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1. Introduction

In this note we will show the intimate relationships between Weyl anomalies, the dilaton

and the Higgs field in the framework of spectral physics. The framework is the expression

of a field theory in terms of the spectral properties of a (generalized) Dirac operator. In this

respect this work can be seen in the framework of the noncommutative geometry approach

to the standard model of Connes and collaborators [1, 2, 3, 4], as well as of Sakharov

induced gravity [5] (for a modern review see [6]).

We start with a generic action for a chiral theory of fermions coupled to gauge fields

and gravity. The considerations here apply to the standard model, but we will not need the

details of the particular theory under consideration. It is known, and this is the essence of

the noncommutative geometry approach to the standard model, that the theory is described

by a fermionic action and a bosonic action, both of which can be expressed in terms of the
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spectrum of the Dirac operator. In [7] two of us have shown that if one starts from the

classic fermionic action and proceeds to quantize the theory with a regularization based

on the spectrum, an anomaly appears. it is possible that the full quantum theory is still

invariant by correcting the path integral measure. This is tantamount to the addition of a

term to the action, which renders the bosonic background interacting to the dilaton field.

The main result of that paper is that this term is a modification of the bosonic spectral

action [3]. In this case the theory is still invariant.

In this paper we have a shift of the point of view. We still consider the theory to be

regularized in the presence of a cutoff scale, but we consider this scale to have a physical

meaning, that of the breaking of Weyl invariance. We then consider the flow of the theory

at a renormalization scale, which is not necessarily the scale which breaks the invariance.

The theory has a dilaton, and the Higgs field.

The dilaton may involve a collective scalar mode of all fermions accumulated in a

Weyl-noninvariant dilaton action. Accordingly the spectral action arises as a part of the

fermion effective action divided into the Weyl non-invariant and Weyl invariant parts.

We calculate the dilaton effective potential and we discuss how it relates to the tran-

sition from the radiation phase with zero vacuum expectation value of Higgs fields and

massless particles to the electroweak broken phase via condensation of Higgs fields. The

collective field of dilaton can provide the above mentioned phase transition with EW sym-

metry breaking during the evolution of the universe.

The next five Sections of the paper will present the general framework, namely the

Weyl invariance of fermions in a fixed background described via the (generalized) Dirac

operator in Section 2, the connections with noncommutative geometry, the Weyl invariance

properties, the spectral action and the bosonic action in the the following Sections. These

sections mostly follow reference [7], although the point of view presented in Sect. 5 is

different, and in particular show two possible ways to obtain the spectral action, which

is briefly introduced in Sect. 6. The cosmological implications are discussed in Sec. 7.

This material has not been previously published, but parts of it have been presented in a

conference [8]. A final Section contains the conclusions.

2. Fermions in a Fixed Background

Our starting point is a theory in which we have some matter fields, represented by fermions

transforming under some (reducible) representation a gauge group, such as the standard

model group SU(3)× SU(2)×U(1). We need not specify the group for the moment. The

fermions will be spinors belonging to some Hilbert space H which we assume to be “chiral”,

i.e. split into a left and a right spaces:

H = HL ⊕HR (2.1)

A generic matter field will therefore be a spinor

Ψ =

(
ΨL

ΨR

)
(2.2)
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and in this representation the chirality operator, which we call γ, is a two by two diagonal

matrix with plus and minus one eigenvalues. The two components are spinors themselves

and we are not indicating the gauge indices, nor the flavor indices. We will assume that

the fermions come in a number of identical generations, distinguished only by the masses

(or more precisely their Yukawa coupling).

The dynamics of the fermions is given by coupling them to a gauge and gravitational

background. This coupling is performed by a classical action, which we schematically write

as:

SF = 〈Ψ|D |Ψ〉 (2.3)

The operator D [3] is a 2× 2 matrix acting on spinors of the kind (2.2)

D =

(
iγµDµ + A γ5S

γ5S
† iγµDµ + A

)
(2.4)

where

Dµ = ∂µ + ωµ, (2.5)

the quantity ωµ is the spin connection, A contains all gauge fields of the theory and S contains the

information about Higgs field, Yukawa couplings, mixings and all terms which couple the left and

right part of the spinors. The gravitational background is in general nontrivial, and the metric is

encoded in the anticommutator of the γ’s: {γµ, γν} = 2gµν .

The quantity A represents instead a fixed gauge background, and the interaction of the spinors

with it. We emphasize that at this stage we are just describing the classical dynamics of fermions

in a fixed background. We are deliberately vague as to the detail of the model at this stage,

not discussing important elements of the theory, like chirality or charge conjugation. The scheme

presented here is largely independent on the details of the model. In particular it applies to the

standard model, especially in the approach based on noncommutative geometry introduced by

Connes, which we briefly describe in Sect. 5.

3. Weyl invariance and the Fermionic Action

The fermionic action (2.3) in invariant under the transformation

|Ψ〉 → e
φ
2 |Ψ〉

D → e−
φ
2De−

φ
2 (3.1)

where the operator φ is a function of the (operator) x, or in a simpler case a constant. The

action (2.3) can be expressed in coordinates as1

SF =

∫
d4x
√
|g|ψ(x)†Dxψ(x); (|g|)1/4ψ(x) = 〈x |Ψ〉 (3.2)

1We use the following normalization of eigenstates |x〉 of the coordinate operator: 〈x|y〉 = δ(x− y), that

corresponds to
∫
d4x|x〉〈x| = 1 (without

√
|g|), and consequently such a normalized |x〉 doesn’t transform

under the Weyl transformation gµν → e2φgµν .
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where we introduced the subscript x on D to stress the fact that it is an operator acting on the x

coordinate. The transformation (3.1) can be seen as a (generalized) Weyl transformation2:

gµν(x) → e2φ(x)gµν(x)

ψ(x) → e−
3
2φ(x)ψ(x)

(Dxψ(x)) → e−
5
2φ(x)(Dxψ(x)) (3.3)

where φ(x) is real. Note that since the rescaling involves also the matrix part of D, we must

also rescale the masses of the fermions. In this sense we differ form the usual usage of Weyl (or

conformal) invariance which is only valid for massless fields. In our scheme Yukawa couplings are

an integral part of the Dirac operator which encodes all metric properties of the “noncommutative

manifold” described by the noncommutative matrix algebra. In the absence of a dimensional scale,

this is an exact symmetry of the classical theory.

We now proceed to quantize the theory. It can be proven [9] that if the classical theory

is invariant, the measure in the quantum path integral is not. We have an anomaly: a classical

theory is invariant against a symmetry transformation, but the quantum theory, due to unavoidable

regularization, does not possess this symmetry anymore. If also the quantum theory is required

to be symmetric then the symmetry can be restored by the addition of extra terms in the action,

alternatively one should have a fundamental length in the theory to explain violation of Weyl

invariance. A textbook introduction to anomalies can be found in [9]. The notion of Weyl anomaly

is attached to the dilatation of both coordinates, fields and mass-like parameters according to their

dimensionalities, Eq. (3.3). Evidently, in the absence of UV divergences, there is no Weyl anomaly

which therefore can be correlated to rescaling of a cutoff in the theory. In the case when the

dilatation is not constant, φ becomes a quantum field called the dilaton. The dilaton of this kind

has been investigated in the context of the spectral action in [10].

We remark that there may be also an alternative realization of the dilaton as a collective scalar

mode of all fermions accumulated in a scale-noninvariant dilaton action (in the spirit of [11]).

We start from the partition function

Z(D,µ) =

∫
[dψ][dψ̄]e−Sψ = det

(
D

µ

)
(3.4)

where we needed to introduce a normalization scale µ for dimensional reasons, and the last equality

is formal because the expression is divergent and needs regularizing. The writing of the fermionic

action in this form (as a Pfaffian) is instrumental in the solution of the fermion doubling problem

in Connes approach to the standard model [12, 13, 4].

In order to regularize the expression (3.4) we need to introduce a cutoff scale, which we call

Λ. This is the cutoff scale and it may have the physical meaning of an energy in which the theory

(seen as effective) has a phase transition, or at any rate a point in which the symmetries of the

theory are fundamentally different (unification scale).

We then have two scales3, and we will keep them separated although in principle, at this

stage, they could be identified. We will see in the course of this work that they cannot actually be

identical, although have to be of the same order of magnitude.

We will regularize the theory in the ultraviolet using a procedure introduced by one of us,

Bonora and Gamboa-Saravi in [16, 17, 18] but leaving room for the normalization scale µ. Although

this procedure predates the spectral action, it is very much in the spirit of spectral geometry, since

2One has to pay attention to the measure in checking transformations and Hermiticity of the operators.
3In principle we would need also an infrared regulator to render the spectrum of the Dirac operator

discrete. We will not discuss infrared issues here.
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it uses only the spectral data of the Dirac operator. The energy cutoff is enforced by considering

only the first N eigenvalues of D. Consider the projector

PN =

N∑
n=1

|λn〉 〈λn| ; N = maxn such that λn ≤ Λ (3.5)

where λn are the eigenvalues of D arranged in increasing order of their absolute value (repeated

according to possible multiplicities), |λn〉 a corresponding orthonormal basis, and the integer N

is a function of the cutoff. This means that we are effectively using the N th eigenvalue as cutoff.

Therefore this number and the corresponding spectral density depends on coefficient functions of

the Dirac operator, N = N(D).

Instead of this sharp cutoff, which consider totally all eigenvalues up to a certain energy, and

ignore all the rest of the spectrum, it is also possible to consider a smooth cutoff enforced by a

smooth function. Choosing a function χ which is smoothened version of the characteristic function

of the interval [0, 1] one can consider the operator

Pχ = χ

(
D

Λ

)
=
∑
n

χ

(
λn
Λ

)
|λn〉 〈λn| . (3.6)

This operator is not a projector anymore, and it coincides with PN for χ = Θ, where Θ is the

Heaviside step function.. The use of a smooth χ can be preferable in an expansion, such as the

heat kernel expansion we will perform later in Sect.5.2 for the spectral action. Nevertheless for the

scopes of the present paper a sharp cutoff is adequate.

In the framework of noncommutative geometry this is the most natural cutoff procedure,

although as we said it was introduced before the introduction of the standard model in noncom-

mutative geometry. It makes no reference in principle to the underlying structure of spacetime,

and it is based purely on spectral data, thus is perfectly adequate to Connes’ programme. This

form of regularization could be also used for field theory which cannot be described on an ordinary

spacetime, as long as there is a Dirac operator, or generically a wave operator, with a discrete

spectrum.

We define the regularized partition function4

Z(D,µ) =

N∏
n=1

λn
µ

= det

(
1l− PN + PN

D

µ
PN

)
= det

(
1l− PN + PN

D

Λ
PN

)
det

(
1l− PN +

Λ

µ
PN

)
= ZΛ(D,Λ) det

(
1l− PN +

Λ

µ
PN

)
. (3.7)

In this way we can define the fermionic action in an intrinsic way.

The regularized partition function Z(D,Λ) has a well defined meaning. Expressing ψ and ψ̄ as

ψ =

∞∑
n=1

an |λn〉 ; ψ̄ =

∞∑
n=1

bn |λn〉 (3.8)

with an and bn anticommuting (Grassman) quantities. Then Z(D,Λ) becomes (performing the

integration over Grassman variables for the last step)

Z(D,Λ) =

∫ N∏
n=1

dandbn
Λ

e−
∑N
n=1 bnλnan = det (DN ) (3.9)

4Although PN commutes with D we prefer to use a more symmetric notation.
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where we defined

DN = 1− PN + PN
D

Λ
PN . (3.10)

In the basis in which D/Λ is diagonal it corresponds to set to Λ all eigenvalues of D larger than Λ.

Note that DN is dimensionless and depends on Λ both explicitly and intrinsically via the dependence

of N and PN .

It is possible to give an explicit functional expression to the projector in terms of the cutoff:

PN = Θ

(
1− D2

Λ2

)
=

∞∫
−∞

dα
1

2πi(α− iε)
eiα
(

1−D2

Λ2

)
(3.11)

This integral is well defined for a compactified space volume. Actually N depends also on the

infrared cutoff, and the number of dimensions.

4. Bosonic Action from Weyl Anomaly

In this section we will see how the Weyl anomaly induces the bosonic part of the action. The

induced action is the Chamseddine-Connes spectral action.

The action Sψ is invariant under (3.3), but the partition function (3.4) is not. The reason

for this is the fact that the regularization procedure is not Weyl invariant. In [7] it was shown

that the anomaly can in principle be absorbed by a change of the measure, which is equivalent to

the addition of another term to the action. This term can compensate the change in the measure

due to the regularization, but being in an exponential form, can also be seen as another addition

to the action, so that the final partition function is invariant. This calculation has been originally

performed in [19] in the QCD context, and applied to gravity in [20]. In the scenario we are favoring

in this paper however Weyl symmetry is not an exact symmetry of the theory, and the bosonic part

of the action is induced by the renormalization group flow.

In the following we will mostly consider the case of φ constant (i.e. not depending on x). This

simplifies things because we do not have to worry about the kinetic terms of the field, and renders

the functional integrals simple integrals.

In order to make contact with the spectral action (to be discussed next) let us notice that N

is just the number of eigenvalues smaller that Λ, and thereby

Trχ

(
D2

Λ2

)
= Tr Θ

(
1− D2

Λ2

)
= TrPN = N(Λ, D). (4.1)

where χ is a generic cutoff function, which in our case is a sharp cutoff at energy Λ,

χ(x) =


0 x < 0

1 x ∈ [0, 1]

0 x > 1

(4.2)

consequence of the sharp cutoff on the eigenvalues used in (3.5). For smoother cutoffs of the

eigenvalues this would reflect in different forms of χ. We will see in the next section that at one

loop level (the only doable approximation) the actual form of the cutoff is not crucial. The latter

form or (4.1) is valid provided that we take into account the functional dependence N = N(Λ, D).

It is worth recalling again that the integer N depends on the cutoff Λ, on the Dirac operator D and

also on the function χ which we have chosen to be a sharp cutoff.

If we want to obtain a partition function invariant on φ we can integrate it out, i.e.

Zinv(D,µ) =

∫
dφZ(e−

1
2φDe−

1
2φ, µ) ≡

∫
dφZ(Dφ, µ); Dφ ≡ e−

1
2φDe−

1
2φ. (4.3)
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This was the procedure followed in [7]. Notice however that in principle we could have equally well

defined

Ẑinv(D,µ) =

(∫
dφ

1

Z(Dφ, µ)

)−1

. (4.4)

If we consider non Weyl invariant partition function we can split it in the product of a term invariant

for Weyl transformations, and another not invariant, which will depend on the field φ.

Z(D,µ) = Ẑinv(D,µ)Znot(D,µ) (4.5)

The terms in Znot are due to the Weyl anomaly and we can calculate them. Using

Dφ = e−
1
2φDe−

1
2φ (4.6)

consider the identity

Z(D) =

(∫
[dφ]

1

Z(Dφ)

)−1 ∫
[dφ]

Z(D)

Z(Dφ)
(4.7)

Since the first term is invariant by construction, the second is the not invariant one:

Znot(D) =

∫
[dφ]e−Snot =

∫
[dφ]

Z(D)

Z(Dφ)
(4.8)

To obtain the Weyl invariant partition function we need to multiply the regularized one by a

compensating term, which we express in exponential form, as an addition to the action which we

call the anomalous action.

Zinv(D,µ) = Z(D,µ) · Zanom(D,µ); Zanom(D,µ) =

∫
dφ e−Sanom (4.9)

where the effective action will be depending on N , and hence the cutoff Λ, and on φ. Then

Sanom = log

(
Z(D,µ)

Z(Dφ, µ)

)
(4.10)

Notice that the splitting in (4.5) is of course not unique, but is motivated by the following.

We know from [7] that if we add to the classical action the term Sanom we will restore the Weyl

invariance of the partition function Z. Thereby it is essential to have Snot = −Sanom. We shall see

below (Eq. (6.2)), that the choice (4.4) provides such an equality.

Let us define

Zt = Z(Dtφ, µ) (4.11)

therefore Z0 = Z(D,µ) and
Zinv(D,µ)

Z(D,µ)
=

∫
dφ
Z1

Z0
(4.12)

and hence

Sanom = −
∫ 1

0

dt∂t logZt = −
∫ 1

0

dt
∂tZt
Zt

(4.13)

We have the following relation that can easily proven

∂tZt = ∂t det

(
Dtφ

µ

)
N

= φZt

(
−1 + Λ2 log

Λ2

µ2
∂Λ2

)
trPN , (4.14)

and therefore, for φ not dependent on x,

Sanom =

∫ φ

0

dt′
(

1− Λ2 log
Λ2

µ2
∂Λ2

)
Tr Θ

(
1− D2

t′

Λ2

)
=

∫ φ

0

dt′
(

1− Λ2 log
Λ2

µ2
∂Λ2

)
N(Λ, Dt′). (4.15)
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The presence of the bosonic action given by the trace of the regularized Dirac operator is a

consequence of the renormalization flow of the partition function. Under the change

µ→ γµ (4.16)

with γ real. From (3.7) the partition function changes as follows

Z(D,µ)→ Z(D,µ)e−(log γ) trPN (4.17)

and

trPN = N = trχ

(
D

Λ

)
(4.18)

as always for the choice of χ the characteristic function on the interval, a consequence of our sharp

cutoff on the eigenvalues.

The expression (4.18) is nothing but the spectral action which we will discuss in the next section.

We see therefore that the renormalization group flow of the fermionic action induces the bosonic

spectral action. The anomalous part of the action (4.15) is a modification of the action (4.18).

5. The Spectral Action Principle

In this section we give a briefest introduction to the relevant aspects of the spectral action principle.

The reader conversant with the topic may skip this section. More thorough introduction can be

found in [15, 4, 14].

5.1 Fields, Hilbert Spaces, Dirac Operators and the (Non)commutative Geom-

etry of Spacetime

The main idea of the whole programme of Connes’ noncommutative geometry [1] is to describe

ordinary mathematics, and physics, in term of the spectral properties of operators. This programme

has its roots in quantum mechanics and aims at the description of generalized spaces. The main

ingredients are an algebra represented on a Hilbert space, and the generalized Dirac operator which

describes all metric aspects of the theory, and as we have seen the behavior of the fundamental

matter fields, represented by vectors of the Hilbert space. The fluctuations of the Dirac operator

instead contain all boson fields, including the mediators of the forces (intermediate vector bosons),

and the Higgs field.

We have introduced a (Euclidean) spacetime. And therefore implicitly the algebraA of complex

valued continuous functions of this space time. There is in fact a one-to one correspondence between

(topological Hausdorff) spaces and commutative C∗-algebras, i.e. associative normed algebras with

an involution and a norm satisfying certain properties. This is the content of the Gelfand-Naimark

theorem [21, 22], which describes the topology of space in terms of the algebras. In physicists terms

we may say the the properties of a space are encoded in the continuous fields defined on them. This

concept, and its generalization to noncommutative algebras is one of the starting points of Connes’

noncommutative geometry programme [1]. The programme aims at the transcription of the usual

concepts of differential geometry in algebraic terms and a key role of this programme is played by

a spectral triple, which is composed by an algebra acting as operators on a Hilbert space and a

(generalized) Dirac operator. In our case we have these ingredients, but we have to consider instead

of the the algebra of continuous complex valued function, matrix valued functions. The underlying

space in this case is still the ordinary spacetime, technically the algebra is “Morita equivalent” to

the commutative algebra, but the formalism is built in a general way so to be easily generalizable

to the truly noncommutative case, when the underlying space may not be an ordinary geometry.
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The spectral triple contains the information on the geometry of spacetime. The algebra as

we said is dual to the topology, and the Dirac operator enables the translation of the metric and

differential structure of spaces in an algebraic form. There is no room in these proceedings to

describe this programme, and we refer to the literature for details [1, 23, 22, 24].

Within this general programme a key role is played by the approach to the standard model.

This is the attempt to understand which kind of (noncommutative) geometry gives rise to the

standard model of elementary particles coupled with gravity. The roots of this approach is to

have the Higgs appear naturally as the “vector” boson of the internal noncommutative degrees of

freedom [25, 26, 2]. The most complete formulation of this approach is given by the spectral action,

which in its most recent form is presented in [4].

5.2 The Spectral Action and the Standard Model coupled to Gravity

The integrand in (4.15) is basically the Chamseddine-Connes Spectral Action introduced in [3]

together with the fermionic action (2.3). More precisely the bosonic part of the spectral action is

SB = Trχ

(
D2

Λ2

)
(5.1)

The bosonic spectral action so introduced is always finite by its nature, it is purely spectral and it

depends on the cutoff Λ. For the choice of χ as sharp cutoff we have that the trace counts exactly

the eigenvalues smaller than N , and therefore

SB = N(D,Λ) (5.2)

In the original work of Chamseddine and Connes the bosonic and fermion parts of the ac-

tion were treated differently. The fermionic action on the contrary is divergent, and will require

renormalization. We have seen as the cancelation of the anomaly brings the two actions on the

same footing, albeit with a modification of the bosonic part. We notice that already in [27] the

two actions were proposed to “unify” in the bosonic action with the addition of the projection on

the fermionic field to the covariant Dirac operator. This reproduces the full spectral action with

some additional non linear terms for the fermions, which could have to do with fermionic masses.

Recently Barret [28] has argued that the bosonic spectral action can inferred from the fermionic

action via the state sum model. His work has some points of contact with ours.

To obtain the standard model take as algebra the product of the algebra of functions on

spacetime times a finite dimensional matrix algebra

A = C(R4)⊗AF (5.3)

Likewise the Hilbert space is the product of fermions times a finite dimensional space which contains

all matter degrees of freedom, and also the Dirac operator contains a continuous part and a discrete

one

H = Sp(R4)⊗HF (5.4)

and the Dirac operator

D0 = γµ∂µ ⊗ I + γ ⊗DF (5.5)

In its most recent form due to Chamseddine, Connes and Marcolli [4] a crucial role is played by

the mathematical requirements that the noncommutative algebra satisfies the requirements to be a

manifold. Then the internal algebra, is almost uniquely derived to be

AF = C⊕H⊕M3(C) (5.6)
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Then the bosonic spectral action can be evaluated at one loop using standard heath kernel tech-

niques [29] and the final result gives the full action of the standard model coupled with gravity. We

restrain from writing it since it takes more than one page in the original paper [4]. In the process

however one does not need to input the mass of the Higgs, which comes out as a prediction. Its

value comes out to be ∼ 170GeV. A small value experimentally disfavored. It must be said how-

ever that the present form of the model needs unification of the three coupling constant at a single

energy point (given by Λ). The model also contains nonstandard gravitational terms (quadratic in

the curvature), which are currently being investigated for their cosmological consequences [30, 31].

Technically the canonical bosonic spectral action is a sum of residues, and can be expanded in

a power series in terms of Λ−1 as

SB(Λ) =
∑
n

fn an(D2/Λ2) (5.7)

where the fn are the momenta of χ

f0 =

∫ ∞
0

dxxχ(x)

f2 =

∫ ∞
0

dxχ(x)

f2n+4 = (−1)n∂nxχ(x)

∣∣∣∣
x=0

n ≥ 0 (5.8)

the an are the Seeley-de Witt coefficients which vanish for n odd. For D2 of the form

D2 = −(gµν∂µ∂ν1l + αµ∂µ + β) (5.9)

defining

ωµ =
1

2
gµν

(
αν + gσρΓνσρ1l

)
Ωµν = ∂µων − ∂νωµ + [ωµ, ων ]

E = β − gµν
(
∂µων + ωµων − Γρµνωρ

)
(5.10)

then

a0 =
Λ4

16π2

∫
dx4√g tr 1lF

a2 =
Λ2

16π2

∫
dx4√g tr

(
−R

6
+ E

)
a4 =

1

16π2

1

360

∫
dx4√g tr (−12∇µ∇µR+ 5R2 − 2RµνR

µν

+2RµνσρR
µνσρ − 60RE + 180E2 + 60∇µ∇µE + 30ΩµνΩµν) (5.11)

tr is the trace over the inner indices of the finite algebra AF and in Ω and E are contained the

gauge degrees of freedom including the gauge stress energy tensors and the Higgs, which is given

by the inner fluctuations of D.

In our case for φ constant, after performing the integration we find

Sanom =

(
1− Λ2 log

Λ2

µ2
∂Λ2

)∫ φ

0

dt′SB(Λet
′
)

=

(
1− Λ2 log

Λ2

µ2
∂Λ2

)∫ φ

0

dt′
∑
n

e(4−n)t′anfn

=
1

8
(e4φ − 1)a0

(
1− 2 log

Λ2

µ2

)
+

1

2
(e2φ − 1)a2

(
1− log

Λ2

µ2

)
+ φa4. (5.12)
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There are just some numerical corrections to the first two Seeley-de Witt coefficients due to the

integration in t′ = tφ and a choice of normalization scale µ. In the case of a non sharp cutoff some

numerical coefficients would change according to (5.8), and of course the series would not terminate

at a4. The corrections are however small, and the remaining terms are subdominant. Therefore the

presence of a different cutoff would not alter the qualitative aspects of what follows.

The sign with which this action appears in he partition function is of course crucial. We will

see in the next section of the interpretation of φ as emerging from bosonization choices a sign. And

later on in Sect. 7 we will see that the sign chosen in this case gives a qualitative realistic effective

Higgs-dilaton potential.

6. Dilaton bosonization

In this section we will discuss the role of the dilaton considering it as arising from a bosonization

process of high energy degrees of freedom. We are interested in the effective potential, therefore we

will make the brutal assumption of considering only a constant (i.e. not dependent on x) dilaton φ

and Higgs field H. In this case H is the only surviving term in the off-diagonal entries of (2.4). In

fact here by “Higgs field” we mean generically all degrees of freedom which connect left and right

chiralities. The analysis carried is therefore quite solid and independent on the details of the model.

The action after bosonization can be represented as,

Z(D,µ) = Ẑinv(D,µ)

∫
dφ e−Scoll (6.1)

then

Scoll = log

(
Z(Dφ, µ)

Z(D,µ)

)
= −Sanom, (6.2)

which is to be confronted with (4.10).

The Higgs mechanism of spontaneous symmetry breaking is not compatible with the Weyl

conformal invariance. Indeed, let us consider the dependence of the invariant partition function

Zinv, given by (4.3) or (4.4), on the Higgs field H.

Zinv = e−Winv(H,gµν,...), (6.3)

where

Winv =

∫
d4x
√
|g|(λH4 + terms with derivatives). (6.4)

We omit in the righthand side of (6.4) terms with derivatives of the Higgs fields and powers of the

Riemann curvature tensor because in this work we are concerned only by properties of the effective

potential for Higgs and dilaton fields. The form of Winv could be guessed by dimensional analysis,

but we show in the appendix how it emerges (with the correct sign). In (6.4) there are no terms

generating spontaneous symmetry breaking to supply Higgs fields with a mass and accordingly we

assume, that the Higgs field mass formation is related to the Weyl noninvariant part of the partition

function. The latter one is determined by conformal anomaly term (5.12). Let us investigate how

the composite dilaton field is related to the primary fields of the theory under consideration: ψ, ψ̄,H.

For a fixed configuration of the Higgs field H, the dilaton field ϕ appears as a result of bosonization

of the fermions ψ, ψ̄.

The bosonization is defined by identifying

Zfermion(j) = Zboson(j), (6.5)
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where

Zfermion(j) =

∫
DψDψ̄e−W (ψ,ψ̄,j),

Zboson(j) '
∫
Dϕe−Scoll(ϕ,j)−Winv(j) = e−Wcoll(j)−Winv(j), (6.6)

Herein j denotes a set of sources. In our bosonization scheme the Higgs field H, is treated as a

source for a scalar combination ψψ̄ and therefore it is fixed in the process of dilaton bosonization

(included in to j). In the definition of the bosonic partition function ”'” signifies that we neglect

the bosonic fields with the spin more than 0 and retain only one scalar (dilaton) degree of freedom.

We have already seen that the Higgs mechanism is presumably related to the violation of the Weyl

symmetry and the latter is given by conformal anomaly term (5.12), which exploits only one zero-

spin field besides the Higgs field itself. Thus we conclude that our simplification is reasonable. In

order to investigate full dynamics, one should deal with the total partition function

Ztotal =

∫
DH

(
Zfermion or boson(H, j̃)

)
, (6.7)

where j̃ is a set of sources for all quantum fields, excluding H.

Varying both the left and the right hand sides of (6.5) over H, one derives the equation, that

relates fermion condensate 〈ψψ̄〉 with the average values (over bosonic vacuum) of the combination

of the bosonic fields H and φ,

〈ψψ̄〉 ∝ δ lnZboson(H)

δH
= −

〈
δ(Scoll(H,ϕ) +Winv(H))

δH

〉
. (6.8)

This relation allows to unravel the bosonic content of fermion bilinear operator in different phases:

symmetric with 〈H〉 = 0 and symmetry breaking one with 〈H〉 6= 0.

Thus the two different choices of dilaton field correspond to two different interpretations of the

φ degree of freedom. The different choices are described in the definitions (4.3) and (6.1). From

these descend the definition of the alternative Zinv or Ẑinv. The former choice (4.3) is the natural

one if one has a noninvariant partition function and wants to define an invariant one by including

an extra fundamental degree of freedom. The latter choice is instead the natural one in the case

in which one starts from a non invariant theory in which the dilaton is a composite object whose

condensates restores a global symmetry. This bosonic degree can be some fermionic bilinear. In the

following we will give some arguments in favor of this second choice, based on the interplay with

the Higgs field.

7. The Dilaton and the effective potential

The full analysis of the model coupled with a dynamical dilaton is under way and will be published

elsewhere. Nevertheless it is already possible to say something on the interplay between the dilaton

and the Higgs, and in particular the effective potential. This can be used to characterize cosmic

evolution right after inflation starts. In particular, it may open the ways to describe the transi-

tion from the radiation phase with massless particles to the EW symmetry breaking phase with

spontaneous mass generation due to condensation of Higgs fields.

7.1 Mass generation from Higgs-dilaton potential during cosmic evolution

We will consider in the following only the potential terms relative to the complex Higgs doublet H

and the dilaton φ.
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Because of Weyl invariance, within our approximations, the only allowed dependence on the

Higgs field H of Ẑinv in (6.1) is given by(see Eqs. (6.3) and (6.4))

Ẑinv = e−Ŵinv(H,gµν ,...), (7.1)

where

Ŵinv =

∫
d4x
√
|g|(−Cφ0H

4 + terms with derivatives), (7.2)

with some (not yet defined) constant φ0 and C is fixed positive constant, which we define below in

Eq. (A.5). Later we will see, that only the choice φ0 < 0 supports the spontaneous EW symmetry

breaking. Let us define the effective Higgs-dilaton potential V by the equality

Z(D) =

∫
Dφ e−Ŵinv(H)−Scoll(H,φ) ≡

∫
Dφ e−

∫
d4x
√
|g|V (H,φ). (7.3)

We can derive the form of effective Higgs-dilaton potential. To focus on this goal we reduce the joint

effective Higgs-dilaton (HD) potential including only the real scalar component H of the (complex)

Higgs doublet (H1, H2) → (0, H) subject to condensation. From the expression (5.12) for Sanom

one obtains the following formula for the the effective Higgs-dilaton potential V :

V = Vcoll + Ŵinv, , (7.4)

Vcoll = Ã
(
e4φ − 1

)
+ B̃H2

(
e2φ − 1

)
− CH4φ. (7.5)

The explicit form of the coefficient is given in the appendix.

The quadratic term of the Higgs potential comes from the a2 term of (5.12), while the quartic

one comes from the a4 one and from Ŵinv. Evidently the constant φ0 can be eliminated by shifting

the field φ→ φ−φ0 and rescaling the constants Ã, B̃. After performing renormalization the general

form of the HD potential can be presented as,

V = Ae4φ +BH2e2φ − CφH4 + EH2 + V0, (7.6)

where

A =
45

8π2

Λ4

8

(
2 log

Λ2

µ2
− 1

)
e−4φ0 , (7.7)

B =
3y2

2π2

Λ2

2

(
1− log

Λ2

µ2

)
e−2φ0 , (7.8)

C =
3z2

4π2
, (7.9)

E = − 3y2

2π2

Λ2

2

(
1− log

Λ2

µ2

)
, (7.10)

V0 = − 45

8π2

Λ4

8

(
2 log

Λ2

µ2
− 1

)
. (7.11)

In the formulas (7.8),(7.9),(7.10) the constants y and z depend on mixing an Yukawa couplings.

Their exact definition is in [3, Formula 3.17]. In (7.6) depending on the normalization scale µ of

the fermion effective action, compared with the cutoff Λ, one can get in principle any sign of the

coefficients A(Λ, µ), B(Λ, µ) ≷ 0. Thus in general both signs and modules of these constants A,B

are possible..

Here we are interested in the evolution of fields φ and H and correspondingly neglect the

additional cosmological constant V0. We would like to apply the HD potential in the framework

of the description of cosmic evolution. This evolution will depend principally on the signs of the
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constants, and on relations among their modules. We therefore search for which combinations of

signs can provide the evolution from a symmetric phase to the EW symmetry broken phase, with

the generation of fermion mass due to the Higgs fields. Thus one has to inquire whether the HD

potential has local minima, and what are the restrictions on the coefficients which provide the

existence of such minima. Accordingly we are going to investigate all possible critical points5 of

this potential depending on the values of its coefficients. The potential (7.6) has three arbitrary

parameters A,B,E, but it must be sign (B) = -sign(E). The parameter C is fixed and given by

(7.9). Nevertheless in the analysis of extremal properties of V performed below we shall consider

arbitrary C,B and E. We will see that, in order to have symmetry breaking, indeed the constant

C must be positive, and E and B must have opposite signs. This is a confronting result.

Without loss of generality one can impose C > 0. For the opposite sign of C the set of critical

points can be found by reflection V → −V . One can see, that V has no any critical points at

H = 0. Let us perform the coordinate transformation to the variable η,

H2 = ηe2φ (7.12)

Such a transformation is non-degenerate at H 6= 0 and, since V is symmetric for H → −H,

preserves all the information about extremal properties of our potential.

In the new variables the potential takes the form,

V = e4φ
(
A+Bη − Cφη2

)
+ Ee2φη. (7.13)

Critical point coordinates obey the following equations,

2A+Bη − C

2
η2 = 0 (7.14)(

2Cη

E

)
φ− B

E
= e−2φ (7.15)

with the additional requirement η > 0 .

From the equation (7.14) we immediately find,

η1,2 =
4A

−B ±
√
B2 + 4AC

. (7.16)

It is known (for a quick introduction see e.g. [32]), that the equation of a type ax+b = pcx+d a, c 6= 0,

can be exactly solved in terms of the Lambert W (z) function [33]. By definition, it is a solution of

the equation,

z = W (z)eW (z) (7.17)

The function WeW is not injective and W is multivalued (except at 0). If we look for real-valued

W then the relation (7.17) is defined only for x ≥ 1/e, and is double-valued on (−1/e, 0).

Let us introduce the notation W0(x) for the upper branch. It is defined at −1/e ≤ x <∞ and

it is monotonously increasing from -1 to +∞. The lower branch is usually denoted W−1(x). It is

defined only on −1/e ≤ x < 0 and it is monotonously decreasing from -1 to −∞.

In these terms the general solution of (7.15) is given by,

φ =
1

2
W

(
Ee−

B
ηC

ηC

)
+

B

2η C
(7.18)

5Here by critical point we mean a stationary one.
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sign (A) sign(B) sign(C) sign(E)

± ± + +

- - + -

- ± - ±
+ + - ±

Table 1: Choice of signs which do not give a local minimum to the potential.

Since we have two values of η and the real W is double-valued, then the maximal number of critical

points is four. However η must be positive and real, and φ must be real. From these requirements

one obtains the restrictions on the coefficients, which provide an existence of each critical point.

We shall denote our critical points as (m,n). Here the first index m marks the sign ± and

corresponds to the type of a chosen η from (7.16). The index n ranges over −1, 0 and corresponds

to the chosen branch of the W function. We specify a type of each critical point with the help

of the Hessian matrix eigenvalues and find the following results for the acceptable composition of

coefficient signs.

We seek for combinations of signs of the coefficients A,B,C,E which provide a minimum

triggering the spontaneous EW symmetry breaking at a final stage of cosmic evolution. There are

11 combinations of signs which are forbidden as they don’t provide the existence of a local minimum.

The only five combinations of signs which give the required minimum are shown in Table 2.

sign (A) sign(B) sign(C) sign(E)

+ + + -

+ - + -

- + + -

+ - - +

+ - - −

Table 2: Choice of signs which do give a local minimum to the potential.

7.2 Transition from symmetric phase to Electroweak symmetry breaking phase

and choice of signs

We now examine the possibility of scenario where, at the first stage of the Universe evolution,

one deals with massless fermions with the vanishing vacuum expectation value of the Higgs field

〈Hin〉 = 0 (symmetric phase). We consider an initial point (φin, Hin = 0) acceptable for starting

evolution if the function V |φ=φin(H) has a local minimum at H = 0, and if we can roll down

from the initial point to a final one which is a local minimum corresponding to the Higgs phase.

We have listed in table 2 the five combinations of signs of the parameters A, B, C, E which

provide the existence of the local minimum . Nevertheless not all of these combinations support the

above transition scenario. Indeed one can prove that this scenario can be realized only for positive

A,B,C and negative E. For this case the solution for minimum belongs to the class (+,−1) and
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the minimum (final-stage) coordinates are given by,

ηfin =
4A

−B +
√
B2 + 4AC

> 0, (7.19)

φfin =
1

2
W−1

(
Ee
− B
ηfinC

ηfinC

)
+

B

2ηfin C
. (7.20)

The requirement for φ to be real leads to,

Emin < E < 0, Emin ≡ −Cηfin exp

{
−1 +

B

ηfinC

}
(7.21)

The additional bounds exist on the coefficients,

Be2φin + E > 0, (7.22)

to guarantee that the initial point is in the symmetric phase. Evidently the phase transition point

Figure 1: The effective Higgs-dilaton potential in the vicinity of its two symmetric local minimums:

H2 = H2
m = 0.31 and φ = φm = −1.38. Black lines represent the sections of the plot of the potential

by the surfaces of constant φ and constant H. Parameters are taken as follows: A = 1, B = 2.1,

C = 1, E = −1.
during evolution appears for φcrit = (1/2) ln(−E/B) < φin. It can be shown that φfin < φcrit < 0

and therefore B + E > 0. We remark that the latter inequality entails |Emin| > |E| . As well in

this case for φin ≤ 0 the Higgs potential is bounded below for any value of Higgs fields.
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By the way we notice that due to (A.4),(7.10), critical point φc coincides with φ0 and the latter

comes from the invariant action Ŵinv (7.2). Thereby the requirement φc = φ0 < 0 means that the

invariant potential −Cφ0H
4, corresponding to Ŵinv is bounded bellow.

We summarize our finding in Fig. 1. One can see that for the values of φ ' 0 there is only

one minimum of the function V (H)|φ=fixed at H = 0. When we get closer to φm crossing φcrit,

the phase transition occurs, and every function V (H)|φ=fixed has two symmetric minimums. The

section of this three-dimensional plot in the initial point φin = 0 is shown in Fig. 2 and reveals the

absolute minimum in Higgs fields.

Figure 2: V (H) at the fixed value of φ = φin = −0.1 i.e. the profile of the potential in the

symmetric phase. A = 1, B = 2.1, C = 1, E = −1.

Such a choice of the parameters provides an existence of the local minimum in the late stage

of the universe evolution at φm = −1.38 and H2
m = 0.31. So in the Higgs phase (φ = φm) one has

the following potential behavior, V (H,φm) = 0.0039− 0.87H2 + 1.38H4, see Fig. 3.

Figure 3: V (H) at the fixed value of φ = φm = −1.38 i.e. the profile of the potential in the Higgs

phase. A = 1, B = 2.1, C = 1, E = −1.

In the next Fig. 4 another view on the plot for effective potential is taken in order to demon-

strate that the saddle point is aside of the steepest descend path.

7.3 Remark.

Let us notice, that one is not allowed to identify the minimal value of HD-potential Vmin with

cosmological constant, because at A,B,C > 0,−B < E < 0 we can easily prove, that Vmin < 0.

Indeed, our potential (7.6) satisfies the following relation:

V =
1

4

(
∂V

∂φ
+H

∂V

∂H

)
+
H2

4

(
CH2 + 2E

)
+ V0 (7.23)
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Figure 4: The similar effective Higgs-dilaton potential in the vicinity of its local minimum: H =

Hm = 2.29 and φ = φm = −0.72 chosen to display the saddle point. Colored lines represent the

sections of the plot of the potential by the surfaces of constant φ and constant H. Parameters are

taken as follows: A = 1, B = 2.1, C = 0.2, E = −2.

and thereby its minimal value is given by

Vm = V0 +
H2
m

4

(
CH2 + 2E

)
. (7.24)

For a given value of the Higgs v.e.v. Hm ≡ ηfine2φfin one can present the coefficient E in the form

E = H2
m · CW−1

(
Ee
− B
Cηfin

Cηfin

)
. (7.25)

Substituting (7.25) into (7.24) we have:

Vm = V0 +
CH4

4

(
1 + 2W−1

(
Ee
− B
Cηfin

Cηfin

))
(7.26)

and taking into account, that V0 < 0, W−1 ≤ −1 we finally obtain:

Vm < −CH
4
m

4
< 0. (7.27)
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Anyway we suppose, that the observed cosmological constant is generated by both visible and dark

matter, and only visible matter participates in the dilaton - bosonization process considered above

and hence Vm can be identified with (negative) contribution to the total (positive) cosmological

constant.

Let’s use first the metric gµν as a background one and therefore independently in the dark and

visible sectors,

Ztotal(gµν) = Zdark(gµν) · ZSM(g̃µν , H)
∣∣∣
g̃µν=gµν

.

Performing bosonization g̃µν → g̃µν exp(2φ); H → H exp(−φ) in the SM sector only one finds,

ZSM(g̃µν , H) = Ẑinv(g̃µν , H)

∫
dφ e−Scoll(g̃µν ,H,φ) '

∫
dφe−

∫
d4x
√
−gV (g̃µν ,H,φ).

The total cosmological generating functional is produced after averaging over gravity, i.e. over the

metrics,

Zcosm =

∫
Dgµν × [gauge fixing]× e−Wgrav(g)Zdark(gµν) · ZSM(gµν , H).

The latter integral in the vacuum energy approximation for matter fields entails the determination

of the cosmological constant,

Zcosm ∼
∫
Dgµν × [gauge fixing]× e−Wgrav(g)−

∫
d4x
√
−g Λcosm

8πGN ,

which evidently consists of,

Λcosm
8πGN

= V0,SM + V0,dark,

∫
d4x
√
−gV0,dark ' − logZdark.

All formulas are referred to the Euclidean space-time and can be re-written easily for the Minkowski

one.

8. Conclusions

In this paper we have seen how the bosonic spectral action emerges form the fermionic action and

Weyl anomaly via the renormalization group flow. In this sense we can say that the bosonic degrees

of freedom are induced by the fermionic ones. The procedure followed is spectral and therefore well

suited for the noncommutative approach to the standard model. The action emerges, in case of

the presence of a fundamental scale, and therefore of a non Weyl invariant fundamental theory, in

terms of a composite dilaton.

What we find particularly encouraging is the fact that, at the level of effective potential, the

theory gives rise to a Higgs-dilaton potential with desirable qualitative features, i.e. the presence

of both a broken and an unbroken phase, and the possibility to roll form the latter to the former.

We did so using just the bare essential ingredients of the spectral action, and therefore the result,

while necessarily generic and qualitative, are to a large extend independent on the details of the

model. We see a certain relevance of the Higgs-dilaton potential of our type for realization of the

Higgs field assisted inflation and further stages of the Universe evolution undertaken in [34, 35].

A refinement of this work taking other degrees of freedom into account is possible, and partially

under way.
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A Appendix

In this appendix we show why Winv is proportional to H4. In the approximations taken, when all

the fields do not depend on the space-time coordinates one may infer (up to the additional terms,

proportional to H4) the dependence on the Higgs field of the initial effective potential W , related

to Z (3.4), based on the requirement, that Zinv (4.3) is invariant under the Weyl transformation

(3.3).

Since we are interested in the form of the effective Higgs potential and ignore all derivative

terms, one can write Z(H) instead of Z(D), and consider ordinary integrals over φ instead of

functional.

We have seen (4.9), that the invariant partition function can be rewritten as:

Zinv(H) = Z(H) · Zanom(H) = e−W (H) ·
∫
dφe−Sanom(φ,H), (A.1)

where Sanom ≡
∫
d4x
√
|g|Vanom and due to (6.2) and (7.5):

Vanom = −Vcoll = −
∫
d4x
√
|g|
{
Ã
(
e4φ − 1

)
+ B̃H2

(
e2φ − 1

)
− CφH4

}
, (A.2)

Where

Ã =
45

8π2

Λ4

8

(
2 log

Λ2

µ2
− 1

)
, (A.3)

B̃ =
3y2

2π2

Λ2

2

(
1− log

Λ2

µ2

)
, (A.4)

C =
3z2

4π2
. (A.5)

Notice, that we can perform integration over φ in A.1 via the Laplace method. Indeed, in our

approximation we neglect all the (covariant) derivatives, thats why Sanom is proportional to the

volume vol of space-time (we have an infrared cutoff implicit in the theory).

∫
dφe−(vol)·Vanom(H,φ) '

√
2π

vol · ∂
2Vanom(H,φmin)

∂φ2

e−(vol)·Vanom(H,φmin)

= e−(vol)·(Vanom(H,φmin)+
O(ln (vol))

vol ). (A.6)

Taking into account, that vol goes to infinity we must take into account only the leading term in

the exponent. Thereby one can finally write:

Wanom(H) ≡ e−Wanom(H), Wanom ≡
∫
d4x
√
|g|Vanom(H,φ = φmin(H)). (A.7)
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For a fixed value of H the function Vanom(φ,H = fixed) has a local minimum at the point:

φmin(H) =
1

2
ln


(
B̃ +

√
B̃2 + 4 ÃC

)
H2

−4Ã

 , (A.8)

if and only if Ã < 0, B̃ > 0. Thereby we have the following expression for Vanom:

Vanom = Ã+ B̃H2 +
CH2

2
ln


(
B̃ +

√
B̃2 + 4 ÃC

)
H2

−4Ã

+H4 · const(A,B,C). (A.9)

By the construction we know, that Zinv is unchanged under the transformation 3.3. It means,

that Winv(H) = W (H) +Winv)(H) must be invariant under the transformation

gµν → e2φgµν , H → e−φH.

Thereby we have the following functional equation for V (H)

V (e−φH) + Vanom(e−φH) = e−4φ(V (H) + Vanom(H)). (A.10)

One can easily see, that the most general solution of the A.10 is given by6

V = −Ã− B̃H2 − CH2

2
ln

(
H2

µ̃

)
, (A.11)

where µ̃ is an integration (dimensionful) constant. Finally we obtain from (A.11) and (A.9) (as we

expected):

Vinv = V + Vanom = γ̃H4, (A.12)

with some (undefined at this stage) constant γ. We emphasize, that the potential V given by (A.11)

has a local minimum at Ã < 0, B̃ > 0, but after averaging over dilatations the minimum disappears.

We also notice, that we can perform similar integration via the Laplace method in the (7.3).

In this case minimum of Vcoll = −Vanom is of our interest, i.e. maximum of Vanom. The latter is

given by

φmax(H) =
1

2
ln


(
B̃ −

√
B̃2 + 4 ÃC

)
H2

−4Ã

 , (A.13)

and it exists both for positive and negative signs of Ã, and B̃ > 0. In this case one has the same

expression (A.11) for V , which is defined, we remind, up to the invariant term, proportional to H4.

In this sense the point of view taken in this paper, that is of a partition function which is not Weyl

invariant, and that of reference [7], are not in fundamental contradiction..
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