]] - 2[H,[H,6)]
This completes the proof of the Proposition. //

Discussion.Each successive constraint involves the explicit formatdtie higher derivatives of
© coupled with the extra constraint that

{@(n)}- — {@(n+1)}.

We conjecture that each constraint can be expressed as autatorrequation in terms @ |,

H and the derivatives off, in analogy to the formulas that we have found for the firstehre
constraints. This project will continue with a deeper algebstudy of the constraints and their
physical meanings.

8 Appendix — Einstein’s Equations and the Bianchi Identity

The purpose of this section is to show how the Bianchi ider{see below for its definition)

appears in the context of non-commutative worlds. The Biaidentity is a crucial mathematical
ingredient in general relativity. We shall begin with a dureview of the mathematical structure
of general relativity (see for examplée [6]) and then turrhi®¢ontext of non-commutative worlds.
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The basic tensor in Einstein’s theory of general relatiigty

1
_Rgab

ab ab
G =R 5

whereR is the Ricci tensor an& the scalar curvature. The Ricci tensor and the scalar awnevat
are both obtained by contraction from the Riemann curvaansorR¢ , with R, = R¢,., R* =

g% g" R;;, andR = ¢g" R;;. Because the Einstein teng@t® has vanishing divergence, itis a prime
candidate to be proportional to the energy momentum tefgarThe Einstein field equations

are 1
R — SRy = KT,

The reader may wish to recall that the Riemann tensor ismédarom the commutator of a
covariant derivativéV,,, associated with the Levi-Civita connectidty, = (I'x)’ (built from the
space-time metrig;;). One has

)\a:b - Vb)\a - ab)\a - ng)\d

or
Ay = VA = OpA — [pA

for a vector field\. With
Rij = [V, V] =0l — 0,1y + [I, T,

one has

ch = <R0d>(bl'
(Here R, is notthe Ricci tensor. It is the Riemann tensor with two intermalices hidden from
sight.)

One way to understand the mathematical source of the Bintgesor, and the vanishing of
its divergence, is to see it as a contraction of the Bianamtitly for the Riemann tensor. The
Bianchi identity states

gcd:e + Rgde:c + Rgec:d =0

where the index after the colon indicates the covariantvdgvie. Note also that this can be
written in the form

(Rcd:e)g + (Rde:c>g + (Rec:d>g = O

The Bianchi identity is a consequence of local propertigbefLevi-Civita connection and con-
sequent symmetries of the Riemann tensor. One relevant symof the Riemann tensor is the
equationRy., = —Ry,..

We will not give a classical derivation of the Bianchi idéypthere, but it is instructive to see
how its contraction leads to the Einstein tensor. To this antk that we can contract the Bianchi
identity to

beae T Rpgee T Rpegg = 0

bae:c bec:a
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which, in the light of the above definition of the Ricci tensmid the symmetries of the Riemann
tensor is the same as
Rbc:e - Rbe:c + R

Contract this tensor equation once more to obtain
Rbc:b - Rbb:c + Rl?bc:a - 07

= 0.

a
bec:a

and raise indices
R\, — R.+ R =0.
Further symmetry gives
Ry, = R}, = Ri, = R,
Hence we have
2R, — R, =0,

which is equivalent to the equation
1
(RE— SR8}y = Gy =0

From this we conclude that’s = 0. The Einstein tensor has appeared on the stage with vanishing
divergence, courtesy of the Bianchi identity!

Bianchi Identity and Jacobi Identity. Now lets turn to the context of non-commutative worlds.
We have infinitely many possible convariant derivativelspiihe form

Fq= vaF: [FuNa]

for someN, elements in the non-commutative world. Choose any suchrizmtaderivative.
Then, as in the introduction to this paper, we have the cureat

Rij = [N, Nj]

that represents the commutator of the covariant derivatitreitself in the sense thaV/;, V| F' =
[[Vi, N;], F]. Note thatR;; is not a Ricci tensor, but rather the indication of the exaéstructure
of the curvature without any particular choice of linearres@ntation (as is given in the classical
case as described above). We then have the Jacobi identity

HNaa Nb]a Nc] + [[Nca Na]a Nb] + HNbv Nc]a Na] =0.
Writing the Jacobi identity in terms of curvature and coaatidifferention we have
Rab:c + Rca:b + Rbc:a~

Thus in a non-commutative world, every covariant derivasatisfies its own Bianchi identity.
This gives an impetus to study general relativity in non-omtative worlds by looking for co-

variant derivatives that satisfy the symmetries of the Riemtensor and link with a metric in an
appropriate way. We have only begun this aspect of the iigagin. The point of this section
has been to show the intimate relationship between the Biadenity and the Jacobi identity
that is revealed in the context of non-commutative worlds.
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9 Philosophical Appendix

The purpose of this appendix is to point to a way of thinkingwtihe relationship of mathemat-
ics, physics, persons, and observations that underlieagpeach taken in this paper. We be-
gan constructions motivating non-commutativity by coesildg sequences of actions DC' BA
written from right to left so that they could be applied to @teat X in the order - - DCBAX =

-+ (D(C(B(AX)))--- . The sequence of events B, C, D, - - - was conceptualized as a tempo-
ral order, with the events themselves happening at levdlaores of successive “spacerhere
is no ambient coordinate space, nor is there any continuutima. All that is given is the possi-
bility of structure at any given moment, and the possibiitylistinguishing structures from one
moment to the next. In this light the formulaX = [X, J| = XJ — JX = J(X'— X) connotes
a symbolic representation of the measurment of a differ@acess one time interval, nothing
more. In other word®) X represents a difference taken across a background difei(&me time
step). Once the pandora’s box of measuring such differédmaedeen opened, we are subject to
the multiplicities of forms of differenc&® X = [X, K], their non-commutativity among them-
selves, the notion of a flat background that has the format@mce of quantum mechanics,
the emergence of abstract curvature and formal gauge fiéltighis occurs in these calculi of
differencesprior to the emergence of differential geometry or topology omethee notion of
linear superposition of states (so important to quantumhaeics). Note that in this algebraic
patterning each algebra elemeéntis an actant (can be acted upon) and an actor (via the operator
Vx). In Lie algebras, this is the relationship between thelaigand its adjoint representation
that makes each element of the algebra into a representtirabalgebra by exactly the formula
adja(X) = [A, X] = —V4(X) that we have identified as a formal difference or derivatave,
generator for a calculus of differences.

The precursor and conceptual background of our particolandlism is therefore the con-
cept of discrimination, the idea of a distinction. A key warkrelation to that concept is the
book “Laws of Form” by G. Spencer-Browh [28] in which is set aucalculus of distinction of
maximal simplicity and generality. In that calculus a mat&rfoted here by a bracket >) rep-
resents a distinction and is seen to be a distinction betwesgte and outside. In this elemental
mathematics there is no distinction except the one that we Between the mathematician and
the operator in the formal system as sign/symbol/integmtetT his gives full responsibility to the
mathematician to draw the boundaries between the formtgsyas physical interaction and the
formal system as symbolic entity and the formal system a®R®ilaconceptual form. In making a
mathematics of distinction, the mathematician tells aysimhimself/herself about the creation of
a world. Spencer-Brown’s iconic mathematics can be exmaleontact any mathematics, and
when this happens that mathematics is transformed intosmpal creation of the mathematician
who uses it. In a similar (but to a mathematician) darker wag/physicist is intimately bound to
the physical reality that he studies.

We could have begun this paper with the the Spencer-Browk ambracket< > . This
empty bracket is seen to make a distinction between insideocatside. In order for that to
occur the bracket has to become a process in the perceptsmmuone. It has to leave whatever
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objective existence or potentiality it has alone (all on&) become the locus or nexus of an idea
in a perceiving mind. As such it is stabilized by that pertaptreation and becomes really a
solutionto{< >} =< > where the curly bracket (the form of perception) is in the filace
identical to the markc >, and then distinguished from it by the act of distinguishirayh and
perceiver. It is within this cleft of the infinite recursivadthe finite

< >={< >}={{< >} ={{{< > =-={H- B

that the objectivity of mathematics/physics (they are nfeent in the cleft) arises. All the
rest of mathematics or calculus of brackets needs come flartine observer in the same way.
Through that interaction there is the possibility of a degogiue of many levels, a dialogue
where it is seen that mathematics and physics develop idlglar@ach describing the same
boundary from opposite sides. That boundary is the imagibaundary between the inner and
outer worlds.
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