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Abstract

In the last decades the primordial black holes (pbhs) have at-

tracted much attention of cosmologists and astrophysicists. This is

associated with origination of such black holes in the early Universe

as a result of a gravitational collapse of the high-density matter, mak-

ing them natural �detectors� of the processes involved. In in�ationary

cosmology of particular importance are pbhs originated during the

pre-in�ationary period. And, since they are small and generated at

the energies close to the Planck energies, for them we should take into

consideration the quantum-gravitational corrections (qgcs). In turn,

these corrections change (shift) the in�ationary parameters. The pa-

per presents a study of the above-mentioned shifts with regard to

these corrections for di�erent scenarios. It is shown that probabili-

ties of occurrence of the pbhs under study with due regard for the

given qgcs are rising as compared to the semiclassical consideration.

Besides, high-energy deformations of Friedmann Equations created

on the basis of these corrections have been derived for di�erent pat-

terns. Conclusion contains the general remarks concerning the above-

mentioned qgcs for cosmological parameters and perturbations due

to in�ation; the steps for their investigation are outlined and the key

problems of such a study are formulated.
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1 Introduction

In this paper the inclusion of the quantum-gravitational corrections (qgcs)
for primordial black holes (pbhs) in the early Universe during the prein-
�ationary era is studied. In [1] a semiclassical approximation was used to
study the problem of scalar perturbations due to such pbhs. But, consid-
ering that all the processes in this case are proceeding at very high energies
E close to the Planckian E ≃ Ep, the inclusion of qgcs for these black holes
in this pattern is necessary. The paper presents an explicit solution of this
problem; speci�cally, it is shown how in this pattern the inclusion of qgcs
changes (�shifts�) the basic in�ationary parameters.
The explicit and e�ective formulae for these �shifts� have been derived in
Section 3. Section 2 presents the instruments used to obtain the principal
results. In Section 4 it is demonstrated that inclusion of qgcs increases the
occurrence probability for such (pbhs). In Section 5 the high-energy defor-
mations of Friedmann Equations on the basis of these qgcs are derived for
di�erent cases.
Finally in Section 6 (Conclusion) the general remarks are given for calcu-
lations of the indicated qgcs in the case of perturbations on in�ation; the
steps for investigation of the cosmological parameters corrections and cos-
mological perturbations due to these qgcs are enumerated; the problems of
further studies are formulated.
In what follows the normalization c = ~ = 1 is used, for which we have
G = l2p.
As is known, the most common formation mechanism of primordial black
holes (pbhs) in the early Universe [2]�[4], is a gravitational collapse of the
high-density matter [5]. In several works it has been shown that (pbhs) in
the early Universe may be responsible for its shifted cosmological param-
eters. We know a su�ciently accurate estimate of the mass pbh M(tM)
formed in the period of time t since the Big Bang [6]�[8]

M(tM) ≈ c3tM
G

≈ 1015
(

t

10−23 s

)
g. (1)

As seen, for small times close to the Planckian time tM = tp ≈ 10−43s, the
mass of pbhs is close to the Planck mass M(tM) ≈ 10−5g, necessitating
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in this case the inclusion of the quantum-gravitational corrections qgcs.
Though in the majority of works pbhs in the early Universe are studied by
a semiclassical approach. To illustrate, in [1] the scalar cosmological per-
turbations associated with small-radius pbhs in the pre-in�ationary era are
studied precisely in the semiclassical approximation. This paper is devoted
to inclusion of qgcs in such cases.
Despite the fact that presently there is no self-consistent theory of quan-
tum gravity, a consensus is reached on correctness of some approaches to
the theory, speci�cally, replacement of the Heisenberg Uncertainty Principle
(HUP) by the Generalized Uncertainty Principle (GUP) on going to high
(Planck's)energies, used in this paper.

2 PBH with the Schwarzschild-de Sitter Met-

ric in the Early Universe

It should be noted that Schwarzschild black holes in real physics (cosmology,
astrophysics) are idealized objects. As noted in (p.324,[10]): �Spherically
symmetric accretion onto a Schwarzschild black hole is probably only of
academic interest as a testing for theoretical ideas. It is of little relevance
for interpretations of the observations data. More realistic is the situation
where a black hole moves with respect to the interstellar gas...�
Nevertheless, black holes just of this type may arise and may be realistic
in the early Universe. In this case they are primordial black holes (pbhs).
Most common mechanism for the formation of pbhs is the high-density
gravitation matter collapse generated by cosmological perturbations arising,
e.g., in the process of in�ation (not necessarily) in the early Universe [5].
But the idea about the formation of pbhs has been suggested much earlier
than the �rst in�ation models, speci�cally in [2] and independently in [3] or
[4].
During studies of the early Universe the Schwarzschild metric [11],[10]

ds2 =

(
1− 2MG

r

)
dt2 −

(
1− 2MG

r

)−1

dr2 − r2dΩ2, (2)
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for pbhs is replaced by the Schwarzschild-de Sitter (SdS) metric [1] that is
associated with Schwarzschild black holes with small mass M in the early
Universe, in particular in pre-in�ation epoch

ds2 = −f(r̃)dt2 +
dr̃2

f(r̃)
+ r̃2dΩ2 (3)

where f(r̃) = 1−2GM/r̃−Λr̃2/3 = 1−2GM/r̃− r̃2/L2, L =
√
3/Λ = H−1

0 ,
M - black hole mass, Λ � cosmological constant, and L = H−1

0 is the Hubble
radius.
In general, such a black hole may have two di�erent horizons corresponding
to two di�erent zeros f(r̃): event horizon of a black hole and cosmological
horizon. This is just so in the case under study when a value of M is small
[12],[13]. In the general case of L ≫ GM , for the event horizon radius of a
black hole having the metric (3), rH takes the following form (formula (9)
in [14]):

rH ≃ 2GM

[
1 +

(rM
L

)2]
, where rM = 2MG. (4)

Then, due to the assumption concerning the initial smallness of Λ, we have
L ≫ rM . In this case, to a high accuracy, the condition rH = rM is ful�lled,
i.e. for the considered (SdS) BH we can use the formulae, given in the
previous section for a Schwarzschild BH, to a great accuracy.
Remark 2.1.
Note that, because Λ is very small, the condition L ≫ GM and hence the
formula of (4) are obviously valid not only for black hole with the mass
M ∝ mp but also for a much greater range of masses, i.e. for black holes
with the mass M ≫ mp, taking into account the condition L ≫ GM . In
fact we obtain ordinary Schwarzschild black holes (2) with small radius.
Speci�cally, for the energies on the order of Plank energies (quantum gravity
scales) E ≃ Ep, the Heisenberg Uncertainty Principle (HUP) [15]

(δX) (δP ) ≥ ~
2
, (5)

may be replaced by the Generalized Uncertainty Principle (GUP) [16]

(δX) (δP ) ≥ ~
2

⟨
exp

(
α2l2p
~2

P 2

)⟩
. (6)
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Then there is a possibility for existence of Planck Schwarzschild black hole,
and accordingly of a Schwarzschild sphere (further referred to as �minimal�)
with the minimal mass M0 and the minimal radius rmin (formula (20) in
[16]) that is a theoretical minimal length rmin:

rmin = lmin = (δX)0 =

√
e

2
αlp, M0 =

α
√
e

2
√
2
mp, (7)

where α - model-dependent parameters on the order of 1, e - base of natural
logarithms, and rmin ∝ lp,M0 ∝ mp.
In this case, due to GUP (6), the physics becomes nonlocal and the position
of any point is determined accurate to lmin. It is impossible to ignore this
nonlocality at the energies close to the Planck energy E ≈ Ep, i.e. at the
scales l ∝ lp (equivalently we have l ∝ rmin = lmin).
Actually, [16] presents calculated values of the mass M and the radius R
for Schwarzschild BH with regard to the quantum-gravitational corrections
within the scope of GUP (6).
With the use of the normalization G = l2p adopted in [16], temperature of
a Schwarzschild black hole having the mass M (the radius R) [10] in a
semi-classical approximation takes the form

TH =
1

8πGM
. (8)

Within the scope of GUP (6),the temperature TH with regard to (qgc) is
of the form ((23) in [16]))

TH,q =
1

8πMG
exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

=
1

8πMG
exp

(
−1

2
W

(
−1

e

(
A0

A

)))
, (9)

where A is the black hole horizon area of the given black hole,A0 = 4π (δX)2
0

is the black hole horizon area of a minimal quantum black hole from formula

(7) and W
(
−1

e

(
M0

M

)2)
= W

(
−1

e

(
A0

A

))
� value at the corresponding point

of the Lambert W-function W (u) satisfying the equation (formulae (1.5) in
[17] and (9) in [16])

W (u) eW (u) = u. (10)
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W (u) is the multifunction for complex variable u = x+yi. However, for real
u = x,−1/e ≤ u < 0,W (u) is the single-valued continuous function having
two branches denoted by W0(u) and W−1(u) , and for real u = x, u ≥ 0
there is only one branch W0(u) [17].
Obviously, the quantum-gravitational correction qgc (9) presents a defor-
mation (or more exactly, the quantum deformation of a classical black-holes
theory from the viewpoint of the paper [18] with the deformation parameter
A0/A):

A0

A
=

4πr2h
4πR2(A)

=
l2min

R2(A)
, (11)

where rh = lmin is the horizon radius of minimal pbh from formula (7)
and R(A) is the horizon radius of the given black hole with the black hole
horizon area A.
It should be noted that this deformation parameter

l2min/R
2(A)

.
= αR(A) (12)

has been introduced by the author in his earlier works [19]�[22], where he
studied deformation of quantum mechanics at Planck scales in terms of the
deformed quantum mechanical density matrix. In the Schwarzschild black
hole case αR(A) = l2minK � product of the minimal surface area l2min by the
Gaussian curvature K = 1/R2(A) of the black-hole horizon surface [23] as
indicated in [24],[25].
It is clear that, for a great black hole having large mass M and great event

horizon area A, the deformation parameter 1
e

(
M0

M

)2
is vanishingly small and

close to zero. Then a value ofW
(
−1

e

(
M0

M

)2)
Is also close toW (0). As seen,

W (0) = 0 is an obvious solution for the equation (10). We have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

≈ 1. (13)

So, a black hole with great mass M ≫ mp necessitates no consideration of
qgcs.
But in the case of small black holes we have

exp

(
−1

2
W

(
−1

e

(
M0

M

)2
))

> 1. (14)
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In formulae above it is assumed that M > M0, i.e. the black hole under
study is not minimal (7).
We can rewrite the formula of (9) as follows:

TH,q =
1

8πMqG
,Mq = M exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

;

Rq = 2MqG = R exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

, (15)

where Mq and Rq are respectively the initial black-hole mass and event
horizon radius considering qgcs caused by GUP (6).
Remark 2.2
It is clear that the formula (15) with the substitution of M 7→ Mq is of
the same form as formula (8), in fact representing (9),i.e. in the formula
for temperature of a black hole the inclusion of qgcs may be realized in
two ways with the same result: (a)the initial mass M remains unaltered
and qgcs are involved only in the formula for temperature, in this case (9);
(b)qgcs are involved in the mass � the above-mentioned substitution takes
place M 7→ Mq (formula(15)). Such �duality� is absolutely right in this
case if a black hole is considered in the stationary state in the absence of
accretion and radiation processes. Just this case is also studied in the paper.
A recent preprint [26] in the case (b) for the space-time dimension D ≥ 4,
using approaches to quantum gravity of the alternative GUP, gives a formula
for the mass MQ of a black hole with a due regard to qgc

MQ =

[
1− η exp

(
−πrD−2

0

GD

)]D−3

M. (16)

Here in terms of [26] r0 is the Schwarzschild radius of the primordial black
hole with the mass M ,GD-gravitational constant in the dimension D, and
η = [0, 1] is a parameter. In case under study this parameter, as distinct
from cosmology, has no relation to conformal time. Obviously, for η = 0
we have a semiclassical approximation and, as noted in [26], the case when
η = 1 corresponds to qgc as predicted by a string theory.
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3 In�ation Parameters Shifts Generated by QGC

To this end in cosmology, in particular in�ationary, the metric (3) is conve-
niently described in terms of the conformal time η [1]:

ds2 = a2(η)

{
− dη2 +

(
1 +

µ3η3

r3

)4/3
[(

1− µ3η3/r3

1 + µ3η3/r3

)2

dr2 + r2dΩ2

]}
,

(17)
where µ = (GMH0/2)

1/3, H0 � de Sitter-Hubble parameter and scale factor,
a � conformal time function η:

a(η) = −1/(H0η), η < 0, (18)

where with the preceding notation M = M,A = A, ...
Here r satis�es the condition r0 < r < ∞ and a value of r0 = −µη in the
reference frame of (17) conforms to singularity of the back hole.
Due to (4), µ may be given as

µ = (rMH0/4)
1/3, (19)

where rM is the radius of a black hole with the SdS Schwarzschild-de Sitter
metric (3).
Remark 3.1.
In [1] in general only the case µ = const is considered and, as noted in
[1],we can exclude only the pattern with regard for radiation processes of
pbh. Let us consider a much more general case: it is supposed that, as the
mass M of pbh may be changed due to absorption and radiation processes,
the corresponding change takes place for µ � in the general case we have
(µ ̸= const) but µ is unaltered with regard to qgcs, i.e. in formula (19)
we have µ = (rMH0/4)

1/3 = (rM,qH0,q/4)
1/3, where rM,q, H0,q - values of

rM , H0, respectively, with due regard for qgcs.
Let us consider several scenarios.
3.1. The Stationary picture. From the start the primordial black hole with
the mass M and the event horizon area A is considered in the absence of
absorption and radiation processes.
As µ = const and pbh is considered in the stationary state, then due to
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Remark 2.2 with regard for qgcs, replacement rM 7→ rMq in this formula
leads to replacement of H0 → H0,q, due to Remark 3.1. meeting the
condition

µ = (rMH0/4)
1/3 = (rM,qH0,q/4)

1/3. (20)

Here rM,q
.
= rMq = Rq = RMq from the general formula (15).

Based on the last formula and formulae (9),(12),(15), for M = M,A = A
it directly follows that

H0,q = H0 exp

(
−1

2
W

(
−1

e
αR(A)

))
. (21)

Because the potential energy of in�ation V (ϕ0) is related to the initial
Hubble parameter H0 by the Friedmann equation H2

0 = V (ϕ0)/(3M
2
p ) =

Λ/3,from (21) we can derive a shift for V (ϕ0) that is due to quantum-
gravitational corrections for the primordial Schwarzschild black hole with
the mass M as follows:

V (ϕ0) → V (ϕ0)q = ΛqM
2
p = 3M2

pH
2
0,q =

= 3 exp

(
−W

(
−1

e
αR(A)

))
M2

pH
2
0 , (22)

where Λ�e�ective cosmological constant and Λq is the same constant with
regard to the above-mentioned qgcs. Here we have used the normalization
di�ering from that used in [27],where H2

0 = 8πΛ/3.
In a similar way we can �nd qgcs for all the remaining in�ationary param-
eters, speci�cally for the scale factor a(η) (18)

a(η) → a(η)q
.
= −1/(H0,qη) = −1/(H0 exp

(
−1

2
W

(
−1

e
αR(A)

))
η) =

= a(η) exp

(
1

2
W

(
−1

e
αR(A)

))
, η < 0, (23)

for the Hubble parameter H = a′(η)/a2(η) 7→ Hq(η) = a′(η)q/a
2(η)q as well

as for the parameters in the mode of slow roll, e.g., for ϵ [27]:

(ϵ = − Ḣ

H2
) 7→ (ϵq = −

˙H0,q

H2
0,q

), (24)
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where, as usual, a prime in the next to last formula means di�erentiation
with respect to η, while a point in the last formula means di�erentiation
with respect to t.
The condition ϵ ≪ 1 for slow roll in the in�ationary scenario [27] due to (24)
is transformed to the condition ϵq ≪ 1 from the last formula that should be
additionally established for estimation of the boundary rMq .

3.2 The case of �minimal� particle absorption by a black hole.

Let M be the initial mass of a black hole with the event horizon area A.
In [28],[29] a minimal increment of the event horizon area for the black
hole absorbing a particle with the energy E and with the size R:(∆A)

0
≃

4l2p (ln 2)ER has been estimated. In quantum consideration we have R ∼
2δX and E ∼ δP .
However, in [28],[29] the consideration is based on a semiclassical pattern,
i.e. for small δP , when GUP (6) goes to the well-known Heisenberg Uncer-
tainty Principle HUP

(δX) (δP ) ≥ ~
2
, , (25)

which, on equality of the left and the right sides of the last formula, gives
(∆A)

0
≃ 4l2p (ln 2).

Such absorption leads to the increased mass of a black hole M 7→ M̃ =
M + (∆M)0 and hence to its increased event horizon area A and radius
R(A):

M 7→ M̃ = M + (∆M)0,

A 7→ Ã = A+ (∆A)
0
≃ 4πR2(A) + 4l2p ln 2,

R(A) 7→ R(Ã) ≃
√

R2(A) + l2pπ
−1 ln 2. (26)

It should be emphasized that the last formula of the pattern 3.2 has been
obtained only for a semiclassical approximation [28],[29],i.e. at low energies
E ≪ Ep. The boundaries of its correctness at high energies E ≃ Ep are
questionable.
Using the result from [28],[29] in [16], an explicit expression has been ob-
tained for qgcs at the energies E ≃ Ep, represented in terms of (∆A)

0,q,
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to the event horizon area of any Schwarzschild black hole, provided GUP is
valid (6), as follows: (formula (27) in [16]):

(∆A)
0,q ≈ 4l2p ln 2 exp

(
−1

2
W

(
−1

e

A0

A

))
, (27)

where A � event horizon area of the given Schwarzschild black hole.
Using the last formula for (26), we can derive its �quantum� analog

M 7→ M̃q
.
= M + (∆M)0,q,

A 7→ Ãq = A+ (∆A)
0,q ≃ 4πR2(A) + 4l2p ln 2 exp

(
−1

2
W

(
−1

e

A0

A

))
,

7→ R(Ãq) ≃

√
R2(A) + l2pπ

−1 ln 2 exp

(
−1

2
W

(
−1

e

A0

A

))
. (28)

Here (∆M)0,q = (R(Ãq)−R(A))/(2G).

Remark 3.2 It should be noted that in the presented �minimal� variant
of the absorption process the cardinal di�erence of a semiclassical consider-
ation from consideration with due regard for qgcs resides in the fact that
in the �rst case changes in all of the parameters of a black hole (its mass,
event horizon area, radius, etc.) are independent of its sizes, whereas in the
second case they are dependent on its sizes.
Next it is assumed that the above-mentioned absorption of a particle by a
black hole with the mass M takes place before the beginning of in�ation,
and by the beginning of in�ation the mass and the radius of this black hole
in a semiclassical pattern are given by M̃ and R(Ã) from the formula (26):

M 7→ M̃,R(A) 7→ R(Ã),

R(Ã) = 2GM̃. (29)

And consequently, with due regard for qgcs, they are given by M̃q, R(Ãq)
form the formula (28):

M 7→ M̃q, R(A) 7→ R(Ãq),

R(Ãq) = 2GM̃q. (30)
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Then, according to Remark 3.1, by the substitution at µ = const in
the formula (20) for rM 7→ R(Ã), rMq 7→ R(Ãq) we obtain a shift of the
in�atrionary parameters with regard to qgcs in the minimal absorption
process. In particular, due to formulae (20) and (12), for H0 we have

H0,q = H0
R(Ã)

R(Ãq)
= H0

√
R2(A) + l2pπ

−1 ln 2√
R2(A) + l2pπ

−1 ln 2 exp
(
−1

2
W
(
−1

e
A0

A

)) ==

= H0

√
R2(A) + l2pπ

−1 ln 2√
R2(A) + l2pπ

−1 ln 2 exp
(
−1

2
W
(
−1

e
A0

A

)) . (31)
By the substitution of H0,q from the last formula into (22),(23),(24),... ,
we can �nd in the pattern of 3.2 �quantum� shifts for all the in�ationary
parameters, speci�cally for V (ϕ0)

V (ϕ0)q = ΛqM
2
p = 3M2

pH
2
0,q = 3M2

pH
2
0

R2(Ã)

R2(Ãq)
. (32)

As seen from the foregoing formulae and from (13), for massive black holes
with a large area of event horizon A ≫ l2p, we have R(Ã)/R(Ãq) ≈ 1 that is
not surprising. But when considering small black holes in this pattern this
quantity may be signi�cant and should not be ignored.
Remark 3.3 It is obvious that, for massive black holes,�minimal� absorp-
tion considered in point 3.2 is not a real physical process because a mass
of the absorbed matter for them is always su�ciently great. At the same
time, for small pbhs in the prein�ationary period this process is quite real.
Besides, in this case any absorption, in principle, may be represented as
a chain of �minimal� absorptions (may be �expended into minimal absorp-
tions�).

3.3 Black Hole Evaporation and qgcs

Also, black holes are associated with the process of Hawking radiation (evap-
oration). The primordial black holes are no exception. In the general case
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this process is considered only within the scope of a semiclassical approxima-
tion (without consideration of the quantum-gravitational e�ects). Because
of this, it is assumed that a primordial black hole may be completely evap-
orated [10].
Still, in this pattern the situation is impossible due to the validity of GUP
(6) and due to the formation of a minimal (nonvanishing) Planckian rem-
nant as a result of evaporation (7) [30].
We can compare the mass loss for a black hole in this process when using a
semiclassical approximation and with due regard for qgcs.
Let M be the mass of a primordial black hole. Then a loss of mass as a
result of evaporation, according to the general formulae, takes the following
form ([10],p.356):

dM

dt
∼ σT 4

H
AM , (33)

where TH - temperature of a black hole with the mass M ,AM - surface area
of the event horizon of this hole AM = 4πr2M , and σ = π2k4/(60~3c2) is the
Stefan-Boltzmann constant.
Using this formula for the same black hole but with regard to qgcs, we can
get the mass loss [dM/dt]q in this case

[
dM

dt
]q ∼ σT 4

H,qAM , (34)

where TH,q - temperature of a black hole with the same mass M , when
taking into consideration qgcs (9).
For all the foregoing formulae associated with a random black hole having
the mass M, the following estimate is correct ((10.1.19) in [10]):

−dM
dt

∼ b(
Mp

M
)2(

Mp

tp
)2N, (35)

where b ≈ 2.59 × 10−6, and N is the number of the states and species of
particles that are radiated. The minus sign in the left part of the last formula
denotes that the mass of a black hole diminishes as a result of evaporation,
i.e. we have dM/dt < 0.
Unfortunately, the last formula is hardly constructive as it is di�cult to
estimate the number N , especially at high energies E ≃ Ep.
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Nevertheless, using the terminology and symbols of this paper, and also the
results from [16], the formula (35) for the mass loss by a black hole with
regard to qgcs may be written in a more precise and constructive form. If
we take M = M (35), then, according to formula (45) in [16], within the
scope of GUP (6) we will have

dM

dt
= − γ1

M2l4p
exp

(
−2W

(
−1

e

(
M0

M

)2
))

×

×

(
1− 8γ2

eγ1

(
M0

M

)2

exp

(
−W

(
−1

e

(
M0

M

)2
)))

, (36)

where γ1 =
π2

480
, γ2 =

π2

16128
.

The minus sign in the right side of the last formula means the same as the
minus sign in the left side of formula (35).
Due to (12), formula (36) is of the following form:

dM

dt
= − γ1

M2l4p
exp(−2W

(
−1

e
αr(M)

)
)×

×
(
1− 8γ2

eγ1
αr(M) exp

(
−W

(
−1

e
αr(M)

)))
. (37)

We can expand the right sides of formulae (36) and (37) into a series in terms
of the small parameter e−1(M0/M)2 = e−1αr(M) (formula (46) in [16]) that,
proceeding from the deformation parameter αr(M), takes the form

dM

dt
= − γ1

M2l4p

(
1 +

2

e
αr(M) +

4

e2

(
1− 2γ2

eγ1

)
α2
r(M) +

25

3e3

(
1− 72γ2

25eγ1

)
α3
r(M) + . . .

)
.(38)

Neglecting the last equation due to the time interval chosen, e.g., due to
△t = tinfl − tM ,where tinfl�time of the in�ation onset and tM� time during
which the black hole under study has been formed, formula (1), the mass
loss for a black hole with regard to qgcs by the in�ation onset time may be

14



given as

∆Evap,qM(tM , tinfl)
.
=

tinfl∫
tM

dM

dt
=

= −
tinfl∫
tM

γ1
M2l4p

(
1 +

2

e
αr(M) +

4

e2

(
1− 2γ2

eγ1

)
α2
r(M) +

25

3e3

(
1− 72γ2

25eγ1

)
α3
r(M) + . . .

)
.(39)

With the use of formulae rM = R(A),M = R(A)/2G, the last formula may
be written as

∆Evap,qM(tM , tinfl) =

tinfl∫
tM

(2G)−1dR(A)

dt
=

= −
tinfl∫
tM

4G2γ1
R(A)2l4p

(
1 +

2

e
αR(A) +

4

e2

(
1− 2γ2

eγ1

)
α2
R(A) +

25

3e3

(
1− 72γ2

25eγ1

)
α3
R(A) + ...

)
.(40)

Since, according to the chosen normalization, G = l2p, the last expression
may take the form

∆Evap,qM(tM , tinfl) =

tinfl∫
tMq

(2G)−1dR(A)

dt
=

= −
tinfl∫
tM

4γ1
R(A)2

×

×
(
1 +

2

e
αR(A) +

4

e2

(
1− 2γ2

eγ1

)
α2
R(A) +

25

3e3

(
1− 72γ2

25eγ1

)
α3
R(A) + ...

)
.(41)

Next, we can determine the mass of a black hole after its evaporation until
the in�ation onset with regard to qgcs

MEvap,q(tMq , tinfl)
.
= M +∆Evap,qMq(tMq , tinfl). (42)
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In the pattern of a semiclassical approximation the above-mentioned formu-
lae are greatly simpli�ed because in this case αR(A) = 0 due to the absence
of a minimal black hole.
Then in a semiclassical pattern formula (42), with the use of the suggested
formalism, takes the following form:

MEvap(tM , tinfl)
.
= M +∆EvapM(tM , tinfl), (43)

where

∆EvapM(tM , tinfl) =

tinfl∫
tM

dM

dt
= −

tinfl∫
tM

γ1
M2l4p

. (44)

Accordingly, for the radii MEvap(tM , tinfl),MEvap,q we can get

r(MEvap) = 2GMEvap(tM , tinfl),

r(MEvap,q) = 2GMEvap,q(tM , tinfl). (45)

In accordance with Remark 3.3, we have

µEvap
.
= (rMEvap

H0,Evap/4)
1/3 = (rMEvap,qH0,Evap,q/4)

1/3;

H0,Evap,q =
rMEvap

rMEvap,q

H0,Evap. (46)

The right side of the last line in formula (46) gives the �quantum-gravitational
shifts� (abbreviated as qgs) of the de Sitter Hubble parameter H0 for black
holes evaporation process.
Substituting H0,Evap,q from (46) into formulae (22)�(24) and so on, we can
obtain qgsc for all cosmological parameters in the in�ationary scenario
when a primordial black hole evaporates before the in�ation onset.

4 Quantum-gravity Corrections for Appearance

Probabilities PBHs in the Pre-In�ationary

Era

For pbh with Schwarzschild-de Sitter SdS metric (3) in the pre-in�ation
epoch The problem of estimating the probability of occurrence of these pbh.
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This problem has been studied in [1] without due regard for qgc. Let us
demonstrate that consideration of qgc in this case makes the probability of
arising pbh higher.
Similar to [1], it is assumed that in pre-in�ation period non-relativistic
particles with the mass m < Mp are dominant (Section 3 in [1]). For
convenience, let us denote the Schwarzschild radius rM by RS.
When denoting, in analogy with [1], by N(R, t) the number of particles in
a comoving ball with the physical radius R = R(t) and the volume VR at
time t, in the case under study this number (formula (3.9) in [1]) will have
qgc N(R, t) 7→ N(R, t)q

(⟨N(R, t)⟩ =
m2

pH
2R3

2m
) 7→ (⟨N(R, t)q⟩ =

m2
pH

2
qR

3

2m
). (47)

Here the �rst part of the last formula agrees with formula (3.9) in [1],
whereas H,Hq in this case are in agreement with H0, H0,q. And from (21)
it follows that

⟨N(R, t)q⟩ = ⟨N(R, t)⟩ exp

(
−W

(
−1

e

(
M0

M

)2
))

. (48)

According to (15), it is necessary to replace the Schwarzschild radius RS by

RS,q = RS exp
(

1
2
W
(
−1

e

(
M0

M

)2))
.

Then from the general formula N(RS, t) = ⟨N(RS, t)⟩ + δN(RS, t), used
because of the replacement of RS 7→ RS,q, we obtain an analog of (3.12)
from [1]

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1− (HRS)

2] =

=
m2

pRS

2m
[1− (HRS)

2] exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

= δNcr exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

.(49)

In the last formula in square brackets we should have (HqRS,q)
2 instead

of (HRS)
2 but, as we consider the case µ = const, these quantities are

coincident.
It should be noted that here the following condition is used:

HRS < 1, (50)
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i.e. Schwarzschild radius RS less than Hubble radius, RS < RH = 1/H.

As we have exp
(

1
2
W
(
−1

e

(
M0

M

)2))
< 1, then

δNcr,q < δNcr. (51)

Considering that for the formation of a Schwarzschild black hole with the
radius RS it is required that, due to statistical �uctuations, the number of
particles N(RS, t) with the mass m within the black hole volume VRS

=
4/3πR3

S be in agreement with the condition [1]

N(RS, t) > RSM
2
p/(2m), (52)

which, according to qgs in the formula of (15), may be replaced by

N(RS,q, t) > RS,qM
2
p/(2m) = exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

RSM
2
p/(2m).

(53)
As follows from these expressions, with regard to qgc for the formation of
pbh in the pre-in�ation period, the number of the corresponding particles
may be lower than for a black hole without such regard, leading to a higher
probability of the formation.
Such a conclusion may be made by comparison of this probability in a semi-
classical consideration (formula (3.13) in [1])

P
(
δN(RS, t) > δNcr(RS, t)

)
=

∫ ∞

δNcr

d(δN)P (δN) (54)

and with due regard for qgc

P
(
δN(RS,q, t) > δNcr(RS,q, t)

)
=

∫ ∞

δNcr,q

d(δN)P (δN). (55)

Considering that in the last two integrals the integrands take positive values
and are the same, whereas the integration domain in the second integral is
wider due to (51), we have ∫ ∞

δNcr,q

d(δN)P (δN) =

=

∫ δNcr

δNcr,q

d(δN)P (δN) +

∫ ∞

δNcr

d(δN)P (δN) >

∫ ∞

δNcr

d(δN)P (δN). (56)
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As follows from the last three formulae, in the case under study the prob-
ability that the above-mentioned pbh will be formed is higher with due
regard for qgc.
It is interesting to �nd which changes should be expected in the pattern
studied if the parameter µ ceases to be constant and is shifted with regard
to qgc of the black hole mass M 7→ Mq (15): (µ = (GMH0/2)

1/3) 7→ (µq =
(GMqH0/2)

1/3).
Note that in this case the general formula form Section 3 in [1] are also valid
but for this pattern in formula (49) there is substitution of HRS 7→ HRS,q:

δN > δNcr,q
.
=

m2
pRS,q

2m
− ⟨N(RS, t)q⟩ =

m2
pRS,q

2m
[1− (HRS,q)

2] =

=
m2

pRS exp
(

1
2
W
(
−1

e

(
M0

M

)2))
2m

[1−H2R2
S exp

(
W

(
−1

e

(
M0

M

)2
))

].(57)

To understand variations in the probability of pbh arising as compared to
the case when qgc are neglected in the consideration, we compare the last

expression with the corresponding quantity δNcr =
m2

pRS

2m
[1− (HRS)

2].
Dividing the last expression and the right side (57) by the same positive

number
m2

pRS

2m
and subtracting the second number from the �rst, we can

obtain

δNcr − δNcr,q ∼ [1−H2R2
S +H2R2

S exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

−

− exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

] (58)

with a positive proportionality factor.
To have a positive quantity in the right side (58), ful�llment of the following
inequality is required:

1− exp

(
1

2
W

(
−1

e

(
M0

M

)2
))

> R2
SH

2[1− exp

(
3

2
W

(
−1

e

(
M0

M

)2
))

].(59)
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As from formula (10) it follows that W (u) < 0 for u < 0, we have 1 −
exp

(
1
2
W
(
−1

e

(
M0

M

)2))
> 0, 1− exp

(
3
2
W
(
−1

e

(
M0

M

)2))
> 0, from where it

follows that (59) is equivalent to the inequality

(HRS)
2 <

1− exp
(

1
2
W
(
−1

e

(
M0

M

)2))
1− exp

(
3
2
W
(
−1

e

(
M0

M

)2)) =

=
1

1 + exp
(

1
2
W
(
−1

e

(
M0

M

)2))
+ exp

(
W
(
−1

e

(
M0

M

)2)) (60)

or

HRS <
1√

1 + exp
(

1
2
W
(
−1

e

(
M0

M

)2))
+ exp

(
W
(
−1

e

(
M0

M

)2)) . (61)

We need that in the case under study µ ̸= const the probability of pbh
arising with regard to qgc be higher than the same probability but without
due regard for qgc. It is su�cient to replace the condition HRS < 1 in
formula (50) by the condition in formula (61).

Note that, due to smallness ofRS, exp
(

1
2
W
(
−1

e

(
M0

M

)2))
, exp

(
W
(
−1

e

(
M0

M

)2))
are also small and in the right side (61) the quantity is close to 1, i.e. the
shorter the Schwarzschild radius of pbh,the greater consideration of qgc
increases the probability of pbh arising.

5 High Energy Deformations of Friedmann Equa-

tions

Based on the obtained results, it is inferred that there is the deformation
(having a quantum-gravitational character) of the Schwarzschild-de Sitter
metric and Friedmann Equations due to qgsc. Indeed, for example, for 3.1.
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(the stationary pattern) from formulae (15),(19),(18) we can derive

H0,q = H0 exp

(
−1

2
W

(
−1

e
αrM

))
,

a(η)q = a(η) exp

(
1

2
W

(
−1

e
αrM

))
. (62)

Substituting the expression a(η)q from the last formula for a into the Fried-
mann Equation ((2.4) in [27])

a′2

a4
=

8π

3
Gρ, (63)

we can obtain the Quantum Deformation (QD) [18] of the Friedmann Equa-
tion due to qgcs for pbh in the early Universe

a′2q
a4q

=
a′2

exp
(
−W

(
−1

e
αrM

))
a4

=
8π

3
Gρ (64)

or

a′2

a4
=

8π

3
Gρ exp

(
−W

(
−1

e
αrM

))
.
=

8π

3
Gρq,

ρq
.
= ρ exp

(
−W

(
−1

e
αrM

))
> ρ. (65)

The last line in (65) is associated with the fact that the Lambert W-function
W (u) is negative for u < 0.
Similarly, (ij)-components of the Einstein equations ((2.5) in [27])

2
a′′

a3
− a′2

a4
= −8π

3
Gp (66)

within the foregoing (QD) are replaced by

2
a′′q
a3q

−
a′2q
a4q

= −8π

3
Gp (67)
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or

2
a′′

a3
− a′2

a4
= −8π

3
Gp exp

(
−W

(
−1

e
αrM

))
= −8π

3
Gpq,

pq
.
= p exp

(
−W

(
−1

e
αrM

))
> p. (68)

It should be noted that the equation of the covariant energy conservation
for the homogeneous background ((2.6) in [27])

ρ′ = −3
a′

a
(ρ+ p) (69)

remains unaltered with replacement of ρ 7→ ρq, p 7→ pq.
So, in the pattern of 3.1 (the stationary pattern), taking into consideration
of qgcs for pbhs in the pre-in�ationary era increases the initial values of
the density ρ and of the pressure p in Friedmann equations.
The above calculations are correct if, from the start, we assume that a black
hole (i.e., its event-horizon radius) is invariable until the onset of in�ation.
But such a situation is idealized because this period is usually associated
with the radiation and absorption processes
Then again for µ = const from formulae (19),(18) we have

H0,q = H0

rMorig

rMorig,q

,

a(η)q = a(η)
rMorig,q

rMorig

. (70)

Substituting the expression a(η)q from formula (70) in all formulae (64)�(69)
we obtain analogues of these formulae in the general case. In particular, for
formula (64) we have

a′2q
a4q

=
r2Morig

r2Morig,q

a′2

a4
=

8π

3
Gρ (71)
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Or, equivalently,

a′2

a4
=

8π

3
Gρ

r2Morig,q

r2Morig

=
8π

3
Gρq

ρq
.
=

r2Morig,q

r2Morig

ρ. (72)

In the same way as for formula (67), in this pattern for the general quantum
deformation (ij)-components of Einstein equations by substitution of the
value for a(η)q from the formula (70) we obtain

2
a′′q
a3q

−
a′2q
a4q

= −8π

3
Gp (73)

or

2
a′′

a3
− a′2

a4
= −8π

3
Gp

r2Morig,q

r2Morig

= −8π

3
Gpq,

pq
.
=

r2Morig,q

r2Morig

p. (74)

It is clear that, in this most general pattern, the covariant energy conserva-
tion for the homogeneous background ((2.6) in [27])

ρ′ = −3
a′

a
(ρ+ p) (75)

remains unaltered with replacement of ρ 7→ ρq, p 7→ pq.

6 Some Implications, Final Comments and Fur-

ther Research

This paper demonstrates the way to calculate in the explicit form the
quantum-gravitational corrections for the basic cosmological parameters in
the in�ationary scenario which are due to pbhs originating during the pre-
in�ationary period of time. As follows from the above-mentioned formulae,
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for such black holes these corrections are especially great and may be sig-
ni�cant for the basic parameters of in�ation. Because of this, they are
important for studies of the processes in the very early Universe. Accord-
ing to the results in [31],a local quantum �eld theory [32] has the upper

applicability boundary Ẽ that is considerably lower than the Planck energy
Ẽ ≪ Ep. It is clear that the quantum-gravitational corrections are most

signi�cant within the energy range E, Ẽ < E ≤ Ep.

6.1 The Cosmological Perturbation Corrections Gen-

erated by QGCS for PBHS.General Remarks

It is known that in�ationary cosmology is characterized by cosmological per-
turbations of di�erent nature (scalar, vector, tensor) [27],[33],[37], though
vector perturbations are usually ignored as they die out fast.
It is clear that, as qgcs for pbhs in the early Universe cause shifts of the
in�ationary parameters, they inevitably lead to corrections of the cosmo-
logical perturbations on in�ation.
Speci�cally, in the case of scalar cosmological perturbations consideration of
the indicated qgcs for the rest of the Einstein equations (formulae (2.74)�
(2.76) in [27]) in case 3.1 (the stationary picture) gives

∆Φ− 3
a′

a
Φ′ − 3

a′2

a2
Φ = 4πGa2 exp

(
W

(
−1

e
αR(A)

))
· δρtot;

Φ′ +
a′

a
Φ = −4πGa2 exp

(
W

(
−1

e
αR(A)

))
· [(ρ+ p)υ]tot;

Φ′′ + 3
a′

a
Φ′ + (2

a′′

a
− a′2

a2
)Φ = 4πGa2 exp

(
W

(
−1

e
αR(A)

))
· δptot. (76)

Here in the right sides of all lines in the last formula the scale factor a is
taken with regard to qgcs from formula(23), i.e., a = a(η)q. In the left sides
of these lines additional factors of the type
exp

(
±1

2
W
(
−1

e
αR(A)

))
, exp

(
±W

(
−1

e
αR(A)

))
, ... are cancelled out because

they are independent of η. This is so in the general case when taking in
consideration qgcs for the pbhs formed in the pre-in�ationary era (for all
types of the cosmological perturbations, not only for those of the scalar
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type).
Remark 6.1
These qgcs are arising only in the expressions, where the total power of the
scale factor a(η) and of any its derivatives with respect to η,i.e. a′(η), a′′(η), ...
is not equal to 0. In this case the corresponding qgcs is calculated from for-
mula (23).
According to this remark, under the linearized form of the gauge transfor-
mations (formulae (2.31) in [27]), spatial components of the metric pertur-
bation transform are retained due to inclusion of qgcs ([27],p.30):

h̃ij = hij − 2∂i∂jσ − a′

a
δijσ

′. (77)

And qgcs deform correspondingly the metric with scalar perturbations in
the conformal Newtonian gauge (formulae (2.69) in [27]):

{ds2 = a2(η)[(1 + 2Φ)dη2 − (1 + 2Ψ)dx2]} 7→ a2(η)q[(1 + 2Φ)dη2 − (1 + 2Ψ)dx2] =

= a2(η) exp

(
W

(
−1

e
αR(A)

)[
(1 + 2Φ)dη2 − (1 + 2Ψ)dx2].(78)

6.2 Steps of Further Studies

Proceeding from the results of this paper, the following steps may be planned
for further studies.

6.1 Based on the results of this paper, the following steps may be planned to
study the corrections of cosmological parameters and cosmological perturba-
tions due to qgcs for pbhs in the pre-in�ationary era:
6.1.1 pbhs having di�erent masses M (di�erent A), in fact for di�erent
values of exp

(
±1

2
W
(
−1

e
αR(A)

))
from formula (23);

6.1.2 di�erent in�ationary models (chaotic in�ation, new in�ation and so
on [37]);

6.1.3 comparison of the results obtained in 6.1.1 and 6.1.2 with the exper-
imental data accumulated by space observatories: (Planck Collaboration),
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(WMAP Collaboration) [34],[35],[36].

6.2 Elucidation, how far these �shifts� are involved in the general approaches
to qgcs for cosmological perturbations on in�ation (for example, see [38]).

6.3 Applicability estimation of the obtained results for other (nonin�ation-
ary) cosmological models (e.g., bouncing cosmologies [39],[40]).
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