
Pose and Motion from Omnidirectional Optical
Flow and a Digital Terrain Map

Ronen Lerner, Oleg Kupervasser and Ehud Rivlin
Department of Computer Science

Technion - Israel Institute of Technology

Haifa 32000, Israel

Email: ronenl@cs.technion.ac.il

oleg kup@yahoo.com

ehudr@cs.technion.ac.il

Abstract— An algorithm for pose and motion estimation using
corresponding features in omnidirectional images and a digital
terrain map is proposed. In previous paper, such algorithm
for regular camera was considered. Using a Digital Terrain
(or Digital Elevation) Map (DTM/DEM) as a global reference
enables recovering the absolute position and orientation of the
camera. In order to do this, the DTM is used to formulate a
constraint between corresponding features in two consecutive
frames. In this paper, these constraints are extended to handle
non-central projection, as is the case with many omnidirectional
systems. The utilization of omnidirectional data is shown to
improve the robustness and accuracy of the navigation algorithm.
The feasibility of this algorithm is established through lab
experimentation with two kinds of omnidirectional acquisition
systems. The first one is polydioptric cameras while the second
is catadioptric camera.

I. INTRODUCTION

Vision-based navigation algorithms has been a major re-

search issue during the past decades. Two common approaches

for the navigation problem are: landmarks and ego-motion
integration. In the landmarks approach several features are

located on the image-plane and matched to their known 3D

location. Using the 2D and 3D data the camera’s pose can be

derived. Few examples for such algorithms are [1], [2]. Once

the landmarks were found, the pose derivation is simple and

can achieve quite accurate estimates. The main difficulty is

the detection of the features and their correct matching to the

landmarks set.

In ego-motion integration approach the motion of the cam-

era with respect to itself is estimated. The ego-motion can

be derived from the optical-flow field, or from instruments

such as accelerometers and gyroscopes. Once the ego-motion

was obtained, one can integrate this motion to derive the

camera’s path. One of the factors that make this approach

attractive is that no specific features need to be detected,

unlike the previous approach. Several ego-motion estimation

algorithms can be found in [3], [4], [5], [6]. The weakness of

ego-motion integration comes from the fact that small errors

are accumulated during the integration process. Hence, the

estimated camera’s path is drifted and the pose estimation

accuracy decrease along time. If such approach is used it

would be desirable to reduce the drift by activating, once in a

while, an additional algorithm that estimates the pose directly.

In [7] such navigation-system is being suggested. In that work,

like in this work, the drift is being corrected using a Digital

Terrain Map (DTM). The DTM is a discrete representation of

the observed ground’s topography. It contains the altitude over

the sea level of the terrain for each geographical location. In

[7] a segment of the ground was reconstructed using ‘structure-

from-motion’ (SFM) algorithm and was matched to the DTM

in order to derive the camera’s pose. Using SFM algorithm,

which does not make any use of the information obtained

from the DTM but bases its estimate on the flow-field alone,

positions their technique under the same critique that applies

for SFM algorithms [8].

The algorithm presented in the previous work [9] does not

require an intermediate explicit reconstruction of the 3D world.

By combining the DTM information directly with the images

information it is claimed that the algorithm is well-conditioned

and generates accurate estimates for reasonable scenarios with

reasonable error sources.

Recently, an increasing interest in omnidirectional vision

for applications in robotics could be noted. Technically, om-

nidirectional vision, sometimes also called panoramic vision,

can be achieved in various ways. Examples include camera

with extreme wide angle lenses (“fish-eye”), cameras with

hyperbolic or parabolic mirrors mounted in front of a standard

lens (catadioptric imaging), sets of cameras mounted in a ring-

like or sphere-like configuration (polydioptric imaging), or

an ordinary camera that rotates around an axis and takes a

sequence of images that covers a field of view of 360 degrees

[10], [11], [12], [13], [14], [15], [16], [17], [18], [19].

Omnidirectional vision provides a very large field of view,

which has some useful properties. For instance, it enables the

tracking of objects which are placed in different directions

in the surrounding scene. It is well established that such

variety of features facilitates the obtainment of a robust and

accurate estimate of the camera pose. On the other hand, vision

algorithms have to account for the specific properties of the

particular omnidirectional imaging sensor setup in use. This

may comprise theoretical and methodological challenges, as is

the case for catadioptric vision. Here, the extreme geometrical

distortions of the images caused by the parabolic or hyperbolic
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camera

Fig. 1. When using an omnidirectional vision system a wide area of the
terrain is visible (see the red area) even when the camera approaches a
mountainside. When using a regular camera in similar scenario only small
patch that is almost planar is observed (see the blue area).

mirror require a suitable adaptation of image interpretation

methods.

The projection induced by an omnidirectional camera is

the transformation from the 3D space to the image(s) plane.

The least restrictive assumption that can be made about any

camera model is that the inverse image of a point is a line

in space. For many omnidirectional cameras, all such lines do

not necessarily intersect in a single point. Their envelope is

called a dia-caustic and represents a locus of viewpoints. If

all the lines intersect in a single point, then the system has

a single effective viewpoint and it is a central projection. In

[20] a theorem is presented stating that a catadioptric camera

has a single effective viewpoint if and only if the mirrors

cross-section is a conic section. In any other case, including

multiple cameras configurations, rotating camera systems and

other shapes of mirrors, there is no single center of projection.

The data acquired by such omnidirectional systems cannot be

processed by vision algorithms that were developed under the

single effective viewpoint assumption.

In this paper the navigation algorithm that was presented

in [9] is extended to handle omnidirectional data. The most

general case of non-central projection (“multi-optical center”)

is analyzed. The single center of projection case that was

previously analyzed becomes a particular case of this general

formulation when all optical centers are located in a single

point. As was shown in [9], one of the most important

factors that influence the robustness and the accuracy of

the navigation algorithm is the complexity of the observed

terrain. The extreme case, where only a planar segment of

the terrain is visible, results in an ill-conditioned system

which may lead to the failure of the algorithm. Whenever

the navigating platform comes close to a mountainside in

the terrain, such an ill-conditioned scenario might arise if a

regular camera (not omnidirectional one) is used. However,

when using an omnidirectional vision system, the rest of the

terrain will still be visible even if the platform approaches one

of the mountainsides (see Fig. 1). Therefore, more robust and

accurate results can be achieved when using omnidirectional

vision.

The paper continues as follows: Section II formally define

the navigation problem. Section III derive the constraint for

any corresponding features coming from two consecutive

images along the trajectory. Experimental results are presented

in section IV, and conclusions are drawn in section V.

II. PROBLEM DEFINITION AND NOTATIONS

The problem can be briefly described as follows: At any

given time instance t, a coordinates system C(t) is fixed to an

omnidirectional camera. At that time instance the camera is

located at some geographical location p(t) – a 3D vector, and

has a given orientation R(t) – an orthonormal rotation matrix,

with respect to a global coordinates system W . p(t) and R(t)
define the transformation from the camera’s frame C(t) to the

world’s frame W , where if Cv and W v are vectors in C(t) and

W respectively, then W v = R(t)Cv + p(t).
Considering two sequential time instances t1 and t2: the

transformation from C(t1) to C(t2) is given by the translation

vector Δp(t1, t2) and the rotation matrix ΔR(t1, t2), such that
C(t2)v = ΔR (t1, t2) C(t1)v + Δp (t1, t2). A rough estimates

of the camera’s pose at t1 and of the ego-motion between

the two time instances – pE(t1) ,RE(t1), ΔpE(t1, t2) and

ΔRE(t1, t2) – are assumed to be known (the subscript letter

“E” denotes that this is an estimated quantity). Such estimates

can be obtained from dead-reckoning navigation system.

Also supplied is the optical-flow field. No special assump-

tion is made on the omnidirectional acquisition system. It is

assumed, however, that the system was fully calibrated. As

a result, for each visible feature it is possible to compute its

line of sight with respect to the camera system - C, which

can be defined by a source point - CSi and a unit-vector -
Cqi, oriented from the source point to the observed feature.

Using the above notations, the objective of the proposed al-

gorithm is to estimate the true camera’s pose and ego-motion:

p(t1), R(t1), Δp(t1, t2) and ΔR(t1, t2), using n correspond-

ing features from the optical-flow field {CSi(tk), Cqi(tk)}
(i=1. . . n, k=1,2), the DTM and the initial-guess: pE(t1),
RE(t1), ΔpE(t1, t2) and ΔRE(t1, t2).

III. THE NAVIGATION ALGORITHM

The following section describes a navigation algorithm

which estimate the above mentioned parameters. The pose

and ego-motion of the camera are derived using a DTM and

the optical-flow field of two consecutive frames. Unlike the

landmarks approach no specific features should be detected

and matched. Only the correspondence between the two con-

secutive images should be found in order to derive the optical-

flow field. As was mentioned in the previous section, a rough

estimate of the required parameters is supplied as an input.

Nevertheless, since the algorithm only use this input as an

initial guess and re-calculate the pose and ego-motion directly,

no integration of previous errors will take place and accuracy

will be preserved.

The new approach is founded on the following observation.

Since the DTM supplies information about the structure of the

observed terrain, depth of observed features is being dictated

by the camera’s pose. Hence, given the pose and ego-motion of

the camera, the optical-flow field can be uniquely determined.

The objective of the algorithm will be finding the pose and

ego-motion which lead to an optical-flow field as close as

possible to the given flow field.
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A single vector from the optical-flow field will be used

to define a constraint for the camera’s pose and ego-motion.

Let W G ∈ R
3 be a location of a ground feature point in

the 3D world. At two different time instances t1 and t2, this

feature point is detected in the omnidirectional images and its

lines of sight – {CS(t1), Cq(t1)} and {CS(t2), Cq(t2)} – are

computed. Using an initial-guess of the pose of the camera at

t1, the line passing through CS(t1) in direction of Cq(t1) can

be intersected with the DTM. Any ray-tracing style algorithm

can be used for this purpose. The location of this intersection

is denoted as W GE . The subscript letter “E” highlights the

fact that this ground-point is the estimated location for the

feature point, that in general will be different from the true

ground-feature location W G. The difference between the true

and estimated locations is due to two main sources: the error in

the initial guess for the pose and the errors in the determination

of W GE caused by DTM discretization and intrinsic errors.

For a reasonable initial-guess and DTM-related errors, the two

points W GE and W G will be close enough so as to allow the

linearization of the DTM around W GE . Denoting by N the

normal of the plane tangent to the DTM at the point W GE ,

one can write:

NT (W G− W GE) ≈ 0. (1)

The true ground feature W G can be described using true pose

parameters:

W G = W S(t1) + R(t1) · q(t1) · λ
= R(t1) · (CS(t1) + q(t1) · λ) + p(t1). (2)

Here, λ denotes the distance between W S(t1) and the

feature point W G. In the aforementioned equation we use the

feature’s transformed source point:

W S(t1) = R(t1)CS(t1) + p(t1). (3)

Replacing (2) in (1) we get:

NT [R(t1) · (CS(t1) + q(t1) · λ) + p(t1) − W GE ] = 0.
(4)

From this expression, the distance of the true feature can be

computed using the estimated feature location:

λ =
NT W GE −NT W S(t1)

NT R(t1)q(t1)
. (5)

In order to simplify notations, R(ti) will be replaced by Ri

and likewise for p(ti), S(ti) and q(ti) (i = 1, 2). ΔR(t1, t2)
and Δp(t1, t2) will be replaced by R12 and p12 respectively.

The superscript describing the coordinate frame in which the

vector is given will also be omitted, except for the cases were

special attention needs to be drawn to the frames. Normally,

p12, Sis and qis are in camera’s frame while the rest of the

vectors are given in the world’s frame. Using the simplified

notations, (5) can be assigned into (2) and after reorganization

we get:

W G =
R1q1N

T

NT R1q1

W GE − R1q1N
T

NT R1q1

W S1 + W S1. (6)

G E 

G 

N 

P 1 

S  1 

R  q 1 1 
E 

(R  q  ,N)(   S  - G  )  

W 

S  - G  1 
W 

E 1 
W P 11

Fig. 2. Geometrical description of expression (9) using the projection
operator (7)

In order to obtain simpler expressions, define the following

projection operator:

P(u, n) .=
(

I− unT

nT u

)
(7)

This operator projects a vector onto the subspace normal to

n, along the direction of u. As an illustration, it is easy to

verify that nT · P(u, n)v ≡ 0 and P(u, n)u ≡ 0. By adding

and subtracting GE to (6), and after reordering:

W G = W GE +
[
I− R1q1N

T

NT R1q1

]
W S1 −

[
I− R1q1N

T

NT R1q1

]
W GE

(8)

Using the projection operator, (8) becomes:

W G = W GE + P(R1q1, N) (W S1 − W GE) (9)

The above expression has a clear geometric interpretation (see

Fig.2). The vector from GE to W S1 is being projected onto

the tangent plane. The projection is along the direction R1q1.

Our next step will be transferring G from the global coor-

dinates frame - W into the first camera’s frame C1 and then

to the second camera’s frame C2. Since p1 and R1 describe

the transformation from C1 into W , we will use the inverse

transformation:

C2G = R12R
T
1 (W G− p1) + p12. (10)

Assigning (9) into (10) gives:

C2G = R12 · CS1 + p12 + R12L (W GE − W S1) . (11)

L in the above expression represents:

L =
q1N

T

NT R1q1
(12)

q2 is a unit-vector pointing to the true ground-feature G.

Thus, the vectors q2 and (C2G− C2S2) should coincide. This

observation can be expressed mathematically by projecting

(C2G− C2S2) on the ray continuation of q2:

C2G− C2S2 = q2 ·
(
qT
2 · (C2G− C2S2)

)
(13)
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(a) (b)

Fig. 3. (a) A 3D terrain model of horizontal dimension 115 × 95 cm. (b)
The DTM was constructed by using a laser-based 3D-scanner. The spatial grid
was 1mm (the one in the figure has a coarser grid for visualization purposes).

In expression (13), qT
2 · (C2G − C2S2) is the magnitude of

(C2G − C2S2)’s projection on q2. By reorganizing (13) and

using the projection operator, we obtain:

P(q2, q2) · (C2G− C2S2) = 0, (14)

where:

P(q2, q2) =
[
I− q2 · qT

2

]
. (15)

(C2G−C2S2) is being projected on the orthogonal complement

of q2. Since (C2G − C2S2) and q2 should coincide, this

projection should yield the zero-vector. Plugging (11) into (14)

yields our final constraint:

P(q2, q2) [R12 · CS1 + p12 + R12L (W GE − W S1)− C2S2]

= 0 (16)

This constraint involves the position, orientation and the ego-

motion defining the two frames of the camera. Although it

involves 3D vectors, it is clear that its rank can not exceed two

due to the usage of P which projects R
3 on a two-dimensional

subspace.

Such constraint can be established for each vector in the

optical-flow field, until a non-singular system is obtained.

Since twelve parameters need to be estimated (six for pose

and six for the ego-motion), at least six optical-flow vectors

are required for the system solution. Usually, more vectors will

be used in order to define an over-determined system, which

will lead to more robust solution. The reader attention is drawn

to the fact that a non-linear constraint was obtained. Thus, an

iterative scheme will be used in order to solve this system.

For example, Newton-iterations which start from the rough

estimate of the pose and motion parameters and iteratively

converge to the least square solution can be performed. As

was suggested in [21], M-estimator can be integrated into this

scheme to increase its robustness in the presence of outliers.

IV. EXPERIMENTAL RESULTS

Lab experimentation was performed using a real 3D model

of a terrain and images from an omnidirectional acquisition

system. The dimensions of the model were 115× 95 cm with

elevation variations as high as 32cm (see Fig.3(a)). A laser-

based 3D-scanner was used to capture the terrain and build a

DTM with a 1mm spatial grid (see Fig.3(b)).

Two types of omnidirectional acquisition systems were

tested: a configuration of three regular cameras heading to

Fig. 4. Omnidirectional vision was obtained by a configuration of three
cameras that were posed in different orientations.
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Fig. 5. Two of the tested trajectories. Trajectory a contains constant
translational motion while trajectory b has significant changes in orientation.
The true paths are marked by black solid line, while the pathes reconstructed
by the algorithm are marked by red line. The black dotted lines represent
the trajectories that would have been obtained in case the algorithm was not
activated.

different directions, and a catadioptric system with a parabolic

mirror.

A. Three Cameras Configuration

Three cameras with a wide field of view (80◦ each) were

firmly attached to a robotic arm. Each camera was posed in

a different orientation (see Fig. 4). Their internal parameters

and relative pose parameters were accurately estimated as

part of the system calibration phase. In each experiment the

cameras configuration was moved along a different trajectory.

The robotic arm allowed moving of the cameras in a controlled

manner while also providing true measurements for the pose

of the cameras at all time instances. Fig.5 shows examples

of two of the trajectories evaluated. The first trajectory (a
in the figure) contains constant translational motion with the

orientation held constant. In the second trajectory (b in the

figure) position and orientation of the cameras were changed

significantly. Although highly accurate “ground-truth” data

for the trajectory of the cameras was obtained from the

robotic manipulator, this trajectory was corrupted using a

simulated error model so that the “true” and the a priori

trajectories drifted away with time. The error model drifted the

trajectory position and orientation by 1 mm/sec and 0.7◦/sec,

respectively. In order to compensate for this drift, the proposed

algorithm was called at 1 Hz rate. Whenever activated, this

algorithm was supplied with the latest 3 images (one from each

camera) and a previous image triplet that was captured 20mm
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Fig. 6. Results for trajectories a (sub-figures (a) and (b)) and b (sub-figures
(c) and (d)) when using the three cameras configuration. Position errors ((a)
and (c)) and orientation errors ((b) and (d)) of the drifted path are marked
with a black dashed line, and errors of the corrected path are marked with a
red solid line.

away. The a priori information was derived from the available

drifted pose at these two frames. Since 20mm baseline was

desired, the algorithm was activated for the first time only after

3 seconds of movement. Later, it was periodically activated in

1 second gaps.

During the experiments, gray-level images of 640 × 480
pixels were obtained from each of the three cameras. Cor-

respondence between about 100 features per camera (300

features all together) was derived using the Lucas-Kanade

tracking method [22], [23]. Features were not selected using

an image-dependent algorithm, but rather, by using a regular

grid spanned over the image-plane.

As shown in Figure 5, the algorithm converged to reasonable

estimates for the navigation parameters along the two trajec-

tories described above. The figure shows the “ground-truth”

together with two trajectories computed using the error model:

the first contains no updates while the second was updated

periodically by using the proposed algorithm, at a 1 Hz rate.

The figure clearly show that the corrected-path remains close

to the true-path along the whole trajectory.

Figure 6 shows the position and orientation errors of the

drifted and corrected paths for the two trajectories. It can be

seen that the errors of the corrected path are kept small while

the errors in the uncompensated path increase gradually. The

saw-tooth shaped graph of the corrected path is characteristic:

the orientation errors accumulate between updates but are

strongly reduced each time the algorithm is applied.

In order to demonstrate the importance of the omnidirec-

tional vision usage, the two trajectories were also reconstructed

using 300 features coming from only one of the cameras, while

the data from the other two cameras were ignored. Fig. 7(a)
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Fig. 7. (a) Translational errors of trajectory b when using 300 features coming
from only one camera (blue dashed line) and when using 100 features from
each of the three cameras (red solid line). (b) A frame captured by the single
camera that was in use.

compares the translational accuracies that were obtained when

using one vs. three cameras while reconstructing trajectory

b. A clear advantage can be observed for the utilization of

the omnidirectional configuration. In [9], the sensitivities of

the proposed algorithm were studied. It was found that the

obtained accuracy is highly related to the complexity of the ob-

served terrain. The extreme case, where only a planar segment

of the terrain is visible, results in an ill-conditioned system

which leads to the failure of the algorithm. Whenever the

navigating platform comes close to one of the mountainsides

of the terrain, such an ill-conditioned scenario might happen if

a regular camera (not omnidirectional one) is used. However,

if using an omnidirectional vision system, then the rest of the

terrain will still be visible even when approaching one of the

mountainsides. Therefore, more robust and accurate results can

be expected when using omnidirectional vision, as confirmed

by Fig. 7(a). Note the blue dot in this figure. At that time

instance, the algorithm performance was relatively poor for

the single camera scenario since only small segment of the

terrain was visible to that camera - Fig. 7(b).

B. Catadioptric System

In the second experiment the three regular cameras were

replaced by a single catadioptric system which is constructed

of a parabolic mirror mounted in front of an orthographic cam-

era (see Fig. 8(a)). Images of 1024×768 pixels were captured

by this camera and 300 feature correspondences between two

consecutive images were computed for the algorithm using the

Lucas-Kanade method (see Fig. 8(b)). It should be noted that

this tracking method is not optimal for catadioptric images

due to the nature of the distortion of this kind of images.

However, since the catadioptric system was first calibrated,

these distortions can be computed and then cancelled. For each

feature, a warped images can be rendered from the original

images such that the local area of the feature appears as if

it would be in a regular perspective camera. Next the Lucas-

Kanade tracking method can be activated on these warped

images with no special difficulty.

The translational and angular accuracies that were obtained

during the two examined trajectories are presented in Figure 9.

The slight deterioration in the algorithm performance (com-

pared to its performance with the three cameras configuration)
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(a) (b)

Fig. 8. (a) The catadioptric system that was used for omnidirectional vision
in the second experiment. (b) An example for optical-flow field that was
extracted for the algorithm. Each small blue arrow shows a corresponding
couple.
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Fig. 9. Results for trajectories a (sub-figures (a) and (b)) and b (sub-figures
(c) and (d)) when using the catadioptric system. Position errors ((a) and (c))
and orientation errors ((b) and (d)) of the drifted path are marked with a black
dashed line, and errors of the corrected path are marked with a red solid line.

is probably due to the low resolution at the periphery of

catadioptric images and due to the usage of the Lucas-Kanade

tracking method directly on the distorted images.

V. CONCLUSIONS

An algorithm for pose and motion estimation using cor-

responding features in omnidirectional images and a DTM

was presented. The DTM served as a global reference and

its data was used for recovering the absolute position and

orientation of the camera. The derived constraint eliminates

the requirement for the commonly used assumption of single

effective viewpoint. As a result, the presented algorithm is

applicable for all omnidirectional acquisition systems. The

performance of the presented algorithm was demonstrated

using both polydioptric cameras and catadioptric camera.

Both position and orientation estimates were found to be

sufficiently accurate in order to bound the accumulated errors

and to prevent trajectory drifts. Moreover, the utilization of

omnidirectional data was shown to improve the robustness

and accuracy of the navigation algorithm, compared to its

counterpart algorithm for regular cameras. The improvement

is attributed to the wide segment of the visible terrain. Such a

segment tends to include much higher complexity than smaller

segments which might be observed when using a regular

camera.
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