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Solving the Flatness and Horizon Problems via Self-Organized Criticality 

Ervin Goldfain 

Abstract 

Self-organized criticality (SOC) is a universal mechanism for self-sustained critical behavior in large-scale 

systems evolving outside equilibrium. The trademark signature of SOC is two-fold: a) it occurs in complex 

ensembles of multiple interacting components and b) it is characterized by power-law distribution of 

“avalanche” sizes. This brief report suggests that both flatness and horizon problems of cosmology may be 

explained away through the universal features of SOC. The explanation stems from the so-called finite 

scaling ansatz (FSS) of SOC, which is a generic paradigm for the emergence of complexity in Nature. Our 

approach is straightforward and evades traditional solutions involving fine-tuning, particle horizons or 

inflation.  
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1. From SOC to the minimal fractal geometry of spacetime 

Consider a large-scale system of size L  undergoing a second-order phase transition. The 

transition is driven by the control parameter   as it approaches the critical value c . Near 

the critical point and for systems of infinite extent ( L ), the correlation length   

diverges as [10-12] 

   ~ ( )c

    ;  , cL      (1) 
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In the transition region, a relevant variable of the system is also a diverging quantity 

which scales as  

 ( )A 
 ~ c


 


 ; , cL       (2) 

where   is a critical exponent. In what follows, we introduce the notation  

 ( )s




    (3) 

There are two distinct cases associated with the power-law (2). If the size of the system 

greatly exceeds the correlation length, L  , by (1) and (2) we write   

 ( )LA   ~ s   ;  ( , cL     )  (4) 

In the opposite case, L  , the system size takes over the scaling behavior and (2) turns 

into    

 ( )LA   ~ sL
  ;   ( , cL     )  (5) 

Taken together, (4) and (5) define the finite-size scaling (FSS) ansatz [1, 10-11] 

 ( ) ( )s

L
LA

 



   ;   ( , cL    )  (6) 

where the scaling function controls the finite-size effects of critical behavior and is defined 

as  

 
; 1

( )
; 0s

const x
x

x x



  


  (7) 
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To transition from the framework of critical phenomena to SOC, one simply identifies the 

correlation length with the concept of avalanche-size, i.e.,  

 s   ;    
crs L   (8) 

The probability distribution defining the FSS ansatz in SOC is a natural extrapolation of 

(6) and takes the form of a probability distribution [11]   

 ( , )P s L  ~ ( )s

c

ss
s


  for 1, 1s L    (9a) 

 ( )cs L  ~ 0D
L  for 1L     (9b) 

in which 
s  and 

0D  are called the avalanche-size exponent and the avalanche dimension, 

respectively. Quite generally, (9) shows that, for a system of finite size and large size 

avalanches, the avalanche-size probability behaves as a fractal function times a generic 

scaling function. To enable all moments of (9) to exist, the scaling function must decay 

sufficiently fast. One obtains the following representation of the scaling function upon 

power expanding it around zero,      

 ( )x  ~ 
21

(0) '(0) "(0) ..., 1
2

0, 1

x x x

x


     

  

  (10) 

The avalanche-size probability must be normalized to unity and its average be diverging 

along with L , which leads to the following constraints     

 
1

( ; ) 1
s

P s L




              for L   , (11) 
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1

( ; )
s

s sP s L




   for L   (12) 

Under the assumption that (0) 0  , the behavior of (9) for an infinite system size may 

be approximated as  

 lim ( ; )
L

P s L


 ~ (0)ss

   (13) 

Furthermore, to comply with (11) and (12), the avalanche-size exponent must fall in the 

range 

 1 2s    (14) 

We have extensively discussed in [6 - 9] the physical significance of the minimal fractal 

manifold (MFM), a spacetime continuum characterized by arbitrarily small and scale-

dependent deviations from four dimensions ( 4 1D    ). The MFM reflects an 

evolving setting that starts far-from-equilibrium and asymptotically reaches the 

equilibrium conditions mandated by field theory in the limit of four-dimensional 

spacetime ( 0  ). There are well-motivated reasons to believe that dimensional 

fluctuations driven by   are asymptotically compatible with the internal structure and 

dynamics of the Standard Model of particle physics [6-9]. 

Based on these premises, we advance below the hypothesis that the dimensional deviation 

  and the avalanche-size s  are interchangeable concepts via   

 14 1D s       (15) 



5 | P a g e  
 

Furthermore, since   flows with the energy scale, it likely reaches its uppermost 

observable value close to the formation of the cosmic microwave background (CMB) [13]. 

Thus, the maximal dimensional deviation is set to  

 5

max 10cr     ;  cr    (16) 

which turns (9) into 

 ( , )crP   ~ ( )s cr 
   , 1    (17a) 

 ( )cr a  ~ 0D
a , 1a     (17b) 

where ( )a a t  is the scale factor describing the Universe expansion. 

Next paragraph deploys these ideas towards solving the flatness and horizon problems, 

two major topics of contemporary cosmology [2-5].  

3. The asymptotic approach to flatness and homogeneity 

The considerations outlined so far suggest that the large-scale dynamics of the Universe 

may be naturally interpreted as a global SOC process. In light of this viewpoint, an 

evolving cosmological parameter – be it the deviation from spacetime flatness or the 

homogeneity across causally disconnected patches of the Universe – asymptotically 

approaches a quasi-stationary value representing a non-equilibrium steady state (NESS). 

Moreover, it is conceivable that, while dimensional fluctuations induced by 4 1D     

provide the driving mechanism of cosmological SOC, Universe expansion acts as a 

dissipation reservoir. One may reasonably infer from (9) and (15) - (17) that the observed 

value of such a parameter ( )( )a tA   flows with   as in      
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0( )( ) ( )[1 ( )]s

a t a
cr

A A
   


    ,  1, ( ) 1a t     (18) 

in which 
0a  denotes the scale factor associated with the NESS of Universe expansion. 

Scaling (18) can be cast in the equivalent form  

 0 0

0 0

( )( ) ( ) ( )
( )

( ) ( )
s

a a a t

cr
a a

A A A

A A


  


 

 
     (19) 

or 

 
( )

( )
( )

s cr
A s

A s

 
 






      (20) 

where 

 1( ) ( ) ( )cr cr

cr

 
  

     (21) 

Power expanding (21) by analogy with (10) yields   

( )x  ~ 
21

(0) '(0) "(0) ..., 1
2

0, 1

x x x

x


     

  

 

which leads to 

 
0
( ) 0aA    ;  ( ) 0, , 0cr

cr


  


      (22) 

It is apparent from (22) that the end-state of the asymptotic approach to flatness and 

homogeneity matches the classical limit of four-dimensional spacetime ( 4D  ).  
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