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Abstract

The present work is a natural continuation of the previous paper

arXiv: 0911.5597. In this work, within the scope of the Generalized

Uncertainty Principle, a model of the high energy deformation for a

particular case of Einstein’s equations is developed. In the process

a thermodynamic description of General Relativity is used. And the

deformation is understood as an extension of a particular theory by

inclusion of one or several additional parameters in such a way that

the initial theory appears in the limiting transition. The possibility for

the high energy deformation of Einstein’s equations within the scope

of both equilibrium thermodynamics and non-equilibrium thermody-

namics is examined.

1 Introduction

The present work is a natural continuation of the previous paper arXiv:
0911.5597. It should be noted that there is a certain discord between the
modern development of quantum mechanics and quantum field theory, on the
one hand, and gravity, on the other hand. In the last decade the researchers
have come to an understanding that in the process of studies into the physics
of the Early Universe (extremely high – Plancks energies) the fundamental
physical theories, in particular quantum mechanics and quantum field the-
ory, should be changed. It is inevitable that in these theories a fundamental
length should be introduced. In so doing the correspondence principle should
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be followed without fail: at well-known low energies the theories involving
the fundamental length must present the conventional quantum mechanics
and quantum field theory with a high precision. The idea that a quantum
theory at the Planck scales must involve the fundamental length has been
put forward in the works devoted to a string theory fairly a long time ago
[1]. But since it is still considered to be a tentative theory, some other in-
dications have been required. Fortunately, by the present time numerous
publications have suggested the appearance of the fundamental length in
the Early Universe with the use of various approaches [2]–[5]. Of particular
importance is the work [2], where on the basis of a simple gedanken exper-
iment it is demonstrated that, with regard to the gravitational interactions
(Plancks scales)exhibited in the Early Universe only, the Heisenberg Uncer-
tainty Principle should be extended to the Generalized Uncertainty Principle
[1]–[5]that in turn is bound to bring forth the fundamental length on the or-
der of Plancks length. The advent of novel theories in physics of the Early
Universe is associated with the introduction of new parameters, i.e. with a
deformation of the well-known theories. The deformation is understood as
an extension of a particular theory by inclusion of one or several additional
parameters in such a way that the initial theory appears in the limiting tran-
sition [6]. Of course, in this case Heisenberg Algebra is subjected to the
corresponding deformation too. Such a deformation may be based on the
Generalized Uncertainty Principle (GUP) [7]–[9] as well as on the density
matrix deformation [10]–[18].
At the same time, the above-mentioned new deformation parameters so far
have not appeared in gravity despite the idea that they should. The situation
is that no evident efforts have been undertaken to develop the high-energy
(Plancks scale) gravity deformations including the deformation parameters
introduced in a Quantum Theory of the Early Universe.
In this paper, with GUP held true, the possibility for the high-energy grav-
ity deformation is considered for a specific case of Einstein’s equations. As
this takes place, the parameter α appearing in the Quantum Field Theory
(QFT) with the UV cutoff (fundamental length) produced by the density
matrix deformation is used. There is no discrepancy of any kind as the de-
formation parameter in the GUP-produced Heisenberg algebra deformation
is quite naturally expressed in terms of α, and this will be shown later (Sec-
tion 2). Besides, by its nature, α is better applicable to study the high-energy
deformation of General Relativity because it is small, dimensionless (making
series expansion more natural), and the corresponding representation f Ein-
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stein’s equations in its terms or its deformation appear simple. Structurally,
the paper is as follows. In Sections 2 and 3 the approaches to the deformation
of a quantum theory at the Planck scales are briefly reviewed. In Section
4 together with various inferences a strategy is suggested to study possible
high energy generalizations (deformations) of General Relativity. Actually,
Section 4 represents a short variant of Section 5 given in arXiv: 0911.5597 .
New results are presented in Sections 5 and 6. A thermodynamic description
of General Relativity is used. The possibility for the high energy deforma-
tion of Einstein’s equations is discussed within the scope of both equilibrium
thermodynamics and non-equilibrium thermodynamics. In the latter case
the approach is contemplated only in terms of a nature of the cosmological
constant.

2 Quantum Theory at Planck’s Scale

In the last few years the researchers have come to the understanding that
studies of the Early Universe physics (extremely high Plancks energies) ne-
cessitate changes in the fundamental physical theories, specifically quantum
mechanics and quantum field theory. Inevitably a fundamental length should
be involved in these theories [4]–[8]. This idea has been first suggested by a
string theory [1]. But it is still considered to be a tentative theory without
the experimental status and merely an attractive model. However, the fun-
damental length has been involved subsequently in more simple and natural
considerations [2].
The main approach to framing of Quantum Mechanics with fundamental
length (QMFL) and Quantum Field Theory with fundamental length (QFTFL)
(or with Ultraviolet (UV) cutoff) is that associated with the Generalized Un-
certainty Principle (GUP) [1]–[9]:

△x ≥ h̄

△p
+ α′l2p

△p

h̄
. (1)

with the corresponding Heisenberg algebra deformation produced by this
principle [7]–[9].
Besides, in the works by the author [10]–[19] an approach to the construction
of QMFL has been developed with the help of the deformed density matrix,
the density matrix deformation in QMFL being a starting object called the
density pro-matrix ρ(α) and deformation parameter (additional parameter)

3



α = l2min/x
2,0 < α ≤ 1/4 where x is the measuring scale and lmin ∼ lp

[10],[11].

The explicit form of the above-mentioned deformation gives an exponential
ansatz:

ρ∗(α) = exp(−α)
∑

i

ωi|i >< i|, (2)

where all ωi > 0 are independent of α and their sum is equal to 1.
In the corresponding deformed Quantum Theory (denoted as QFT α) for
average values we have

< B >α= exp(−α) < B >, (3)

where < B > - average in well-known QFT [15],[16]. All the variables asso-
ciated with the considered α - deformed quantum field theory are hereinafter
marked with the upper index α.
Note that the deformation parameter α is absolutely naturally represented
as a ratio between the squared UV and IR limits

α = (
UV

IR
)2, (4)

where UV is fixed and IR is varying.
It should be noted [20] that in a series of the authors works [10]–[19] a minimal
α-deformation of QFT has been formed. By minimal it is meant that no
space-time noncommutativity was required, i.e. there was no requirement
for noncommutative operators associated with different spatial coordinates

[Xi, Xj] 6= 0, i 6= j. (5)

However, all the well-known deformations of QFT associated with GUP (for
example, [7]–[9]) contain (5) as an element of the corresponding deformed
Heisenberg algebra. Because of this, it is necessary to extend (or modify)
the above-mentioned minimal α-deformation of QFT –QFT α [10]–[19] to

some new deformation Q̃FT
α
compatible with GUP, as it has been noted

in [20]. We can easily show that QFT parameter of deformations associated
with GUP may be expressed in terms of the parameter α that has been
introduced in the approach associated with the density matrix deformation.
Here the notation of [21] is used. Then

[~x, ~p] = ih̄(1 + β2~p2 + ...) (6)
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and
∆xmin ≈ h̄

√
β ∼ lp. (7)

Then from (6),(7) it follows that β ∼ 1/p2, and for xmin ∼ lp, β corresponding
to xmin is nothing else but

β ∼ 1/P 2
pl, (8)

where Ppl is Planck’s momentum: Ppl = h̄/lp.
In this way β is changing over the following interval:

λ/P 2
pl ≤ β < ∞, (9)

where λ is a numerical factor and the second member in (6) is accurately
reproduced in momentum representation (up to the numerical factor) by
α = l2min/l

2 ∼ l2p/l
2 = p2/P 2

pl

[~x, ~p] = ih̄(1 + β2~p2 + ...) = ih̄(1 + a1α+ a2α
2 + ...). (10)

3 Some Inferences of Quantum Theories of

the UV-cutoff

The above-mentioned deformations of a quantum field theory at Plancks
scales have several important inferences. In particular, a Quantum Field
Theory (corresponding Heisenberg algebra deformations) within the scope of
GUP [7]–[9] suggests the high-energy quantum corrections for temperature
and entropy of the black holes [26]– [33].In the recent work [21] it has been
demonstrated that the Holographic Principle [22]– [25] is actually integrated
in the approach. Moreover, on the assumption that the cosmological term Λ
is a dynamic quantity [34]– [40], the Heisenberg Uncertainty principle derived
in [37]–[40] for the pair of conjugate variables (Λ, V ):

∆Λ∆V ∼ h̄, (11)

where V is the space-time volume, may be extended up to GUP [41],[42]. At
least heuristically, this result may account for a giant, by a factor of ≈ 10122,
discrepancy between the value of Λ calculated within the scope of conven-
tional QFT and the experimental value [43],[44].
On the other hand, the parameter α and the corresponding deformation of a
quantum field theory QFT α [10]–[19] also gives a good explanation for this
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discrepancy [42],[45],[46], at least within the holographic principle and for the
Holographic Dark Energy Models (HDE) [47] – [51], as at the known infrared
limit (IR cut-off) of the Universe LIR ≈ 10122 the quantity α is just equal to
αmin ≈ 10122. Besides, an approach based on the density matrix deformation
suggests a phenomenological solution for a number of problems in physics of
black holes: Liouville equation modification [52] (deformation)[11][13],[18],
information paradox of Hawking [53],[13],[14],[18], and calculation of quan-
tum corrections [18]–[20] to a semiclassical Bekenstein-Hawking formula of
the black hole entropy [55], [54].
It should be noted that GUP (1) may be complemented by the Generalized
Uncertainty Relation in Thermodynamics (at Planck energy) [12],[18],[58]:

∆
1

T
≥ k

∆U
+ η

(
∆U

Ep

)
kB
Ep

+ ... (12)

where T is the ensemble temperature, U is its internal energy, kB is the
Boltzmann constant, Ep is the Planck energy.In the recently published work
[59]) the black hole horizon temperature has been measured with the use of
the Gedanken experiment. In the process the Generalized Uncertainty Rela-
tions in Thermodynamics (12) have been derived also. Expression (12) has
been considered in the monograph [60] within the scope of the mathematical
physics methods.

4 Gravitational Thermodynamics in Low and

High Energy and Deformed Quantum The-

ory

In the last decade a number of very interesting works have been published.
We can primary name the works [62]–[73], where gravitation, at least for
the spaces with horizon, is directly associated with thermodynamics and
the results obtained demonstrate a holographic character of gravitation. Of
the greatest significance is a pioneer work [56]. For black holes the association
has been first revealed in [55],[52], where related the black-hole event horizon
temperature to the surface gravitation. In [72], has shown that this relation
is not accidental and may be generalized for the spaces with horizon. As all
the foregoing results have been obtained in a semiclassical approximation,
i.e. for sufficiently low energies, the problem arises: how these results are
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modified when going to higher energies. In the context of this paper, the
problem may be stated as follows: since we have some infra-red (IR) cutoff
lmax and ultraviolet (UV) cutoff lmin, we naturally have a problem how the
above-mentioned results on Gravitational Thermodynamics are changed for

l → lmin. (13)

According to Sections 2 and 3 of this paper, they should become dependent
on the deformation parameter α. After all, in the already mentioned in
Section (formula (4)) α is indicated as nothing else but

α =
l2min

l2
. (14)

In fact, in several papers [26]–[32] it has been demonstrated that thermody-
namics and statistical mechanics of black holes in the presence of GUP (i.e.
at high energies) should be modified. To illustrate, in [31] the Hawking tem-
perature modification has been computed in the asymptotically flat space in
this case in particular. It is easily seen that in this case the deformation pa-
rameter α arises naturally. Indeed, modification of the Hawking temperature
is of the following form(formula (10) in [31]):

TGUP = (
d− 3

4π
)
h̄r+
2α′2l2p

[1− (1− 4α′2l2p
r2+

)1/2], (15)

where d is the space-time dimension, and r+ is the uncertainty in the emitted
particle position by the Hawking effect, expressed as

∆xi ≈ r+ (16)

and being nothing else but a radius of the event horizon; α′ – dimensionless
constant from GUP. But as we have 2α′lp = lmin, in terms of α (15) may be
written in a natural way as follows:

TGUP = (
d− 3

4π
)
h̄α−1

r+

α′lp
[1− (1− αr+)

1/2], (17)

where αr+- parameter α associated with the IR-cutoff r+. In such a manner
TGUP is only dependent on the constants including the fundamental ones and
on the deformation parameter α.
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The dependence of the black hole entropy on α may be derived in a similar
way. For a semiclassical approximation of the Bekenstein-Hawking formula
[55],[52]

S =
1

4

A

l2p
, (18)

where A – surface area of the event horizon, provided the horizon event has
radius r+, then A ∼ r2+ and (18) is clearly of the form

S = σα−1
r+
, (19)

where σ is some dimensionless denumerable factor. The general formula for
quantum corrections [30] given as

SGUP =
A

4l2p
− πα′2

4
ln

(
A

4l2p

)
+

∞∑

n=1

cn

(
A

4l2p

)
−n

+ const , (20)

where the expansion coefficients cn ∝ α′2(n+1) can always be computed to
any desired order of accuracy [30], may be also written as a power series in
α−1
r+ (or Laurent series in αr+)

SGUP = σα−1
r+

− πα′2

4
ln(σα−1

r+
) +

∞∑

n=1

(cnσ
−n)αn

r+
+ const (21)

Note that here no consideration is given to the restrictions on the IR-cutoff

l ≤ lmax (22)

and to those corresponding the extended uncertainty principle (EUP) that
leads to a minimal momentum [31]. This problem will be considered sepa-
rately in further publications of the author.
A black hole is a specific example of the space with horizon. It is clear that
for other horizon spaces [72] a similar relationship between their thermody-
namics and the deformation parameter α should be exhibited.
Quite recently, in a series of papers, and specifically in [64]–[70], it has been
shown that Einstein equations may be derived from the surface term of the
GR Lagrangian, in fact containing the same information as the bulk term.
It should be noted that Einstein’s equations [at least for space with hori-
zon] may be obtained from the proportionality of the entropy and horizon
area together with the fundamental thermodynamic relation connecting heat,
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entropy, and temperature [56]. In fact [64]– [71], this approach has been ex-
tended and complemented by the demonstration of holographicity for the
gravitational action (see also [72]).And in the case of Einstein-Hilbert grav-
ity, it is possible to interpret Einstein’s equations as the thermodynamic
identity [73]:

TdS = dE + PdV. (23)

The above-mentioned results in the last paragraph have been obtained at low
energies, i.e. in a semiclassical approximation. Because of this, the problem
arises how these results are changed in the case of high energies? Or more
precisely, how the results of [56],[64]– [73] are generalized in the UV-limit? It
is obvious that, as in this case all the thermodynamic characteristics become
dependent on the deformation parameter α, all the corresponding results
should be modified (deformed) to meet the following requirements:
(a) to be clearly dependent on the deformation parameter α at high energies;

(b) to be duplicated, with high precision, at low energies due to the suit-
able limiting transition;

(c) Let us clear up what is meant by the adequate high energy α-deformation
of Einstein’s equations (General Relativity).
The problem may be more specific.
As, according to [56],[72],[73] and some other works, gravitation is greatly
determined by thermodynamics and at high energies the latter is a deforma-
tion of the classical thermodynamics, it is interesting whether gravitation at
high energies (or what is the same, quantum gravity or Planck scale)is being
determined by the corresponding deformed thermodynamics. The formulae
(17) and (21) are elements of the high-energy α-deformation in thermody-
namics, a general pattern of which still remains to be formed. Obviously,
these formulae should be involved in the general pattern giving better in-
sight into the quantum gravity, as they are applicable to black mini-holes
(Planck black holes) which may be a significant element of such a pattern.
But what about other elements of this pattern? How can we generalize the
results [56],[72],[73]when the IR-cutoff tends to the UV-cutoff (formula (13))?
What are modifications of the thermodynamic identity (23) in a high-energy
deformed thermodynamics and how is it applied in high-energy (quantum)
gravity? What are the aspects of using the Generalized Uncertainty Rela-
tions in Thermodynamics [12],[18],[58] (12)in this respect? It is clear that
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these relations also form an element of high-energy thermodynamics.
By authors opinion, the methods developed to solve the problem of point
(c) and elucidation of other above-mentioned problems may form the basis
for a new approach to solution of the quantum gravity problem. And one
of the keys to the quantum gravity problem is a better insight into the
high-energy thermodynamics.

5 α–Representation of Einstein’s Equations

Let us consider α-representation and high energy α-deformation of the Ein-
stein’s field equations for the specific cases of horizon spaces (the point (c) of
Section 4). In so doing the results of the survey work ([74] p.p.41,42)are used.
Then, specifically, for a static, spherically symmetric horizon in space-time
described by the metric

ds2 = −f(r)c2dt2 + f−1(r)dr2 + r2dΩ2 (24)

the horizon location will be given by simple zero of the function f(r), at
r = a.
It is known that for horizon spaces one can introduce the temperature that
can be identified with an analytic continuation to imaginary time. In the
case under consideration ([74], eq.(116))

kBT =
h̄cf ′(a)

4π
. (25)

Therewith, the condition f(a) = 0 and f ′(a) 6= 0 must be fulfilled.
Then at the horizon r = a Einstein’s field equations

c4

G

[
1

2
f ′(a)a− 1

2

]
= 4πPa2 (26)

may be written as the thermodynamic identity (23)([74] formula (119))

h̄cf ′(a)

4π︸ ︷︷ ︸
kBT

c3

Gh̄
d
(
1

4
4πa2

)

︸ ︷︷ ︸
dS

− 1

2

c4da

G︸ ︷︷ ︸
−dE

= Pd
(
4π

3
a3
)

︸ ︷︷ ︸
P dV

(27)

where P = T r
r is the trace of the momentum-energy tensor and radial pres-

sure. In the last equation da arises in the infinitesimal consideration of
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Einstein’s equations when studying two horizons distinguished by this in-
finitesimal quantity a and a + da ([74] formula (118)).
Now we consider(27) in new notation expressing a in terms of the correspond-
ing deformation parameter α. Then we have

a = lminα
−1/2. (28)

Therefore,
f ′(a) = −2l−1

minα
3/2f ′(α). (29)

Substituting this into (26) or into (27), we obtain in the considered case of
Einstein’s equations in the ”α–representation” the following:

c4

G
(−αf ′(α)− 1

2
) = 4πPα−1l2min. (30)

Multiplying the left- and right-hand sides of the last equation by α, we get

c4

G
(−α2f ′(α)− 1

2
α) = 4πP l2min. (31)

But since usually lmin ∼ lp (that is just the case if the Generalized Uncer-
tainty Principle (GUP) is satisfied), we have l2min ∼ l2p = Gh̄/c3. When
selecting a system of units, where h̄ = c = 1, we arrive at lmin ∼ lp =

√
G,

and then (30) is of the form

− α2f ′(α)− 1

2
α = 4πPϑ2G2, (32)

where ϑ = lmin/lp. L.h.s. of (32) is dependent on α. Because of this, r.h.s.
of (32) must be dependent on α as well, i. e. P = P (α).

Analysis of α-Representation of Einstein’s Equations

Now let us get back to (27). In [74] the low-energy case has been consid-
ered, for which ([74] p.42 formula (120))

S =
1

4l2p
(4πa2) =

1

4

AH

l2p
; E =

c4

2G
a =

c4

G

(
AH

16π

)1/2

, (33)

where AH is the horizon area. In our notation (33) may be rewritten as

S =
1

4
πα−1; E =

c4

2G
a =

c4

G

(
AH

16π

)1/2

=
ϑ

2
√
G
α1/2. (34)

We proceed to two entirely different cases: low energy (LE) case and high
energy (HE) case. In our notation these are respectively given by
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A)α → 0 (LE), B)α → 1/4 (HE),
C)α complies with the familiar scales and energies.

The case of C) is of no particular importance as it may be considered within
the scope of the conventional General Relativity.
Indeed, in point A)α → 0 is not actually an exact limit as a real scale of the
Universe (Infrared (IR)-cutoff lmax ≈ 1028cm), and then

αmin ∼ l2p/l
2
max ≈ 10−122.

In this way A) is replaced by A1)α → αmin. In any case at low energies the
second term in the left-hand side (32) may be neglected in the infrared limit.
Consequently, at low energies (32) is written as

− α2f ′(α) = 4πP (α)ϑ2G2. (35)

Solution of the corresponding Einstein equation finding of the function
f(α) = f [P (α)] satisfying(35). In this case formulae (33) are valid as at
low energies a semiclassical approximation is true. But from (35)it follows
that

f(α) = −4πϑ2G2
∫ P (α)

α2
dα. (36)

On the contrary, knowing f(α), we can obtain P (α) = T r
r .

But it is noteworthy that, when studying the infrared modified gravity [81],[82],[83],
we have to make corrections for the considerations of point A1).

6 Possible High Energy α-Deformation of Gen-

eral Relativity

Let us consider the high-energy case B). Here two variants are possible.

I. First variant.
In this case it is assumed that in the high-energy (Ultraviolet (UV))limit
the thermodynamic identity (27)(or that is the same (23)is retained but now
all the quantities involved in this identity become α-deformed. This means
that they appear in the α-representation with quantum corrections and are
considered at high values of the parameter α, i.e. at α close to 1/4. In
particular, the temperature T from equation (27) is changed by TGUP (17),
the entropy S from the same equation given by semiclassical formula (33) is
changed by SGUP (21), and so forth:
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E 7→ EGUP , V 7→ VGUP .

Then the high-energy α-deformation of equation (27) takes the form

kBTGUP (α)dSGUP (α)− dEGUP (α) = P (α)dVGUP (α). (37)

Substituting into (37) the corresponding quantities
TGUP (α), SGUP (α), EGUP (α), VGUP (α), P (α) and expanding them into a Lau-
rent series in terms of α, close to high values of α, specifically close to α = 1/4,
we can derive a solution for the high energy α-deformation of general relativ-
ity (37) as a function of P (α). As this takes place, provided at high energies
the generalization of (27) to (37)is possible, we can have the high-energy
α-deformation of the metric. Actually, as from (27) it follows that

f ′(a) =
4πkB
h̄c

T = 4πkBT (38)

(considering that we have assumed h̄ = c = 1), we get

f ′

GUP (a) = 4πkBTGUP (α). (39)

L.h.s. of (39) is directly obtained in the α-representation. This means that,
when f ′ ∼ T , we have f ′

GUP ∼ TGUP with the same factor of proportionality.
In this case the function fGUP determining the high-energy α-deformation
of the spherically symmetric metric may be in fact derived by the expansion
of TGUP , that is known from (17), into a Laurent series in terms of α close
to high values of α (specifically close to α = 1/4), and by the subsequent
integration.
It might be well to remark on the following.

6.1 As on going to high energies we use (GUP), ϑ from equation (32)is
expressed in terms of α′–dimensionless constant from GUP (1),(17):ϑ = 2α′.

6.2 Of course, in all the formulae including lp this quantity must be changed
by G1/2 and hence lmin by ϑG1/2 = 2α′G1/2.

6.3 As noted in the end of subsection 6.1, and in this case also knowing all
the high-energy deformed quantities TGUP (α), SGUP (α), EGUP (α), VGUP (α),
we can find P (α) at α close to 1/4.
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6.4 Here it is implicitly understood that the Ultraviolet limit of Einstein’s
equations is independent of the starting horizon space. This assumption is
quite reasonable. Because of this, we use the well-known formulae for the
modification of thermodynamics and statistical mechanics of black holes in
the presence of GUP [26]–[32].

6.5 The use of the thermodynamic identity (37) for the description of the
high energy deformation in General Relativity implies that on going to the
UV-limit of Einsteins equations for horizon spaces in the thermodynamic
representation (consideration) we are trying to remain within the scope of
equilibrium statistical mechanics [75] (equilibrium thermodynam-

ics) [76]. However, such an assumption seems to be too strong. But some
grounds to think so may be found as well. Among other things, of interest is
the result from [26] that GUP may prevent black holes from their total evap-
oration. In this case the Plancks remnants of black holes will be stable, and
when they are considered, in some approximation the equilibrium ther-

modynamics should be valid. At the same time, by authors opinion these
arguments are rather weak to think that the quantum gravitational effects
in this context have been described only within the scope of equilibrium
thermodynamics[76].

II. Second variant.
According to the remark of 6.5, it is assumed that the interpretation of Ein-
stein’s equations as a thermodynamic identity (27) is not retained on going
to high energies (UV–limit), i.e. at α → 1/4, and the situation is adequately
described exclusively by non-equilibrium thermodynamics[76],[77]. Nat-
urally, the question arises: which of the additional terms introduced in (27)
at high energies may be leading to such a description?
In the [41],[42] it has been shown that in case the cosmological term Λ is a
dynamic quantity, it is small at low energies and may be sufficiently large
at high energies. In the right-hand side of (32) in the α–representation the
additional term GF (Λ(α)) is introduced:

− α2f ′(α)− 1

2
α = 4πPϑ2G2 −GF (Λ(α)), (40)

where in terms of F (Λ(α)) we denote the term including Λ(α) as a factor.
Then its inclusion in the low-energy case (26)(or in the α -representation
(32)) has actually no effect on the thermodynamic identity (27)validity, and
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consideration within the scope of equilibrium thermodynamics still holds
true. It is well known that this is not the case at high energies as the Λ-term
may contribute significantly to make the ”process” non-equilibrium in the
end [76],[77].
Is this the only cause for violation of the thermodynamic identity (27) as
an interpretation of the high-energy generalization of Einstein’s equations?
Further investigations are required to answer this question.

7 Conclusion

This work presents the first steps to incorporation of the deformation pa-
rameters of a quantum field theory at Plancks scales into the high-energy
deformation of General Relativity (GR). Further, the corresponding calcu-
lations should follow with an adequate interpretation. It is interesting to
consider the high energy α-deformation of GR in a more general case. The
problem is how far a thermodynamic interpretation of Einstein’s equations
may be extended? We should remember that, as in all the deformations
considered a minimal length at the Planck level lmin ∼ lp has been involved,
a minimal volume should also be the case Vmin ∼ Vp = l3p, and this is of
particular importance for high energy thermodynamics (some indications to
this fact have been demonstrated in [41],[42]).
Besides, in this paper we have treated QFT with a minimal length, i.e. with
the UV-cutoff. Consideration of QFT with a minimal momentum (or IR-
cutoff) [32] necessitates an adequate extension of α-deformation in QFT with
the introduction of new parameters significant in the IR-limit.
It seems that some hints to a nature of such deformation may be found from
the works devoted to the infrared modification of gravity [81]–[83].
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