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1 Introduction

This paper completes the work [7]: it contains a derivation of basic relations for the diagonal
reduction algebras of gl type, their low dimensional examples and properties.

Let g be a Lie algebra, k ⊂ g its reductive Lie subalgebra and V an irreducible finite-
dimensional g-module, which decomposes, as an k-module, into a direct sum of irreducible k-
modules Vi with certain multiplicities mi,

V ≈
∑

i

Vi ⊗Wi. (1.1)

Here Wi = Homk(Vi, V ) are the spaces of multiplicities, mi = dimWi. While the multiplici-
ties mi present certain combinatorial data, the spaces Wi of multiplicities itself may exhibit
a ‘hidden structure’ of modules over certain special algebras [4]. The well-known example is the
Olshanski centralizer construction [9], where g = gln+m, k = glm and the spaces Wi carry the
structure of irreducible Yangian Y (gln)-modules.

In general, the multiplicity spaces Wi are irreducible modules over the centralizer U(g)k

of k in the universal enveloping algebra U(g) [8]. However, these centralizers have a rather
complicated algebraic structure and are hardly convenient for applications. Besides, under
the above assumptions, the direct sum W = ⊕iWi becomes a module over the reduction (or
Mickelsson) algebra. The reduction algebra is defined as follows. Suppose k is given with
a triangular decomposition

k = n− + h+ n. (1.2)

Denote by I+ the left ideal of A := U(g), generated by elements of n, I+ := An . Then the
reduction algebra Sn(A), related to the pair (g, k), is defined as the quotient Norm(I+)/I+ of
the normalizer of the ideal I+ over I+. It is equipped with a natural structure of the associative
algebra. By definition, for any g-module V the space V n of vectors, annihilated by n, is a module
over Sn(A). Since V is finite-dimensional, V n is isomorphic to ⊕iWi, so the latter space can
be viewed as an Sn(A)-module as well; the zero-weight component of Sn(A), which contains
a quotient of the centralizer U(g)k, preserves each multiplicity space Wi. The representation
theory of the reduction algebra Sn(A) is closely related to the theory of branching rules g ↓ k for
the restrictions of representations of g to k.

The reduction algebra simplifies after the localization over the multiplicative set generated
by elements hγ + k, where γ ranges through the set of roots of k, k ∈ Z, and hγ is the coroot
corresponding to γ. Let U(h) be the localization of the universal enveloping algebra U(h) of the
Cartan subalgebra h of k over the above multiplicative set. The localized reduction algebra Zn(A)
is an algebra over the commutative ring U(h); the principal part of the defining relations is
quadratic but the relations may contain linear or degree 0 terms, see [10, 6].

Besides, the reduction algebra admits another description as a (localized) double coset space
n−A\A/An endowed with the multiplication map defined by means of the insertion of the
extremal projector [6] of Asherova–Smirnov–Tolstoy [3]. The centralizer Ak is a subalgebra
of Zn(A).

It was shown in [7] that the general reduction algebra Zn(A) admits a presentation over U(h)
such that the defining relations are ordering relations for the generators, in an arbitrary order,
compatible with the natural partial order on h∗. The set of ordering relations for the general
reduction algebra Zn(A) was shown in [7] to be “algorithmically efficient” in the sense that any
expression in the algebra can be ordered with the help of this set.

The structure constants of the reduction algebra are in principle determined with the help
of the extremal projector P or the tensor J studied by Arnaudon, Buffenoir, Ragoucy and
Roche [1]. However the explicit description of the algebra is hardly achievable directly.
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In the present paper, we are interested in the special restriction problem, when g is the direct
sum of two copies of a reductive Lie algebra a and k is the diagonally embedded a. The resulting
reduction algebra for the symmetric pair (a ⊕ a, a) we call diagonal reduction algebra DR(a)
of a. The theory of branching rules for a ⊕ a ↓ a is the theory of decompositions of the tensor
products of a-modules into a direct sum of irreducible a-modules.

We restrict ourselves here to the Lie algebra a = gln of the general linear group. In this
situation finite-dimensional irreducible modules over g are tensor products of two irreducible gln-
modules, the decomposition (1.1) is the decomposition of the tensor product into the direct sum
of irreducible gln-modules, and the multiplicities mi are the Littlewood–Richardson coefficients.

The reduction algebra DR(gln) for brevity will be denoted further by Zn.

In [7] we suggested a set R of relations for the algebra Zn. We demonstrated that the set R
is equivalent, over U(h), to the set of the defining ordering relations provided that all relations
from the set R are valid.

The main goal of the present paper is the verification of all relations from the systemR. There
are two principal tools in our derivation. First, we use the braid group action by the Zhelobenko
automorphisms of reduction algebras [10, 6]. Second, we employ the stabilization phenomenon,
discovered in [7], for the multiplication rule and for the defining relations with respect to the
standard embeddings gln →֒ gln+1; stabilization provides a natural way of extending relations
for Zn to relations for Zn+1 (Zn is not a subalgebra of Zn+1). We perform necessary calculations
for low n (at most n = 4); the braid group action and the stabilization law allow to extend the
results for general n.

As an illustration, we write down the complete lists of defining relations in the form of
ordering relations for the reduction algebras DR(sl3) and DR(sl2). Although for a finite n the
task of deriving the set of defining (ordering) relations for DR(sln) is achievable in a finite time,
it is useful to have the list of relations for small n in front of the eyes.

We return to the stabilization and cut phenomena and make more precise statements con-
cerning now the embedding of the Lie algebra gln⊕gl1 into the Lie algebra gln+1 (more generally,
of gln⊕glm into gln+m). As a consequence we find that cutting preserves the centrality: the cut
of a central element of the algebra Zn+m is central in the algebra Zn ⊗ Zm. We also show that,
similarly to the Harish-Chandra map, the restriction of the cutting to the center is a homomor-
phism. As an example, we derive the Casimir operators for the algebra DR(sl2) by cutting the
Casimir operators for the algebra DR(sl3).

The relations in the diagonal reduction algebra have a quadratic and a degree zero part.
The algebra, defined by the homogeneous quadratic part of the relations, tends, in a quite
simple regime, to a commutative algebra (the homogeneous algebra can be thus considered as
a “dynamical” deformation of a commutative algebra; “dynamical” here means that the left
and right multiplications by elements of the ring U(h) differ). This observation about the limit
is used in the proof in [7] of the completeness of the set of derived relations over the field of
fractions of U(h). We prove the completeness by establishing the equivalence between the set of
derived relations and the set of ordering relations.

The stabilization law enables one to give a definition of the reduction “algebra” Z∞ related
to the diagonal embedding of the inductive limit gl∞ of gln into gl∞ ⊕ gl∞ (strictly speaking,
Z∞ is not an algebra, some relations have an infinite number of terms).

We also discuss the diagonal reduction algebra for the special linear Lie algebra sln; it is
a direct tensor factor in Zn.

Such a precise description, as the one we give for Zn, is known for a few examples of the
reduction algebras: the most known is related to the embedding of gln to gln+1 [10]. Its repre-
sentation theory was used for the derivation of precise formulas for the action of the generators
of gln on the Gelfand–Zetlin basic vectors [2]. The reduction algebra for the pair (gln, gln+1)
is based on the root embedding gln ⊂ gln+1 of Lie algebras. In contrast to this example, the
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diagonal reduction algebra DR(a) is based on the diagonal embedding of a into a⊕ a, which is
not a root embedding of reductive Lie algebras.

2 Notation

Let Eij, i, j = 1, . . . , n, be the standard generators of the Lie algebra gln, with the commutation
relations

[Eij , Ekl] = δjkEil − δilEkj,

where δjk is the Kronecker symbol. We shall also use the root notation Hα, Eα, E−α, . . . for
elements of gln.

Let E
(1)
ij and E

(2)
ij , i, j = 1, . . . , n, be the standard generators of the two copies of the Lie

algebra gln in g := gln ⊕ gln,

[E
(a)
ij , E

(b)
kl ] = δab

(
δjkE

(a)
il − δilE

(a)
kj

)
.

Set

eij := E
(1)
ij + E

(2)
ij , Eij := E

(1)
ij − E

(2)
ij .

The elements eij span the diagonally embedded Lie algebra k ≃ gln, while Eij form an adjoint
k-module p. The Lie algebra k and the space p constitute a symmetric pair, that is, [k, k] ⊂ k,
[k, p] ⊂ p, and [p, p] ⊂ k:

[eij , ekl] = δjkeil − δilekj, [eij , Ekl] = δjkEil − δilEkj, [Eij , Ekl] = δjkeil − δilekj.

In the sequel, ha means the element eaa of the Cartan subalgebra h of the subalgebra k ∈ gln⊕gln
and hab the element eaa − ebb.

Let {εa} be the basis of h∗ dual to the basis {ha} of h, εa(hb) = δab. We shall use as well the
root notation hα, eα, e−α for elements of k, and Hα, Eα, E−α for elements of p.

The Lie subalgebra n in the triangular decomposition (1.2) is spanned by the root vectors eij
with i < j and the Lie subalgebra n− by the root vectors eij with i > j. Let b+ and b− be
the corresponding Borel subalgebras, b+ = h ⊕ n and b− = h ⊕ n−. Denote by ∆+ and ∆−

the sets of positive and negative roots in the root system ∆ = ∆+ ∪ ∆− of k: ∆+ consists of
roots εi − εj with i < j and ∆− consists of roots εi − εj with i > j. Let Q be the root lattice,
Q := {γ ∈ h∗ | γ =

∑
α∈∆+,nα∈Z

nαα}. It contains the positive cone Q+,

Q+ :=

{
γ ∈ h∗ | γ =

∑

α∈∆+,nα∈Z, nα≥0

nαα

}
.

For λ, µ ∈ h∗, the notation

λ > µ (2.1)

means that the difference λ− µ belongs to Q+, λ− µ ∈ Q+. This is a partial order in h∗.
We fix the following action of the cover of the symmetric group Sn (the Weyl group of the

diagonal k) on the Lie algebra gln ⊕ gln by automorphisms

σ́i(x) := Adexp(ei,i+1)Adexp(−ei+1,i)Adexp(ei,i+1)(x),

so that

σ́i(ekl) = (−1)δik+δileσi(k)σi(l), σ́i(Ekl) = (−1)δik+δilEσi(k)σi(l).
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Here σi = (i, i+1) is an elementary transposition in the symmetric group. We extend naturally
the above action of the cover of Sn to the action by automorphisms on the associative algebra
A ≡ An := U(gln)⊗U(gln). The restriction of this action to h coincides with the natural action
σ(hk) = hσ(k), σ ∈ Sn, of the Weyl group on the Cartan subalgebra.

Besides, we use the shifted action of Sn on the polynomial algebra U(h) (and its localizations)
by automorphisms; the shifted action is defined by

σ ◦ hk := hσ(k) + k − σ(k), k = 1, . . . , n; σ ∈ Sn. (2.2)

It becomes the usual action for the variables

h̊k := hk − k, h̊ij := h̊i − h̊j; (2.3)

by (2.2) for any σ ∈ Sn we have

σ ◦ h̊k = h̊σ(k), σ ◦ h̊ij = h̊σ(i)σ(j).

It will be sometimes convenient to denote the commutator [a, b] of two elements a and b of
an associative algebra by

â(b) := [a, b]. (2.4)

3 Reduction algebra Zn

In this section we recall the definition of the reduction algebras, in particular the diagonal
reduction algebras of the gl type. We introduce the order for which the ordering relations
for the algebra Zn will be discussed. The formulas for the Zhelobenko automorphisms for the
algebra Zn are given; some basic facts about the standard involution, anti-involution and central
elements for the algebra Zn are presented at the end of the section.

1. Let U(h) and Ā be the rings of fractions of the algebras U(h) and A with respect to the
multiplicative set, generated by elements

hij + l, l ∈ Z, 1 ≤ i < j ≤ n.

Define Zn to be the double coset space of Ā by its left ideal I+ := Ān, generated by elements
of n, and the right ideal I− := n−Ā, generated by elements of n−, Zn := Ā/(I+ + I− ).

The space Zn is an associative algebra with respect to the multiplication map

a ⋄ b := aPb. (3.1)

Here P is the extremal projector [3] for the diagonal gln. It is an element of a certain extension of
the algebra U(gln) satisfying the relations eijP = Peji = 0 for all i and j such that 1 ≤ i < j ≤ n.

The algebra Zn is a particular example of a reduction algebra; in our context, Zn is defined
by the coproduct (the diagonal inclusion) U(gln) → A.

2. The main structure theorems for the reduction algebras are given in [7, Section 2].

In the sequel we choose a weight linear basis {pK} of p (p is the k-invariant complement to k

in g, g = k+p) and equip it with a total order ≺. The total order ≺ will be compatible with the
partial order < on h∗, see (2.1), in the sense that µK < µL ⇒ pK ≺ pL. We shall sometimes
write I ≺ J instead of pI ≺ pJ . For an arbitrary element a ∈ Ā let ã be its image in the
reduction algebra; in particular, p̃K is the image in the reduction algebra of the basic vector
pK ∈ p.
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3. In our situation we choose the set of vectors Eij , i, j = 1, . . . , n, as a basis of the space p.
The weight of Eij is εi− εj . The compatibility of a total order ≺ with the partial order < on h∗

means the condition

Eij ≺ Ekl if i− j > k − l.

The order in each subset {Eij |i− j = a} with a fixed a can be chosen arbitrarily. For instance,
we can set

Eij ≺ Ekl if i− j > k − l or i− j = k − l and i > k. (3.2)

Denote the images of the elements Eij in Zn by zij . We use also the notation ti for the
elements zii and tij := ti− tj for the elements zii− zjj. The order (3.2) induces as well the order
on the generators zij of the algebra Zn:

zij ≺ zkl ⇔ Eij ≺ Ekl.

The statement (d) in the paper [7, Section 2] implies an existence of structure constants
B(ab),(cd),(ij),(kl) ∈ U(h) and D(ab),(cd) ∈ U(h) such that for any a, b, c, d = 1, . . . , n we have

zab ⋄ zcd =
∑

i,j,k,l:zij�zkl

B(ab),(cd),(ij),(kl)zij ⋄ zkl +D(ab),(cd). (3.3)

In particular, the algebra Zn (in general, the reduction algebra related to a symmetric pair (k, p),
g := k+ p) is Z2-graded; the degree of zab is 1 and the degree of any element from U(h) is 0.

The relations (3.3) together with the weight conditions

[h, zab] = (εa − εb)(h)zab

are the defining relations for the algebra Zn.
Note that the denominators of the structure constants B(ab),(cd),(ij),(kl) and D(ab),(cd) are pro-

ducts of linear factors of the form h̊ij + ℓ, i < j, where ℓ ≥ −1 is an integer, see [7].
4. The algebra Zn can be equipped with the action of Zhelobenko automorphisms [6]. Denote

by q̌i the Zhelobenko automorphism q̌i : Zn → Zn corresponding to the transposition σi ∈ Sn.
It is defined as follows [6]. First we define a map q̌i : A → Ā/I+ by

q̌i(x) :=
∑

k≥0

(−1)k

k!
êki,i+1(σ́i(x))e

k
i+1,i

k∏

a=1

(hi,i+1 − a+ 1)−1 mod I+ . (3.4)

Here êi,i+1 stands for the adjoint action of the element ei,i+1, see (2.4). The operator q̌i has the
property

q̌i(hx) = (σi ◦ h)q̌i(x) (3.5)

for any x ∈ A and h ∈ h; σ ◦ h is defined in (2.2). With the help of (3.5), the map q̌i can
be extended to the map (denoted by the same symbol) q̌i : Ā → Ā/I− by setting q̌i(a(h)x) =
(σi ◦ a(h))q̌i(x) for any x ∈ A and a(h) ∈ U(h). One can further prove that q̌i(I+) = 0 and
q̌i(I− ) ⊂ (I− + I+)/I+ , so that q̌i can be viewed as a linear operator q̌i : Zn → Zn. Due to [6],
this is an algebra automorphism, satisfying (3.5).

The operators q̌i satisfy the braid group relations [10]:

q̌iq̌i+1q̌i = q̌i+1q̌iq̌i+1,

q̌iq̌j = q̌j q̌i, |i− j| > 1,
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and the inversion relation [6]:

q̌2i (x) =
1

hi,i+1 + 1
σ́2i (x)(hi,i+1 + 1), x ∈ Zn. (3.6)

In particular, q̌2i (x) = x if x is of zero weight.

5. The Chevalley anti-involution ǫ in U(gln ⊕ gln), ǫ(eij) := eji, ǫ(Eij) := Eji, induces the
anti-involution ǫ in the algebra Zn:

ǫ(zij) = zji, ǫ(hk) = hk. (3.7)

Besides, the outer automorphism of the Dynkin diagram of gln induces the involutive automor-
phism ω of Zn,

ω(zij) = (−1)i+j+1zj′i′ , ω(hk) = −hk′ , (3.8)

where i′ = n+ 1− i. The operations ǫ and ω commute, ǫω = ωǫ.

Central elements of the subalgebra U(gln) ⊗ 1 ⊂ A, generated by n Casimir operators of
degrees 1, . . . , n, as well as central elements of the subalgebra 1⊗U(gln) ⊂ A project to central
elements of the algebra Zn. In particular, central elements of degree 1 project to central elements

I(n,h) := h1 + · · ·+ hn (3.9)

and

I(n,t) := t1 + · · · + tn (3.10)

of the algebra Zn. The difference of central elements of degree two projects to the central element

n∑

i=1

(hi − 2i)ti (3.11)

of the algebra Zn. The images of other Casimir operators are more complicated.

4 Main results

This section contains the principal results of the paper. We first give preliminary information
on the new basis in which the defining relations for the algebra Zn can be written down in an
economical fashion. The braid group action on the new generators is then explicitly given in
Subsection 4.2. The complete set of the defining relations for the algebra Zn is written down
in Subsection 4.3. The regime for which both the set of the derived defining relations and the
set of the defining ordering relation have a controllable “limiting behavior” is introduced in
Subsection 4.4. Subsection 4.5 deals with the diagonal reduction algebra for sln; the quadratic
Casimir operator for DR(sln) as well as for the diagonal reduction algebra for an arbitrary
semi-simple Lie algebra k is given there. Subsection 4.6 is devoted to the stabilization and cut
phenomena with respect to the embedding of the Lie algebra gln⊕glm into the Lie algebra gln+m;
the theorem about the behavior of the centers of the diagonal reduction algebra under the cutting
is proved there.
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4.1 New variables

We shall use the following elements of U(h):

Aij :=
h̊ij

h̊ij − 1
, A′

ij :=
h̊ij − 1

h̊ij
, Bij :=

h̊ij − 1

h̊ij − 2
, B′

ij :=
h̊ij − 2

h̊ij − 1
, C ′

ij :=
h̊ij − 3

h̊ij − 2
,

the variables h̊ij are defined in (2.3). Note that AijA
′
ij = BijB

′
ij = 1.

Define elements t̊1, . . . , t̊n ∈ Zn by

t̊1 := t1, t̊2 := q̌1(t1), t̊3 := q̌2q̌1(t1), . . . , t̊n := q̌n−1 · · · q̌2q̌1(t1).

Using (3.4) we find the relations

q̌i(ti) = −
1

h̊i,i+1 − 1
ti +

h̊i,i+1

h̊i,i+1 − 1
ti+1, q̌i(ti+1) =

h̊i,i+1

h̊i,i+1 − 1
ti −

1

h̊i,i+1 − 1
ti+1,

q̌i(tk) = tk, k 6= i, i+ 1,

(4.1)

which can be used to convert the definition (4.1) into a linear over the ring U(h) change of
variables:

t̊l = tl

l−1∏

j=1

Ajl −

l−1∑

k=1

tk
1

h̊kl − 1

k−1∏

j=1

Ajl,

tl = t̊l

l−1∏

j=1

A′
jl +

l−1∑

k=1

t̊k
1

h̊kl

l−1∏

j=1
j 6=k

A′
jk.

(4.2)

For example,

t̊2 = −
1

h̊12 − 1
t1 +

h̊12

h̊12 − 1
t2, t2 =

1

h̊12
t̊1 +

h̊12 − 1

h̊12
t̊2,

t̊3 = −
1

h̊13 − 1
t1 −

h̊13

(̊h13 − 1)(̊h23 − 1)
t2 +

h̊13̊h23

(̊h13 − 1)(̊h23 − 1)
t3,

t3 =
h̊12 + 1

h̊12̊h13
t̊1 +

h̊12 − 1

h̊12̊h23
t̊2 +

(̊h13 − 1)(̊h23 − 1)

h̊13h̊23
t̊3.

In terms of the new variables t̊’s, the linear in t central element (3.10) reads

∑
ti =

∑
t̊i
∏

a:a6=i

h̊ia + 1

h̊ia
.

4.2 Braid group action

Since q̌2i (x) = x for any element x of zero weight, the braid group acts as its symmetric group
quotient on the space of weight 0 elements. It follows from (4.1) and q̌i(t1) = t1 for all i > 1
that

q̌σ (̊ti) = t̊σ(i) (4.3)

for any σ ∈ Sn.
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The action of the Zhelobenko automorphisms, see Section 3, on the generators zkl looks as
follows:

q̌i(zik) = −zi+1,kAi,i+1, q̌i(zki) = −zk,i+1, k 6= i, i+ 1,

q̌i(zi+1,k) = zi,k, q̌i(zk,i+1) = zk,iAi,i+1, k 6= i, i+ 1, (4.4)

q̌i(zi,i+1) = −zi+1,iAi,i+1Bi,i+1, q̌i(zi+1,i) = −zi,i+1,

q̌i(zj,k) = zj,k, j, k 6= i, i+ 1.

Denote i′ = n + 1 − i, as before. The braid group action (4.4) is compatible with the anti-
involution ǫ and the involution ω (note that ω(̊hij) = h̊j′i′), see (3.7) and (3.8), in the following
sense:

ǫq̌i = q̌−1
i ǫ, (4.5)

ωq̌i = q̌i′−1ω. (4.6)

Let w0 be the longest element of the Weyl group of gln, the symmetric group Sn. Similarly
to the squares of the transformations corresponding to the simple roots, see (3.6), the action
of q̌2w0

is the conjugation by a certain element of U(h).

Lemma 1. We have

q̌2w0
(x) = S−1xS, (4.7)

where

S =
∏

i,j:i<j

h̊ij . (4.8)

The proof shows that the formula (4.7) works for an arbitrary reductive Lie algebra, with
S =

∏
α∈∆+

h̊α.

Proposition 2. The action of q̌w0
on generators reads

q̌w0
(zij) = (−1)i+jzi′j′

∏

a:a<i′

Aai′

∏

b:b>j′

Aj′b, (4.9)

q̌w0
(̊ti) = t̊i′ . (4.10)

The proofs of Lemma 1 and Proposition 2 are in Section 5.

4.3 Defining relations

To save space we omit in this section the symbol ⋄ for the multiplication in the algebra Zn. It
should not lead to any confusion since no other multiplication is used in this section.

Each relation which we will derive will be of a certain weight, equal to a sum of two roots.
From general considerations the upper estimate for the number of terms in a quadratic relation
of weight λ = α+ β is the number |λ| of quadratic combinations zα′zβ′ with α′ + β′ = λ. There
are several types, excluding the trivial one, λ = 2(εi − εj), |λ| = 1:

1. λ = ±(2εi − εj − εk), where i, j and k are pairwise distinct. Then |λ| = 2.

2. λ = εi − εj + εk − εl with pairwise distinct i, j, k and l. Then |λ| = 4.

3. λ = εi−εj , i 6= j. For zα′zβ′ , there are 2(n−2) possibilities (subtype 3a) with α′ = εi−εk,
β′ = εk − εj or α′ = εk − εj , β

′ = εi − εk with k 6= i, j and 2n possibilities (subtype 3b)
with α′ = 0, β′ = εi − εj or α′ = εi − εj , β

′ = 0. Thus |λ| = 4(n − 1).
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4. λ = 0. There are n2 possibilities (subtype 4a) with α′ = 0, β′ = 0 and n(n−1) possibilities
(subtype 4b) with α′ = εi − εj, β

′ = εj − εi, i 6= j. Here |λ| = n(2n− 1).

Below we write down relations for each type (and subtype) separately. The relations of the
types 1 and 2 have a simple form in terms of the original generators zij. To write the relations
of the types 3 and 4, it is convenient to renormalize the generators zij with i 6= j. Namely, we
set

z̊ij = zij

i−1∏

k=1

Aki. (4.11)

In terms of the generators z̊ij , the formulas (4.4) for the action of the automorphisms q̌i
translate as follows:

q̌i(̊zik) = −z̊i+1,k, q̌i(̊zi+1,k) = z̊i,kAi+1,i, k 6= i, i+ 1,

q̌i(̊zki) = −z̊k,i+1, q̌i(̊zk,i+1) = z̊k,iAi,i+1 = A′
i+1,iz̊k,i, k 6= i, i+ 1,

q̌i(̊zi,i+1) = −A′
i+1,iz̊i+1,i, q̌i(̊zi+1,i) = −z̊i,i+1Ai+1,i,

q̌i(̊zj,k) = z̊j,k, j, k 6= i, i+ 1.

1. The relations of the type 1 are:

zijzik = zikzijAkj, zjizki = zkizjiA
′
kj , for j < k, i 6= j, k. (4.12)

2. Denote

Dijkl :=

(
1

h̊ik
−

1

h̊jl

)
.

Then, for any four pairwise different indices i, j, k and l, we have the following relations of the
type 2:

[zij , zkl] = zkjzilDijkl, i < k, j < l,

zijzkl − zklzijA
′
jlA

′
lj = zkjzilDijkl, i < k, j > l.

(4.13)

3a. Let i 6= k 6= l 6= i. Denote

E̊ikl := −

(
(̊ti − t̊k)

h̊il + 1

h̊ikh̊il
+ (̊tk − t̊l)

h̊il − 1

h̊kl̊hil

)
z̊il +

∑

a:a6=i,k,l

z̊alz̊ia
Bai

h̊ka + 1
.

With this notation the first group of the relations of the type 3 is:

z̊ikz̊klA
′
ik − z̊klz̊ikBki = E̊ikl, i < k < l,

z̊ikz̊klA
′
ikA

′
lkBlk − z̊klz̊ikBki = E̊ikl, i < l < k,

z̊ikz̊klAki − z̊klz̊ikBki = E̊ikl, k < i < l, (4.14)

z̊ikz̊klAkiAliB
′
li − z̊klz̊ikBki = E̊ikl, k < l < i,

z̊ikz̊klA
′
ikA

′
lkBlkAliB

′
li − z̊klz̊ikBki = E̊ikl, l < i < k,

z̊ikz̊klAkiA
′
lkBlkAliB

′
li − z̊klz̊ikBki = E̊ikl, l < k < i.

The relations (4.14) can be written in a more compact way with the help of both systems,
zij and z̊ij , of generators. Let now

Eikl := −

(
(̊ti − t̊k)

h̊il + 1

h̊ikh̊il
+ (̊tk − t̊l)

h̊il − 1

h̊kl̊hil

)
zil +

∑

a:a6=i,k,l

z̊alzia
Bai

h̊ka + 1
.
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Then

zikz̊klA
′
ik − z̊klzikBki = Eikl, k < l,

zikz̊klA
′
ikA

′
lkBlk − z̊klzikBki = Eikl, l < k.

(4.15)

Moreover, after an extra redefinition: z̊kl˚ = z̊klBlk for k > l, the left hand side of the second
line in (4.15) becomes, up to a common factor, the same as the left hand side of the first line,
namely, it reads (zik z̊kl˚ A′

ik − z̊kl˚ zikBki)A
′
lk.

3b. Let i 6= j 6= k 6= i. The second group of relations of the type 3 reads:

z̊ij t̊i = t̊iz̊ijC
′
ji − t̊j z̊ij

1

h̊ij + 2
−
∑

a:a6=i,j

z̊aj z̊ia
1

h̊ia + 2
,

z̊ij t̊j = −t̊iz̊ij
C ′
ji

h̊ij − 1
+ t̊j z̊ijAijA

′
jiBji +

∑

a:a6=i,j

z̊aj z̊iaAijA
′
jiBai̊hja + 1, (4.16)

z̊ij t̊k = t̊iz̊ij
(̊hij + 3)Bji

(̊h2ik − 1)(̊hjk − 1)
+ t̊j z̊ij

(̊hij + 1)Bji

(̊hik − 1)(̊hjk − 1)2
+ t̊kz̊ijAikAkiAjkB

′
jk

− z̊kj z̊ik
(̊hij + 1)Bki

(̊hik − 1)(̊hjk − 1)
−

∑

a:a6=i,j,k

z̊aj z̊ia
h̊ij + 1

(̊hik − 1)(̊hjk − 1)

Bai

h̊ka + 1
.

4a. The relations of the weight zero (the type 4) are also divided into 2 groups. This is the
first group of the relations:

[̊ti, t̊j] = 0. (4.17)

As follows from the proof, the relations (4.17) hold for the diagonal reduction algebra for an
arbitrary reductive Lie algebra: the images of the generators, corresponding to the Cartan
subalgebra, commute.

4b. Finally, the second group of the relations of the type 4 is

[̊zij , z̊ji] = h̊ij −
1

h̊ij
(̊ti − t̊j)

2 +
∑

a:a6=i,j

(
1

h̊ja + 1
z̊aiz̊ia −

1

h̊ia + 1
z̊aj z̊ja

)
, (4.18)

where i 6= j.
Main statement. Denote by R the system (4.12), (4.13), (4.14), (4.16), (4.17) and (4.18)

of the relations.

Theorem 3. The relations R are the defining relations for the weight generators zij and ti of
the algebra Zn. In particular, the set (3.3) of ordering relations follows over U(h) from (and is

equivalent to) R.

The derivation of the system R of the relations is given in Section 5. The validity in Zn of
relations from the set R, together with the results from [7], completes the proof of Theorem 3
(Section 5.4).

4.4 Limit

Let R≺ be the set of ordering relations (3.3). Denote by R0 the homogeneous (quadratic) part
of the system R and by R≺

0 the homogeneous part of the system R≺.
1. Placing coefficients from U(h) in all relations from R0 to the same side (to the right,

for example) from the monomials p̃L ⋄ p̃M , one can give arbitrary numerical values to the
variables hα (α’s are roots of k).
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The structure of the extremal projector P or the recurrence relation (5.4) implies that the
system R0 admits, for an arbitrary reductive Lie algebra, the limit at hαi

= cih, h → ∞
(αi ranges through the set of simple positive roots of k and ci are generic positive constants).
Moreover, this homogeneous algebra becomes the usual commutative (polynomial) algebra in
this limit; so this limiting behavior of the system R0, used in the proof, generalizes to a wider
class of reduction algebras, related to a pair (g, k) as in the introduction.

2. The limiting procedure from paragraph 1 establishes the bijection between the set of
relations and the set of unordered pairs (L,M), where L,M are indices of basic vectors of p.
The proof in [7] shows that over D(h) the system R can be rewritten in the form of ordering
relations for an arbitrary order on the set { p̃L} of generators. Here D(h) is the field of fractions
of the ring U(h).

By definition, the relations from R≺ are labeled by pairs (L,M) with L > M . The above
bijection induces therefore a bijection between the sets R and R≺.

4.5 sln

1. Denote the subalgebra of Zn, generated by two central elements (3.9) and (3.10), by Yn; the
algebra Yn is isomorphic to Z1.

Since the extremal projector for sln is the same as for gln, the diagonal reduction algebra
DR(sln) for sln is naturally a subalgebra of Zn. The subalgebra DR(sln) is complementary to Yn
in the sense that Zn = Yn ⊗DR(sln).

The algebra DR(sln) is generated by zij , i, j = 1, . . . , n, i 6= j, and ti,i+1 := ti − ti+1, i =
1, . . . , n− 1 (and the Cartan subalgebra h, generated by hi,i+1, of the diagonally embedded sln).
The elements ti,i+1 form a basis in the space of “traceless” combinations

∑
cmtm (traceless

means that
∑
cm = 0), cm ∈ U(h).

2. The action of the braid group restricts onto the traceless subspace:

q̌i(ti−1,i) = ti−1,i +
h̊i,i+1

h̊i,i+1 − 1
ti,i+1, q̌i(ti+1,i+2) =

h̊i,i+1

h̊i,i+1 − 1
ti,i+1 + ti+1,i+2,

q̌i(ti,i+1) = −
h̊i,i+1 + 1

h̊i,i+1 − 1
ti,i+1, q̌i(tk,k+1) = tk,k+1, k 6= i− 1, i, i + 1.

The traceless subspace with respect to the generators ti and the traceless subspace with
respect to the generators t̊i (that is, the space of linear combinations

∑
cmt̊m, cm ∈ U(h), with∑

cm = 0) coincide. Indeed, in the expression of tl as a linear combination of t̊k’s (the second line
in (4.2)), we find, calculating residues and the value at infinity, that the sum of the coefficients
is 1,

l−1∏

j=1

A′
jl +

l−1∑

k=1

1

h̊kl

l−1∏

j=1
j 6=k

A′
jk = 1.

Therefore, in the decomposition of the difference ti − tj as a linear combination of t̊k’s, the sum
of the coefficients vanishes, so it is traceless with respect to t̊k’s; tl,l+1 is a linear combination
of t̊12, t̊23, . . . , t̊l,l+1 (and vice versa). It should be however noted that in contrast to (4.2), the
coefficients in these combinations do not factorize into a product of linear monomials, the lowest
example is t̊34:

t̊12 =
h̊12

h̊12 − 1
t12, t̊23 =

h̊23

h̊13 − 1

(
−

1

h̊12 − 1
t12 +

h̊13

h̊23 − 1
t23

)
,
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t̊34 =
h̊34

h̊14 − 1

(
−

1

h̊13 − 1
t12 −

h̊14(̊h13 − 1) + h̊23(̊h24 − 1)

(̊h13 − 1)(̊h23 − 1)(̊h24 − 1)
t23 +

h̊14̊h24

(̊h24 − 1)(̊h34 − 1)
t34

)
.

3. One can directly see that the commutations between zij and the differences tk − tl close.
The renormalization (4.11) is compatible with the sl-condition and, as we have seen, the set
{ti,i+1} of generators can be replaced by the set {̊ti,i+1}. Therefore, one can work with the
generators z̊ij , i, j = 1, . . . , n, i 6= j, and t̊i,i+1 := ti − ti+1, i = 1, . . . , n − 1. A direct look
at the relations (4.12), (4.13), (4.14), (4.16), (4.17) and (4.18) shows that the only non-trivial
verification concerns the relations (4.16); one has to check here the following assertion: when
z̊ moves through t̊i,i+1, only traceless combinations of t̊l’s appear in the right hand side. Write

a relation from the list (4.16) in the form z̊ij t̊l =
∑

m χ
(i,j,l,m)
m t̊mz̊ij + · · · , χ

(i,j,l,m)
m ∈ U(h), where

dots stand for terms with z̊z̊. The assertion follows from the direct observation that for all i, j

and l the sum of the coefficients χ
(i,j,l,m)
m is 1,

∑
m χ

(i,j,l,m)
m = 1.

4. With the help of the central elements (3.9), (3.10) and (3.11) one can build a unique linear
in t’s traceless combination:

n∑

i=1

(hi − 2i)ti −

(
1

n

n∑

i=1

hi − n− 1

)
n∑

j=1

tj .

It clearly depends only on the differences hi − hj and belongs therefore to the center of the
subalgebra DR(sln).

One can write this central element in the form

n−1∑

u,v=1

C
uvhu,u+1tv,v+1 +

n−1∑

v=1

(n− v)vtv,v+1 =
n−1∑

u,v=1

C
uv (̊hu,u+1 + 1)tv,v+1, (4.19)

where C
uv is the inverse Cartan matrix of sln.

In general, let k be a semi-simple Lie algebra of rank r with the Cartan matrix aij . Let bij
be the symmetrized Cartan matrix and ( , ) the scalar product on h∗ induced by the invariant
non-degenerate bilinear form on k, so that

aij = dibij, bij = (αi, αj), di = 2/(αi, αi).

For each i = 1, . . . , r let α∨
i be the coroot vector corresponding to the simple root αi, so that

αj(α
∨
i ) = aij . Let dij be the matrix, inverse to cij = dibijdj. Let ρ ∈ h∗ be the half-sum of all

positive roots. Write

ρ =
1

2

r∑

i=1

niαi,

where ni are nonnegative integers. Let tαi
be the images of Hαi

= α∨
i
(1) −α∨

i
(2) in the diagonal

reduction algebra DR(k) and hαi
= α∨

i
(1)+α∨

i
(2) be the coroot vectors of the diagonally embedded

Lie algebra k. The generalization of the central element (4.19) to the reduction algebra DR(k)
reads

r∑

i,i=1

dijhαi
tαj

+
r∑

i=1

ni(αi, αi)tαi
.
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4.6 Stabilization and cutting

In [7] we discovered the stabilization and cut phenomena which are heavily used in our derivation
of the set of defining relations for the diagonal reduction algebras of gl-type. The consideration
in [7] uses the standard (by the first coordinates) embedding of gln into gln+1. In this subsection
we shall make several more precise statements about the stabilization and cut considering now
the embedding of gln ⊕ gl1 into gln+1 (more generally, gln ⊕ glm into gln+m). These precisions
are needed to establish the behavior of the center of the diagonal reduction algebra: namely we
shall see that cutting preserves the centrality.

Notation: h in this subsection denotes the Cartan subalgebra of gln+m.
Consider an embedding of gln ⊕ glm into gln+m, given by an assignment eij 7→ eij , i, j =

1, . . . , n, and eab 7→ en+a,n+b, a, b = 1, . . . ,m, where ekl in the source are the generators of
gln ⊕ glm and target ekl are in gln+m. This rule together with the similar rule Eij 7→ Eij and
Eab 7→ En+a,n+b defines an embedding of the Lie algebra (gln ⊕ glm)⊕ (gln ⊕ glm) into the Lie
algebra gln+m⊕gln+m and of the enveloping algebras An⊗Am = U(gln⊕gln)⊗U(glm⊕glm) into
An+m = U(gln+m ⊕ gln+m). This embedding clearly maps nilpotent subalgebras of gln ⊕ glm
to the corresponding nilpotent subalgebras of gln+m and thus defines an embedding ιn,m :
Zn ⊗ Zm → Zn+m of the corresponding double coset spaces. However, the map ιn,m is not
a homomorphism of algebras. This is because the multiplication maps are defined with the help
of projectors, which are different for gln ⊕ glm and gln+m.

However, as we will explain now we can control certain differences between the two multi-
plication maps. Let Vn,m be the left ideal of the algebra Zn+m generated by elements zia with
i = 1, . . . , n and a = n+1, . . . , n+m; let V′

n,m be the right ideal of the algebra Zn+m generated
by elements zai with i = 1, . . . , n and a = n+ 1, . . . , n+m.

Write any element λ ∈ Q+ (the positive cone of the root lattice of gln+m) in the form
λ =

∑n+m
k=1 λkεk. The element λ can be presented as a sum

λ = λ′ + λ′′, (4.20)

where λ′ is an element of the root lattice of gln ⊕ glm, and λ′′ is proportional to the simple root
εn − εn+1: λ

′ =
∑n+m

k=1 λ′kεk with
∑n

k=1 λ
′
k =

∑n+m
k=n+1 λ

′
k = 0 and λ′′ = c(εn − εn+1).

Lemma 4. The left ideal Vn,m ⊂ Zn+m consists of images in Zn+m of sums
∑

iaXiaEia with

Xia ∈ Ān+m, i = 1, . . . , n and a = n+ 1, . . . , n+m.

The right ideal Vn,m ⊂ Zn+m consists of images in Zn+m of sums
∑

aiEaiYai with Yai ∈ Ān+m,

i = 1, . . . , n and a = n+ 1, . . . , n +m.

Proof. Present the projector P for the Lie algebra gln+m as a sum of terms

ξe−γ1 · · · e−γteγ′

1
· · · eγ′

t′
, (4.21)

where ξ ∈ U(h), γ1, . . . , γt and γ
′
1, . . . , γ

′
t′ are positive roots of gln+m. For any λ ∈ Q+ denote

by Pλ the sum of above elements with γ1 + · · ·+ γt = γ′1 + · · ·+ γ′t′ = λ. Then P =
∑

λ∈Q+
Pλ.

For any X,Y ∈ Ā define the element X ⋄λ Y as the image of XPλY in the reduction algebra.
We have X ⋄ Y =

∑
λ∈Q+

X ⋄λ Y .

For any X ∈ Ān+m, i = 1, . . . , n and a = n+ 1, . . . , n+m consider the product X ⋄λ zia.
The product X ⋄λ zin is zero if λ′′ 6= 0 (the component λ′′ is defined by (4.20)). Indeed, in this

case in each summand of Pλ one of eγ′

k′
is equal to some ejb, j = 1, . . . , n and b = n+1, . . . , n+m.

Choose an ordered basis of n+ which ends by all such ejb (ordered arbitrarily); any element
of U(n+) can be written as a sum of ordered monomials, that is, monomials in which all such ejb
stand on the right. Since [ejb, Eia] = 0 for any i, j = 1, . . . , n and a, b = n + 1, . . . , n +m, the
product eγ′

k′
Eia belongs to the left ideal I+ and thus X ⋄λ zia = 0 in Zn+m.
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If λ′′ = 0 then generators of n+ in monomials entering the decomposition of Pλ are among
the elements eij , 1 ≤ i < j ≤ n, and eab, n + 1 ≤ a < b ≤ n + m and thus their adjoint
action leaves the space, spanned by all Eia, i = 1, . . . , n, a = n + 1, . . . , n + m invariant, so
X ⋄λ zia can be presented as an image of the sum

∑
jbXjbEjb with Xjb ∈ Ān+m, j = 1, . . . , n,

b = n+ 1, . . . , n +m. Thus, the left ideal, generated by all zia is contained in the vector space
of images in Zn+m of sums

∑
jbXjbEjb.

Moreover, for any X ∈ Ān+m the element X ⋄zia is the image of XEia+
∑

j,b: j<i, b>a X
(jb)Ejb

for some X(jb) and the double induction on i and a proves the inverse inclusion.

The second part of lemma is proved similarly. �

Corollary 5. We have the following decomposition of the free left (and right) U(h)-modules:

Zn+m = In,m ⊕U(h) · ιn,m(Zn ⊗ Zm), (4.22)

where In,m := Vn,m +V′
n,m.

Proof. The double coset space Zn+m is a free left and right U(h)-module with a basis consisting
of images of ordered monomials on elements Eij , i, j = 1, . . . , n +m; recall that we always use
orders compatible with the partial order < on h∗, see (c) in Section 3, paragraph 2. We can
choose an order for which all ordered monomials are of the form XY Z, where X is a monomial
on Eai with i = 1, . . . , n and a = n+1, . . . , n+m, Z is a monomial on Eia with i = 1, . . . , n and
a = n+1, . . . , n+m while Y is a monomial on Eij with i, j = 1, . . . , n or i, j = n+1, . . . , n+m.
Then we apply the lemma above. �

For a moment denote for each k > 0 the multiplication map in Zk by ⋄(k) : Zk ⊗ Zk →
Zk (instead of the default notation ⋄, see (3.1)); denote also for each k, l > 0 by ⋄(k,l) the
multiplication map ⋄(k) ⊗ ⋄(l) in Zk ⊗ Zl.

Proposition 6. For any x, y ∈ Zn ⊗ Zm we have

ιn,m(x) ⋄(n+m) ιn,m(y) = ιn,m(x ⋄(n,m) y) + z,

where z is some element of Jn,m := Vn,m ∩V′
n,m.

Let hn and hm be the Cartan subalgebras of gln and glm, respectively. Denote the space
Zn ⊗U(hn)

U(h) ⊗U(hm) Zm by U(h) · (Zn ⊗ Zm). The composition law ⋄(n,m) naturally extends

to the space U(h) · (Zn ⊗ Zm) equipping it with an associative algebra structure (we keep the
same symbol ⋄(n,m) for the extended composition law in U(h) · (Zn ⊗ Zm)). Also, the map ιn,m
admits a natural extension to a map ιn,m : U(h) · (Zn ⊗ Zm) → Zn+m denoted by the same
symbol and defined by the rule ιn,m(ϕx) := ϕ ιn,m(x) for any ϕ ∈ U(h) and x ∈ Zn ⊗ Zm.
The statement of Proposition 6 remains valid for this extension as well, that is, one can take
x, y ∈ U(h) · (Zn ⊗ Zm) in the formulation.

Proof of Proposition 6. Denote by Pn,m := Pn⊗Pm the projector for the Lie algebra gln⊕glm.
It is sufficient to prove the following statement. Suppose X and Y are (non-commutative)

polynomials in Eij with i, j = 1, . . . , n Then the product of x and y in Zn+m coincides with the
image in Zn+m of X Pn,mY modulo the left ideal Vn,m and modulo the right ideal V′

n,m).

Due to the structure of the projector the condition λ′′ = 0, see (4.20), implies that the product
X ⋄λ Y related to gln ⊕ glm coincides with product X ⋄λ Y related to gln+m.

Let now λ′′ 6= 0. Then each monomial eγ′

1
· · · eγ′

t′
in the decomposition of Pλ, see (4.21),

contains generators eia with i ∈ {1, . . . , n} and a ∈ {n+1, . . . , n+m}; these eia can be assumed to
be right factors of the corresponding monomial (like in the proof of Lemma 4). The commutator
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of any such generator eia with every factor in Y is a linear combination of the elements Ejb with
j ∈ {1, . . . , n} and b ∈ {n+1, . . . , n+m}. Moving the resulting Ejb to the right we see that the
product X ⋄λ Y is the image in Zn+m of an element of the form

∑
s XsYs where each Ys belongs

to the left ideal of Ān+m generated by Ejb with j ∈ {1, . . . , n} and b ∈ {n+ 1, . . . , n+m} (one

can say more: each Ys can be written in a form
∑

j,b Y
(jb)
s Ejb where each Y

(jb)
s ∈ Ān+m does

not involve generators Eck with k ∈ {1, . . . , n} and c ∈ {n + 1, . . . , n +m}; we don’t need this
stronger form). Thus, due to Lemma 4, X ⋄λ Y ∈ Vn,m.

Similarly, each Xs participating in the sum
∑

sXsYs, see above, belongs to the right ideal
of Ān+m generated by the elements Ebj with j ∈ {1, . . . , n} and b ∈ {n + 1, . . . , n +m}. So,
again by Lemma 4, X ⋄λ Y ∈ V′

n,m. �

Suppose that we have a relation

∑

k

ak ⋄(n,m) bk = 0, (4.23)

where all ak and bk are elements of Zn⊗Zm. Then, due to Proposition 6, we have the following
relation in Zn+m:

∑

k

āk ⋄(m+n) b̄k = z, (4.24)

where āk = ιn,m(ak), b̄k = ιn,m(bk) and z ∈ Jn,m = Vn,m ∩V′
n,m.

On the other hand, suppose we have the following relation in Zn+m:

∑

k

āk ⋄(m+n) b̄k = u, (4.25)

where all ak and bk are elements of Zn ⊗ Zm, āk = ιn,m(ak), b̄k = ιn,m(bk), and u ∈ In,m =
Vn,m + V′

n,m. Then the elements ak and bk satisfy the relation (4.23) and u ∈ Jn,m. Indeed,
suppose that the relation (4.25) is satisfied and

∑
k ak ⋄(n,m) bk = v for some v ∈ Zn ⊗ Zm. It

follows from Proposition 6 that
∑

k āk⋄(m+n) b̄k−v̄ belongs to Jn,m; here v̄ = ιn,m(v). Then (4.25)
implies that v̄ ∈ In,m and thus v̄ = 0 due to Corollary 5. Thus v = 0, since the map ιn,m is an
inclusion, and u ∈ Jn,m.

We refer to the implication (4.23) ⇒ (4.24) as stabilization. Call cutting the (almost inverse)
implication (4.25) ⇒ (4.23) which can be understood as a procedure of getting relations in
Zn ⊗ Zm from relations in Zn+m; we say that (4.23) is the cut of (4.25). Clearly all relations in
Zn ⊗ Zm can be obtained by cutting appropriate relations in Zn+m.

Let πn,m : Zn+m → U(h) · (Zn ⊗ Zm) be the composition of the projection π̄n,m of Zn+m onto
ιn,m(U(h) · Zn ⊗ Zm) = U(h) · ιn,m(Zn ⊗ Zm) along In,m, see (4.22), and of the inverse to the
inclusion ιn,m:

πn,m = ι−1
n,m ◦ π̄n,m.

We have the following consequence of Proposition 6 and Corollary 5.

Proposition 7. Let x be a central element of Zn+m. Then πn,m(x) is a central element of

U(h) · (Zn ⊗ Zm).

Proof. Denote X = πn,m(x). Then, by definition, x = ιn,m(X) + z, where z ∈ In,m. Since x is
central, it is of zero weight; so X and z are of zero weight as well. Thus each monomial entering
the decomposition of z contains both types of generators, Eai and Eia, where i ∈ {1, . . . , n} and
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a ∈ {n + 1, . . . , n +m}, which implies that z ∈ Jn,m = Vn,m ∩ V′
n,m. Take any Y ∈ Zn ⊗ Zm.

We now prove that X ⋄(n,m) Y − Y ⋄(n,m) X = 0. Denote y = ιn,m(Y ). Due to Proposition 6,

ιn,m(X ⋄(n,m) Y − Y ⋄(n,m) X) = (x− z) ⋄(m+n) y − y ⋄(m+n) (x− z) + z′, (4.26)

where z′ ∈ Jn,m = Vn,m ∩ V′
n,m. Since x is central in Zn+m, the right hand side of (4.26) is

equal to

y ⋄(m+n) z − z ⋄(m+n) y + z′,

which is an element of In,m = Vn,m ⊕V′
n,m since z, z′ ∈ Jn,m. On the other hand, the left hand

side of (4.26) belongs to U(h) · ιn,m(Zn ⊗ Zm). Thus, by Corollary 5, both sides of (4.26) are
equal to zero and X ⋄(n,m) Y − Y ⋄(n,m) X = 0 since the map ιn,m is injective. �

The map πn,m obeys properties similar to those of the Harish-Chandra map U(g)h → U(h)
(U(g)h is the space of elements of zero weight). For instance, its restriction to the center of Zn+m

is a homomorphism. More precisely, if x is a central element of Zn+m, then

πn,m(x ⋄(m+n) y) = πn,m(x) ⋄(n,m) πn,m(y) and

πn,m(y ⋄(m+n) x) = πn,m(y) ⋄(n,m) πn,m(x)
(4.27)

for any y ∈ Zn+m. Indeed, let X = πn,m(x), Y = πn,m(y). Then

x = ιn,m(X)− z, y = ιn,m(Y )− u,

where u ∈ In,m while, as it was noted in the proof of Proposition 7, z ∈ Jn,m. Moreover, it is clear
that z can be written in the form z =

∑
a z

′
aza, where za ∈ Vn,m and z′a ∈ V′

n,m (for instance,
use the order as in the proof of Corollary 5). Then (dropping for brevity the multiplication
symbol ⋄(m+n)) we have

ιn,m(X)ιn,m(Y ) = (x+ z)(y + u) =

(
x+

∑

a

z′aza

)
(y + z̃′ + z̃)

= xy +
∑

a

z′aza(y + z̃′ + z̃) + xz̃ + z̃′x ≡ xy mod In,m. (4.28)

Here z̃ ∈ Vn,m and z̃′ ∈ V′
n,m. In the last equality we used the centrality of x. Due to Proposi-

tion 6, (4.28) is precisely equivalent to the fist part of (4.27). The second part of (4.27) is proved
similarly.

5 Proofs

5.1 Tensor J

The multiplication map ⋄ in Zn (we return to the original notation) is given by the prescrip-
tion (3.1), as in any reduction algebra. It can be formally expanded into a series over the root
lattice of certain bilinear maps as follows. Set

U(b±) := U(h)⊗U(h) U(b±), U
12
(b) := U(b−)⊗U(h) U(b+).

All these are associative algebras. Besides, both algebras U(b±) are U(h)-bimodules. The alge-

bra U
12
(b) admits three commuting actions of U(h). Two of them are given by the assignments

X(Y ⊗ Z) := XY ⊗ Z, (Y ⊗ Z)X := Y ⊗ ZX,
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for any X ∈ U(h), Y ∈ U(b−) and Z ∈ U(b+). The third action associates to any X ∈ U(h),

Y ⊗ Z ∈ U
12
(b) the element Y X ⊗ Z = Y ⊗XZ ∈ U

12
(b).

Present the projector P in an ordered form:

P =
∑

γ,i

F̀γ,iÈγ,iH̀γ,i =
∑

γ,i

H̀γ,iF̀γ,iÈγ,i, (5.1)

the summation is over γ ∈ Q+ and i ∈ Z≥0; every F̀γ,i is an element of U(n−) of the weight −γ,
every Èγ,i is an element of U(n+) of the weight γ and H̀γ,i ∈ U(h). Let J be the following

element of U
12
(b):

J :=
∑

γ,i

F̀γ,i ⊗ Èγ,iH̀γ,i =
∑

γ,i

H̀γ,iF̀γ,i ⊗ Èγ,i, γ ∈ Q+, i ∈ Z≥0.

Due to the PBW theorem in U(gln) the tensor J is uniquely defined by the projector P ; it is of
total weight zero: hJ = Jh for any h ∈ h. We have the weight decomposition of J with respect

to the adjoint action of h in the second tensor factor of U
12
(b):

J =
⊕

λ∈Q+

Jλ,

where Jλ consists of all the terms, corresponding to F̀λ,iÈλ,iH̀λ,i in (5.1) (contributing to λ ∈ Q+

in the summation),

Jλ :=
∑

i

F̀λ,i ⊗ Èλ,iH̀λ,i.

By definition of J, the multiplication ⋄ in the double coset space Zn can be described by the
relation

a ⋄ b = m ((a⊗ 1)J(1 ⊗ b)) , (5.2)

where m(
∑

i ci⊗di) is the image in Zn of the element
∑

i cidi. Moreover, in (5.2) we can replace

all products Èγ,ib in the second tensor factor by the adjoint action of Èγ,i on b (in fact, for
Èγ,i = eγm · · · eγ1 , we can replace Èγ,ib by [Èγ,i, b] or by êγm · · · êγ1(b), see (2.4)) and likewise all
products aF̀γ,i in the first tensor factor by the opposite adjoint action of F̀γ,i on a. We have
a decomposition of the product ⋄ into a sum over Q+:

a ⋄ b =
∑

λ∈Q+

a ⋄λ b, where a ⋄λ b := m ((a⊗ 1)Jλ(1⊗ b)) . (5.3)

If a and b are weight elements of Zn of weights ν(a) and ν(b), then the product a ⋄λ b is the
image in Zn of the sum

∑
i aibi, where the weight of each bi is ν(b)+λ, and the weight of each ai

is ν(a)− λ.
The tensor J satisfies the Arnaudon–Buffenoir–Ragoucy–Roche (ABRR) difference equa-

tion [1], see also [5] for the translation of the results of [1] to the language of reduction algebras.
To describe the equation, let ϑ = 1

2

∑n
k=1 h̊

2
k ∈ U(h); for any positive root γ ∈ ∆+, denote by Tγ

the following linear operator on the vector space U
12
(b):

Tγ(X ⊗ Y ) := Xe−γ ⊗ eγY.

The ABRR equation means the relation [1, 5]:

[1⊗ ϑ, J] = −
∑

γ∈∆+

Tγ(J).
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This relation is equivalent to the following system of recurrence relations for the weight compo-
nents Jλ:

Jλ ·

(
h̊λ +

(λ, λ)

2

)
= −

∑

γ∈∆+

Tγ (Jλ−γ) , (5.4)

where h̊λ :=
∑

k λkh̊k for λ =
∑

k λkεk. The recurrence relations (5.4) together with the initial
condition J0 = 1⊗ 1 uniquely determine all weight components Jλ.

It should be noted that the recurrence relations (5.4) provides less information about the
structure of the denominators (from U(h)) of the summands of the extremal projector P than
the information implied by the product formula (see [3]) for the extremal projector.

Using (5.4) we get in particular:

Jα = −(̊hα + 1)−1e−a ⊗ eα, α = εi − εi+1, (5.5)

Jα+β = (̊hα+β + 1)−1
(
−e−α−β ⊗ eα+β + (̊hα + 1)−1e−αe−β ⊗ eβeα

+ (̊hβ + 1)−1e−βe−α ⊗ eαeβ

)
, α = εi−1 − εi, β = εi − εi+1, (5.6)

Jεi−εj+εk−εl = Jεi−εj · Jεk−εl , i < j < k < l. (5.7)

5.2 Braid group action

The proof of the relations (4.1) and (4.4) consists of the following arguments, valid for any
reduction algebra. Let α be any simple root of gln, α = εi − εi+1 and gα the corresponding sl2
subalgebra of gln. It is spanned by the elements eα = ei,i+1, e−α = ei+1,i and hα = hi − hi+1.
Let σ́α = σ́i be the corresponding automorphism of the algebra A and q̌α = q̌i the Zhelobenko
automorphism of Zn. Assume that Y ∈ A belongs, with respect to the adjoint action of gα, to
an irreducible finite-dimensional gα-module of dimension 2j + 1, j ∈ {0, 1/2, 1, . . .}. Assume
further that Y is homogeneous, of weight 2m, [hα, Y ] = 2mY . Identify Y with its image in Zn.
Then q̌α(Y ) coincides with the image in Zn of the element

j+m∏

i=1

(hα + i+ 1) · σ́α(Y ) ·

j+m∏

i=1

(hα − i+ 1)−1.

This can be checked directly using [6, Proposition 6.5].
In the realization of irreducible sl2-modules as the spaces of homogeneous polynomials in two

variables u and v,

eα 7→ u
∂

∂v
, hα 7→ u

∂

∂u
− v

∂

∂v
and e−α 7→ v

∂

∂u
,

the operator σ́α becomes (σ́αf)(u, v) = f(−v, u), or, in the basis |j, k〉 := xj+kyj−k (j labels the
representation; k = 0, 1, . . . , 2j),

σ́α : |j,−j + k〉 7→ (−1)k|j, j − k〉.

Proof of Lemma 1, Subsection 4.2. To see this, write a reduced expression for q̌w0
, q̌w0

=
q̌αi1

· · · q̌αiM
with αi1 , . . . , αiM simple roots. Then q̌w0

= q̌αiM
· · · q̌αi1

as well. Writing, for q̌2w0
,

the second expression after the first one, we get squares of q̌αis
’s (which are conjugations by

h̊−1
αis

’s; they thus commute) one after another. Moving these conjugations to the left through
the remaining q̌’s, we produce, exactly like in the construction of a system of all positive roots
from a reduced expression for the longest element of the Weyl group of a reductive Lie group,
the conjugation by the product (4.8) over all positive roots. �



20 S. Khoroshkin and O. Ogievetsky

Proof of Proposition 2, Subsection 4.2. Only formula (4.9) needs a proof (formula (4.10)
is a particular case of (4.3)).

For a moment, denote the longest element of the symmetric group Sn by q̌
(n)
w0

. Let ψj :=

q̌j q̌j−1 · · · q̌1 (the product in the descending order). We have q̌
(n+1)
w0 = q̌

(n)
w0 ψn and q̌

(n+1)
w0 =

ψ1ψ2 · · ·ψn (the product in the ascending order).
For j < n it follows from (4.4) that ψj(zn+1,1) = (−1)jzn+1,j+1 (say, by induction on j). So,

ψn(zn+1,1) = qnψn−1(zn+1,j+1) = (−1)n−1qn(zn+1,n) = (−1)nzn,n+1,

again by (4.4). Next, ψkψk+1 · · ·ψn−1(zn,n+1) = zk,n+1 by induction on n − k and again (4.4).
Thus,

q̌w0
(zn+1,1) = (−1)nz1,n+1, (5.8)

establishing (4.9) for i = n + 1 and j = 1. We now prove (4.9) for i > j (positions below the
main diagonal) by induction backwards on the height i− j of a negative root; the formula (5.8)
serves as the induction base. Assume that (4.9) is verified for a given level i− j and i− j−1 > 0
(so that the positions (i, j + 1) and (i − 1, j) are still under the main diagonal). By (4.4),
zi,j+1 = −q̌j(zij), therefore

q̌w0
(zi,j+1) = −q̌w0

(q̌j(zij)) = −q̌j′−1(q̌w0
(zij))

= (−1)i+j+1q̌j′−1


zi′j′

∏

a:a<i′

Aai′

∏

b:b>j′

Aj′b




= (−1)i+j+1zi′,j′−1Aj′−1,j′
∏

a:a<i′

Aai′

∏

b:b>j′

Aj′−1,b

= (−1)i+j+1zi′,(j+1)′

∏

a:a<i′

Aai′

∏

b:b>(j+1)′

A(j+1)′,b.

In the second equality we used the identity q̌w0
q̌j = q̌j′−1q̌w0

in the braid group; the third
equality is the induction assumption; in the fourth equality we used that i′ 6= j′ − 1 (since
i− j− 1 > 0) and then (4.4); in the fifth equality we replaced j′− 1 by (j+1)′. The calculation
for q̌w0

(zi−1,j) is similar; it uses zi−1,j = q̌i−1(zij). The proof of the formula (4.9) for positions
below the main diagonal is finished.

The proof of (4.9) for i < j (positions above the main diagonal) follows now from Lem-
ma 1. �

5.3 Derivation of relations

The set of defining relations in Zn divides into several different types, see Section 4.3. We prove
the necessary amount of relations of each type and get the rest by applying the transformations
from the braid group as well as the anti-involution ǫ, see (3.7).

We never use the automorphism ω, defined in (3.8), in the derivation of relations. However,
the involution ω is compatible with our set of relations in the sense explained in Section 5.4.

In the following we denote by the symbol ≡ the equalities of elements from Ā modulo the sum
(I− + I+) of two ideals I− and I+ defined in the beginning of Section 3. Moreover, for any two
elements X and Y of the algebra Ā we may regard the expressions X ⋄Y and X ⋄λY as the sums
of elements from Ā defined in (5.2) and (5.3). The sum X ⋄λ Y is finite. By the construction,
all but a finite number of terms in the product X ⋄Y belong to (I− +I+). Unlike to the system
of notation adopted in Section 3, our proof of each relation in Zn will use equalities in Ā taken
modulo (I− + I+).
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We also use the notation Hi for the element Eii ∈ A and Hij = Hi −Hj = Eii − Ejj.
1. We first prove in Zn the relation

z12 ⋄ z13 = z13 ⋄ z12
h̊23

h̊23 + 1
. (5.9)

Elements z12 and z13 are images in Zn of E12 and E13. Consider the product E12 ⋄λ E13. Since
the adjoint action of gln preserves the space p, see Section 2, this product is the sum of such
monomials EijEkl, with coefficients in U(h), that (i): the weight εk − εl of Ekl is equal to the
weight ε1 − ε3 of E13 plus λ ∈ Q+, while (ii): the weight εi − εj of Eij is equal to the weight
ε1 − ε2 of E12 minus λ. Assume that E12 ⋄λ E13 6= 0. By (i), λ = −ε1 + ε3 + εk − εl and it can
be positive only if k = 1 and l ≥ 3. So, the condition (i) implies that either λ = 0 or λ = ε3 − εl
with l > 3. The possibility λ = ε3− εl, l > 3, is excluded by the condition (ii). Therefore, λ = 0
and

E12 ⋄ E13 ≡ E12E13. (5.10)

Similarly, for λ ∈ Q+, which can non-trivially contribute to the product E13 ⋄E12, the analogue
of the condition (i) on the weight λ gives the restriction λ = 0 or λ = ε2−εk, k > 2; the analogue
of the condition (ii) further restricts λ: λ = 0 or λ = ε2 − ε3, so we have

E13 ⋄ε2−ε3 E12 ≡ −E13e32e23
1

h̊23 + 1
E12 ≡ −E13e32e23E12

1

h̊23
≡ E12E13

1

h̊23
,

since Jε2−ε3 = −e32 ⊗ e23(̊h23 + 1)−1 as it follows from the ABRR equation, see (5.5), or from
the precise explicit expression for the projector P , see [3]. Thus, since E12 and E13 commute in
the universal enveloping algebra

E13 ⋄ E12 ≡ E13E12 + E13 ⋄ε2−ε3 E12 = E12E13

(
1 +

1

h̊23

)
, (5.11)

Comparing (5.10) and (5.11) we find (5.9).
Applying to (5.9) the anti-involution ǫ, see (3.7), we get the relation

z21 ⋄ z31 = z31 ⋄ z21
h̊23 + 1

h̊23
. (5.12)

The rest of the relations (4.12) are obtained from (5.9) and (5.12) by applying different
transformations q̌w from the Weyl group.

2. Now we prove in Zn the relation

z13 ⋄ z24 − z24 ⋄ z13 =

(
1

h̊12
−

1

h̊34

)
z23 ⋄ z14. (5.13)

We begin by the proof of this relation in Z4. We proceed in the same manner as for the derivation
of the relation (5.9),

E13 ⋄ E24 ≡ E13E24 + E13 ⋄ε1−ε2 E24

≡ E13E24 − E13e21e12
1

h̊12 + 1
E24 ≡ E13E24 + E23E14

1

h̊12
,

E24 ⋄ E13 ≡ E24E13 + E24 ⋄ε3−ε4 E13

≡ E24E13 − E24e43e34
1

h̊34 + 1
E13 ≡ E13E24 + E23E14

1

h̊34
,
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E23 ⋄ E14 ≡ E23E14.

Combining the three latter equalities we obtain (5.13) in Z4.

The difference of the left and right hand sides of (5.13) in Zn is a linear combination of
monomials in zij of the total weight ε1+ε2−ε3−ε4. The weight is non-trivial, so the monomials
can be only quadratic. Due to the stabilization phenomenon, each monomial should contain zij
with i > 4 or j > 4, but, by the weight arguments, there is no such non-zero possibility, which
completes the proof of the relation (5.13) in Zn.

The rest of relations (4.13) is then obtained by applications of the transformations from the
braid group.

3a. We continue and derive in Z4 the relation (we remind the notation tij := zii − zjj, see
Section 3, and Hij = Eii − Ejj):

z23 ⋄ z12 − z12 ⋄ z23 = t12 ⋄ z13
1

h̊12
+ t23 ⋄ z13

1

h̊23
− z43 ⋄ z14

h̊34 + 1

h̊34h̊24
. (5.14)

Using (5.5)–(5.7), we calculate, to obtain the result for Z4:

E12 ⋄ E23 ≡ E12E23 + E12 ⋄ε1−ε2 E23 + E12 ⋄ε1−ε2+ε3−ε4 E23

≡ E12E23 −H12E13
1

h̊12
, (5.15)

E23 ⋄ E12 ≡ E23E12 + E23 ⋄ε2−ε3 E12 + E23 ⋄ε2−ε4 E12

≡ E23E12 +H23E13
1

h̊23
− E43E14

(̊h23 − 1)

h̊23h̊24
, (5.16)

H12 ⋄ E13 ≡ H12E13 +H12 ⋄ε3−ε4 E13 ≡ H12E13, (5.17)

H23 ⋄ E13 ≡ H23E13 +H23 ⋄ε3−ε4 E13 ≡ H23E13 + E43E14
1

h̊34
, (5.18)

E43 ⋄ E14 ≡ E43E14. (5.19)

Combining the above equalities and taking into account that [E12, E23] = e13 ≡ 0, we get (5.14)
in Z4. We could apply here the stability arguments (as we shall do in the sequel) but we give
some more details at this point to give a flavor of how such derivations of relations work. For
the same, as (5.15)–(5.19), calculations for Zn, the analogues of the conditions (i) and (ii), see
paragraph 1 of this subsection, restrict λ to be of the form ε1 − ε2 + ε3 − εk, k ≥ 3 for (5.15);
ε2 − εk, k ≥ 2 for (5.16); ε3 − εk, k ≥ 3 for (5.17) and (5.18); ε4 − εk, k ≥ 4 for (5.19). It
follows, for, say, n = 5, that the right hand sides of (5.15)–(5.19) might be modified only by an
addition of the term proportional to E53E15; and this will be compensated by an addition of the
term, proportional to z53 ⋄ z15 to the right hand side of (5.14), since E53 ⋄ E15 ≡ E53E15; the
proportionality coefficient is uniquely defined. This pattern clearly continues and we conclude
that there is a relation in Zn of the form

z23 ⋄ z12 − z12 ⋄ z23 = t12 ⋄ z13
1

h̊12
+ t23 ⋄ z13

1

h̊23
−
∑

k>3

zk3 ⋄ z1kXk, (5.20)

with certain, uniquely defined, coefficients Xk ∈ U(h), k = 4, . . . , n, and already known X4 =
(̊h34+1)̊h−1

34 h̊
−1
24 . To find X5, . . . ,Xn, we apply to (5.20) the automorphisms q̌k, k = 4, . . . , n−1,

which leave invariant the left hand side and the first two terms in the right hand side of (5.20).
The uniqueness of the relation of the form (5.20), together with the equality q̌k(zk3 ⋄ z1k) =
zk+1,3 ⋄z1,k+1(̊hk,k+1+1)̊h−1

k,k+1, imply the recurrence relation Xk+1 = q̌k(Xk) · (̊hk,k+1+1)̊h−1
k,k+1
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and we find

Xk =
1

h̊2k

k−1∏

j=3

h̊jk + 1

h̊jk
.

After the renormalization (4.11) and the change of variables (4.2), the derived relation be-
comes one of the relations in the first line of (4.14).

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.14).

3b. We have the following equalities in Z3:

z12 ⋄ t1 = t1 ⋄ z12
h̊12 + 2

h̊12 + 1
− t2 ⋄ z12

1

h̊12 + 1
− z32 ⋄ z13

h̊23 + 1

h̊23(̊h13 + 1)
, (5.21)

z12 ⋄ t2 = −t1z12
1

h̊12 + 1
+ t2 ⋄ z12

h̊12 + 2

h̊12 + 1
+ z32 ⋄ z13

h̊13 + 2

h̊23(̊h13 + 1)
, (5.22)

and the equality in Z4:

z12 ⋄ t4 = t4 ⋄ z12 − z42 ⋄ z14
h̊12 + 1

(̊h14 + 1)̊h24
. (5.23)

Equalities (5.21) and (5.22) are the results of the following calculations for Z3, using (5.5)–(5.7),
and of the commutativity [H1, E12] = e12 ≡ 0, [H2, E12] = −e12 ≡ 0:

E12 ⋄H1 ≡ E12H1 +H12E12
1

h̊12 + 1
− E32E13

h̊12

(̊h12 + 1)(̊h13 + 1)
,

E12 ⋄H2 ≡ E12H2 −H12E12
1

h̊12 + 1
− E32E13

1

(̊h12 + 1)(̊h13 + 1)
,

H1 ⋄E12 ≡ H1E12, H2 ⋄E12 ≡ H2E12 − E32E13
1

h̊23
, E32 ⋄ E13 ≡ E32E13.

The derivation of (5.23) can be done with the help of the following calculations for Z4:

E12 ⋄H4 ≡ E12H4 + E42E14
1

h̊14 + 1
, (5.24)

H4 ⋄E12 ≡ H4E12 + E42E14
1

h̊24
, E42 ⋄ E14 ≡ E42E14.

We shall make a comment about the line (5.24) only. Here one might expect, by the ana-
logues of the conditions (i) and (ii), see paragraph 1 of this subsection, non-trivial contri-
butions to E12 ⋄ H4 from the weights 0, ε1 − ε2, ε1 − ε3 and ε1 − ε4. So we need, in ad-
dition to (5.5)–(5.7), some information about Jε1−ε4 . It follows from the ABRR equation
that Jε1−ε4 (̊h14 + 1) = −Tε1−ε2(Jε2−ε4) − Tε1−ε3(Jε3−ε4) − Tε1−ε4(J0) − Tε2−ε3(Jε1−ε2+ε3−ε4) −
Tε2−ε4(Jε1−ε2) − Tε3−ε4(Jε1−ε3). Since e13 and e12 commute with H4, the parts Tε2−ε4(Jε1−ε2)
and Tε3−ε4(Jε1−ε3) do not contribute; e42 and e43 commute with E12, so the parts Tε1−ε2(Jε2−ε4)
and Tε1−ε3(Jε3−ε4) do not contribute either; Jε1−ε2+ε3−ε4 = Jε3−ε4Jε1−ε2 does not contribute
again since e12 commute with H4. Thus the only contribution is from Tε1−ε4(J0) and we quickly
arrive at (5.24).

Applying the automorphism q̌3 of the algebra Z4 to the relation (5.23), see (4.1) and (4.4),
we find

z12 ⋄
(
t3̊h34 − t4

)
=
(
t3̊h34 − t4

)
⋄ z12 − z32 ⋄ z13

h̊34(̊h12 + 1)

(̊h13 + 1)̊h23
.
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We then add (5.23) to this relation and obtain the following relation in Z4:

z12 ⋄ t3 = t3 ⋄ z12 − z32 ⋄ z13
(̊h12 + 1)

(̊h13 + 1)̊h23
− z42 ⋄ z14

h̊12 + 1

(̊h14 + 1)̊h24h̊34
. (5.25)

The stabilization arguments for (5.21), (5.22) and (5.25) imply the existence of the following
relations in Zn:

z12 ⋄ t1 = t1 ⋄ z12
h̊12 + 2

h̊12 + 1
− t2 ⋄ z12

1

h̊12 + 1
+
∑

k>2

zk2 ⋄ z1kX
(1)
k , (5.26)

z12 ⋄ t2 = −t1 ⋄ z12
1

h̊12 + 1
+ t2 ⋄ z12

h̊12 + 2

h̊12 + 1
+
∑

k>2

zk2 ⋄ z1kX
(2)
k , (5.27)

z12 ⋄ t3 = t3 ⋄ z12 − z32 ⋄ z13
(̊h12 + 1)

(̊h13 + 1)̊h23
+
∑

k>3

zk2 ⋄ z1kX
(3)
k , (5.28)

where all X
(i)
k belong to U(h) and the initial X

(i)
k are known:

X
(1)
3 = −

h̊23 + 1

h̊23(̊h13 + 1)
, X

(2)
3 =

h̊13 + 2

h̊23(̊h13 + 1)
, X

(3)
4 = −

h̊12 + 1

(̊h14 + 1)̊h24h̊34
.

By the braid group transformation laws, X
(i)
k+1 = q̌k

(
X

(i)
k

)
· (̊hk,k+1 + 1)̊h−1

k,k+1 with k > 2 for
i = 1, 2 and k > 3 for i = 3, so that

X
(1)
k = −

1

h̊1k + 1

k−1∏

j=2

h̊jk + 1

h̊jk
, X

(2)
k =

h̊1k + 2

(̊h1k + 1)̊h2k

k−1∏

j=3

h̊jk + 1

h̊jk
,

X
(3)
k = −

h̊12 + 1

(̊h1k + 1)̊h2kh̊3k

k−1∏

j=4

h̊jk + 1

h̊jk
.

After the renormalization (4.11) and the change of variables (4.2), the relations (5.26)–(5.28)
turn into the relations (4.16) for i = 1, j = 2 and k = 3.

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.16).

4a. We now prove the relations (4.17) using the arguments similar to [10, Subsection 6.1.2].
Consider the productsHk⋄λHl andHl⋄λHk with λ 6= 0. These products are linear combinations,
over U(h), of monomials

akl;~γ := Hke−γ1 · · · e−γmeγm · · · eγ1Hl and alk;~γ := Hle−γ1 · · · e−γmeγm · · · eγ1Hk,

respectively; here m ≥ 0 and ~γ := {γ1, . . . , γm}. By construction, the coefficient, from U(h), of
the monomial akl;~γ in Hk ⋄λ Hl equals the coefficient of alk;~γ in Hl ⋄λ Hk. The expressions akl;~γ
and alk;~γ are both equal in Zn to

(γ1, εk)(γ1, εl)E−γ1e−γ2 · · · e−γmeγm · · · eγ2Eγ1 .

Thus Hk ⋄λ Hl ≡ Hl ⋄λ Hk for any λ 6= 0. In the zero weight part ⋄0 of the product ⋄ we have
the equality HkHl = HlHk as well. Therefore, Hk ⋄Hl ≡ Hl ⋄Hk.

4b. The last group (4.18) of relations is left. Like above, we first explicitly derive the
following relation in Z3:

z12 ⋄ z21 = h12 − t12 ⋄ t12
1

h̊12 − 1
+ z21 ⋄ z12

(̊h12 − 1)(̊h12 + 2)

h̊12(̊h12 + 1)
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+ z31 ⋄ z13
(̊h12 − 1)(̊h13 + 2)

h̊12h̊23(̊h13 + 1)
− z32 ⋄ z23

h̊23 + 2

(̊h23 + 1)̊h13
(5.29)

(the first term in the right hand side is h12, without hat). The relation (5.29) is a corollary of
the following calculations for Z3, together with the commutation relation [E12, E21] = h12,

E12 ⋄ E21 ≡ E12E21 −H2
12

1

(̊h12 − 1)
+ E21E12

2

(̊h12 − 1)̊h12

− E32E23
h̊12 − 2

(̊h12 − 1)̊h13
+ E31E13

h̊12 − 2

(̊h12 − 1)̊h12h̊13
, (5.30)

H12 ⋄H12 ≡ H2
12 −E21E12

4

h̊12 + 1
− E32E23

1

h̊23 + 1

+ E31E13

(
−1 +

1

h̊23 + 1
+

4

h̊12 + 1

)
1

h̊13 + 1
, (5.31)

E21 ⋄ E12 ≡ E21E12 − E31E13
1

h̊23
, (5.32)

E32 ⋄ E23 ≡ E32E23 − E31E13
1

h̊12
, (5.33)

E31 ⋄ E13 ≡ E31E13. (5.34)

Here only the calculation of E12 ⋄ E21 deserves a little explanation; by the analogues of the
conditions (i) and (ii), see paragraph 1 of this subsection, non-trivial contributions to E12 ⋄E21

from the weights 0, ε1−ε2, 2(ε1−ε2), ε1−ε3 and 2ε1−ε2−ε3 are possible. By the ABRR equation,
J2(ε1−ε2)(2̊h12 + 4) = −Tε1−ε2(Jε1−ε2) and J2ε1−ε2−ε3(2̊h1 − h̊2 − h̊3 + 3) = −Tε1−ε2(Jε1−ε3) −
Tε1−ε3(Jε1−ε2)− Tε2−ε3(J2(ε1−ε2)). We leave further details to the reader.

By the stabilization law in Z4 we have a relation

z12 ⋄ z21 = h12 − t12 ⋄ t12
1

h̊12 − 1
+

∑

1≤i<j≤n

zji ⋄ zijXij , Xij ∈ U(h) (5.35)

with n = 4, which differs from (5.29) by a presence of terms

z43 ⋄ z34, z42 ⋄ z24, z41 ⋄ z14,

with coefficients in U(h). Consider in Z4 the products z12⋄z21, t12⋄t12 and zji⋄zij , 1 ≤ i < j ≤ 4.
The weights (ε3 − ε4) − (εi − εj) do not belong to the cone Q+ if 1 ≤ i < j < 4. Thus in the
decomposition

Eji ⋄ Eij ≡
∑

k<l

ElkEklakl, akl ∈ U(h), 1 ≤ i < j < 4,

the term with E43E34 has a zero coefficient, a34 = 0. The same statement holds for the products
E41 ⋄E14 and E42 ⋄E24 since the weights (ε3 − ε4)− (εi − ε4) do not belong to Q+ for i = 1, 2.
Consider the product E12 ⋄ E21. Here the term with E43E34 is equal to E12 ⋄ε1−ε2+ε3−ε4 E21.
By (5.7), Jε1−ε2+ε3−ε4 = e43e21 ⊗ e12e34(̊h12 + 1)−1(̊h34 + 1)−1 and

E12 ⋄ε1−ε2+ε3−ε4 E21 = E12e43e21e12e34E21
1

(̊h12 − 1)(̊h34 + 1)
≡ 0,

since [e34, E21] = 0 (and [E12, e43] = 0). In the similar manner, the term with E43E34 inH12⋄H12

equals H12 ⋄ε3−ε4 H12 and vanishes since [e34,H12] = 0.
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On the other hand, the product E43 ⋄E34 definitely contains E43E34 = E43 ⋄0 E34. We thus
conclude that the term z43 ⋄ z34 is absent in (5.35), that is X34 = 0.

For n > 4, again by the stabilization law, we have a unique relation of the form (5.35).
By uniqueness, it is invariant with respect to the transformations q̌3, q̌4, . . . , q̌n−1 which do not
change the product z12 ⋄ z21. Since X34 = 0, we find, applying q̌4, q̌5, . . . , q̌n−1, that X3j = 0,
j > 3, wherefrom we further conclude, applying q̌3, q̌4, . . . , q̌j−2, that Xij = 0, 2 < i < j. We
get finally the following relation in Zn:

z12 ⋄ z21 = h12 − t12 ⋄ t12
1

h̊12 − 1
+

∑

k=2 ,...,n

zk1 ⋄ z1kX1k +
∑

k=3 ,...,n

zk2 ⋄ z2kX2k (5.36)

with known

X12 =
(̊h12 − 1)(̊h12 + 2)

h̊12(̊h12 + 1)
, X13 =

(̊h12 − 1)(̊h13 + 2)

h̊12̊h23(̊h13 + 1)
, X23 = −

h̊23 + 2

(̊h23 + 1)̊h13
.

Applying to (5.36) the transformations q̌3, q̌4, . . . , q̌n−1 we find by uniqueness

Xi,k+1 =
h̊k,k+1 + 1

h̊k,k+1

· q̌k(Xik), i = 1, 2; k = 3, 4, . . . , n− 1,

and thus

X1k =
(̊h12 − 1)(̊h1k + 2)

h̊12h̊2k (̊h1k + 1)
·

k−1∏

a=3

h̊ak + 1

h̊ak
, X2k = −

h̊2k + 2

(̊h2k + 1)̊h1k
·

k−1∏

a=3

h̊ak + 1

h̊ak

for k > 2.

After the renormalization (4.11) and the change of variables (4.2), the relations (5.36) with
the obtained X1k and X2k turns into the relation (4.18) for i = 1 and j = 2.

Applying the transformations from the braid group, we obtain the rest of the relations from
the list (4.18).

5.4 Proof of Theorem 3

For the proof of Theorem 3 we just apply the results of [7], which state that the system R is
the system of defining relations once it is satisfied in the algebra Zn.

Remark 1. An attentive look shows that the system R is closed under the anti-involution ǫ;
that is, ǫ transforms any relation from R into a linear over U(h) combination of relations from R.
Moreover, R and ǫ(R) are equivalent over U(h). Indeed, all relations in Section (5.3) were derived
in three steps: first we derive a relation in Zn with n ≤ 4; next by the stabilization principle we
extend the derived relation to Zn with arbitrary n; and then we find the whole list of relations
of a given (sub)type by applying the braid group transformations (products of the generators
q̌i). Due to (3.6) one could use q̌−1

i instead of q̌i equivalently over U(h). A straightforward
calculation establishes the equivalence of the extended to arbitrary n lists R and ǫ(R) over U(h)
for Zn with n ≤ 4 (this verification is lengthy for some relations). Then with the help of (4.6)
we finish the check of the equivalence of R and ǫ(R) over U(h) for Zn with arbitrary n.

Similar arguments establish the equivalence of R and ω(R) over U(h); here ω is the invo-
lution defined in (3.8). In [7] this equivalence was obtained differently, as a by-product of the
equivalence, over U(h), of the system R and the system (3.3) of ordering relations.
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6 Examples: sl3 and sl2

In this section we write down the complete list of ordering relations for the diagonal reduction
algebras DR(sl3) and DR(sl2). For completeness we include the formulas for the action of the
braid group generators and the expressions for the central elements.

We first give the list of relations for sl3. It is straightforward to give the list for sl2 directly;
we comment however on how the list of relations and the expressions for the central elements
for sl(2) can be obtained by the cut procedure.

The list of relations for gl3 follows immediately from the list for sl3.
1. Relations for DR(sl3). We write the ordering relations for the natural set of genera-

tors zij , without redefinitions. We use here the following notation for sl3:

zα := z12, zβ := z23, zα+β := z13, z−α := z21, z−β := z23, z−α−β := z31,

tα := t12, tβ := t23, hα := h12, hβ := h23.

The relations are given for the following order ≻̀ (this order was used in the proof in [7] of the
completeness of the set of relations):

zα+β ≻̀ zα ≻̀ zβ ≻̀ tβ ≻̀ tα ≻̀ z−β ≻̀ z−α ≻̀ z−α−β. (6.1)

Due to the established in Theorem 3 and remarks in Section 4.4 bijection between the set R
and the set R≺ of defining relations, one can divide the ordering relations into the types, in the
same way as we divided the defining relations from the list R.

The relations of type 1 are immediately rewritten as ordering relations:

zα+β ⋄ zα = zα ⋄ zα+β

hβ + 2

hβ + 1
, (6.2)

zα+β ⋄ zβ = zβ ⋄ zα+β
hα + 2

hα + 1
, (6.3)

zα ⋄ z−β = z−β ⋄ zα
hα + hβ + 3

hα + hβ + 2
, (6.4)

zβ ⋄ z−α = z−α ⋄ zβ
hα + hβ + 3

hα + hβ + 2
, (6.5)

z−α ⋄ z−α−β = z−α−β ⋄ z−α
hβ + 2

hβ + 1
, (6.6)

z−β ⋄ z−α−β = z−α−β ⋄ z−β
hα + 2

hα + 1
. (6.7)

The relations of type 2 are absent for sl3.
The ordering relations corresponding to the relations of type 3 we collect according to their

weights. For each weight there is one relation of subtype (3a) and two relations of subtype (3b).
Weight α+ β:

zα ⋄ zβ = −tα ⋄ zα+β
1

hα + 1
− tβ ⋄ zα+β

1

hβ + 1
+ zβ ⋄ zα, (6.8)

zα+β ⋄ tα = tα ⋄ zα+β

hαhβ + h2β + 2hα + 6hβ + 9

(hβ + 2)(hα + hβ + 3)

+ tβ ⋄ zα+β

h2β + hα + 6hβ + 9

(hβ + 1)(hβ + 2)(hα + hβ + 3)
− zβ ⋄ zα

hα + 2hβ + 6

(hα + 2)(hβ + 2)
, (6.9)

zα+β ⋄ tβ = tα ⋄ zα+β

hβ
(hβ + 2)(hα + hβ + 3)

+ tβ ⋄ zα+β

hβ
(
hαhβ + h2β + 3hα + 7hβ + 11

)

(hβ + 1)(hβ + 2)(hα + hβ + 3)
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+ zβ ⋄ zα
2hα + hβ + 6

(hα + 2)(hβ + 2)
. (6.10)

Weight α:

zα ⋄ tα = tα ⋄ zα
hα + 4

hα + 2
− z−β ⋄ zα+β

hα + 2hβ + 6

(hβ + 1)(hα + hβ + 3)
, (6.11)

zα ⋄ tβ = −tα ⋄ zα
1

hα + 2
+ tβ ⋄ zα + z−β ⋄ zα+β

2hα + hβ + 6

(hβ + 1)(hα + hβ + 3)
, (6.12)

zα+β ⋄ z−β = −tα ⋄ zα
hβ − 1

hβ(hα + hβ + 2)
− tβ ⋄ zα

hα + 2hβ + 2

hβ(hα + hβ + 2)

+ z−β ⋄ zα+β

(hβ + 2)(hβ − 1)

hβ(hβ + 1)
. (6.13)

Weight β:

zβ ⋄ tα = tα ⋄ zβ − tβ ⋄ zβ
1

hβ + 2
− z−α ⋄ zα+β

hα + 2hβ + 6

(hα + 1)(hα + hβ + 3)
, (6.14)

zβ ⋄ tβ = tβ ⋄ zβ
hβ + 4

hβ + 2
+ z−α ⋄ zα+β

2hα + hβ + 6

(hα + 1)(hα + hβ + 3)
, (6.15)

zα+β ⋄ z−α = tα ⋄ zβ
2hα + hβ + 2

hα(hα + hβ + 2)
+ tβ ⋄ zβ

hα − 1

hα(hα + hβ + 2)

+ z−α ⋄ zα+β
(hα + 2)(hα − 1)

hα(hα + 1)
. (6.16)

Weight −β:

tα ⋄ z−β = z−β ⋄ tα − z−β ⋄ tβ
1

hβ
− z−α−β ⋄ zα

hα + 2hβ + 3

(hα + 2)(hα + hβ + 2)
, (6.17)

tβ ⋄ z−β = z−β ⋄ tβ
hβ + 2

hβ
+ z−α−β ⋄ zα

2hα + hβ + 6

(hα + 2)(hα + hβ + 2)
, (6.18)

zα ⋄ z−α−β = z−β ⋄ tα
2hα + hβ + 2

(hα + 1)(hα + hβ + 1)
+ z−β ⋄ tβ

hα
(hα + 1)(hα + hβ + 1)

+ z−α−β ⋄ zα
hα(hα + 3)

(hα + 1)(hα + 2)
. (6.19)

Weight −α:

tα ⋄ z−α = z−α ⋄ tα
hα + 2

hα
− z−α−β ⋄ zβ

hα + 2hβ + 6

(hβ + 2)(hα + hβ + 2)
, (6.20)

tβ ⋄ z−α = −z−α ⋄ tα
1

hα
+ z−α ⋄ tβ + z−α−β ⋄ zβ

2hα + hβ + 3

(hβ + 2)(hα + hβ + 2)
, (6.21)

zβ ⋄ z−α−β = −z−α ⋄ tα
hβ

(hβ + 1)(hα + hβ + 1)
− z−α ⋄ tβ

hα + 2hβ + 2

(hβ + 1)(hα + hβ + 1)

+ z−α−β ⋄ zβ
hβ(hβ + 3)

(hβ + 1)(hβ + 2)
. (6.22)

Weight −α− β:

z−β ⋄ z−α = −z−α−β ⋄ tα
1

hα
− z−α−β ⋄ tβ

1

hβ
+ z−α ⋄ z−β , (6.23)



Structure Constants of Diagonal Reduction Algebras of gl Type 29

tα ⋄ z−α−β = z−α−β ⋄ tα
hαhβ + h2β + hα + 3hβ + 3

(hβ + 1)(hα + hβ + 1)
+ z−α−β ⋄ tβ

h2β + hα + 4hβ + 3

hβ(hβ + 1)(hα + hβ + 1)

− z−α ⋄ z−β

hα + 2hβ + 3

(hα + 1)(hβ + 1)
, (6.24)

tβ ⋄ z−α−β = z−α−β ⋄ tα
hβ − 1

(hβ + 1)(hα + hβ + 1)

+ z−α−β ⋄ tβ
(hβ − 1)(hαhβ + h2β + 2hα + 4hβ + 3)

hβ(hβ + 1)(hα + hβ + 1)

+ z−α ⋄ z−β

2hα + hβ + 3

(hα + 1)(hβ + 1)
. (6.25)

Finally, we rewrite the relations of the type 4, that is, of weight 0, in the form of ordering
relations. In addition to the general commutativity relation (subtype (4a))

tβ ⋄ tα = tα ⋄ tβ, (6.26)

we have three relations of subtype (4b):

zα ⋄ z−α = hα − tα ⋄ tα
1

hα
+ z−α ⋄ zα

hα(hα + 3)

(hα + 1)(hα + 2)
− z−β ⋄ zβ

hβ + 3

(hβ + 2)(hα + hβ + 2)

+ z−α−β ⋄ zα+β

hα(hα + hβ + 4)

(hα + 1)(hβ + 1)(hα + hβ + 3)
, (6.27)

zβ ⋄ z−β = hβ − tβ ⋄ tβ
1

hβ
− z−α ⋄ zα

hα + 3

(hα + 2)(hα + hβ + 2)
+ z−β ⋄ zβ

hβ(hβ + 3)

(hβ + 1)(hβ + 2)

+ z−α−β ⋄ zα+β

hβ(hα + hβ + 4)

(hα + 1)(hβ + 1)(hα + hβ + 3)
, (6.28)

zα+β ⋄ z−α−β =
hαhβ(hα + hβ + 2)

(hα + 1)(hβ + 1)

−

(
tα ⋄ tα

hβ
hβ + 1

+ 2tα ⋄ tβ + tβ ⋄ tβ
hα

hα + 1

)
1

hα + hβ + 1
(6.29)

− z−α ⋄ zα
hα(hα + 3)

(hα + 1)(hα + 2)(hβ + 1)
− z−β ⋄ zβ

hβ(hβ + 3)

(hβ + 1)(hβ + 2)(hα + 1)

+ z−α−β ⋄ zα+β

hαhβ(hα + hβ + 4)(̊h2αh̊β + h̊αh̊
2
β + h̊2α + h̊αh̊β + h̊2β)

(hα + 1)2(hβ + 1)2(hα + hβ + 2)(hα + hβ + 3)
,

where in one factor in the numerator of the last coefficient we returned to the notation h̊α =
hα + 1 and h̊β = hβ + 1 to make the expression fit into the line.

2. Relations for DR(gl3). The ordering relations for the reduction algebra DR(gl3) are
easily restored from the list (6.2)–(6.29): the gl(3) generators t1, t2 and t3, with tα = t1− t2 and
tβ = t2 − t3, can be written as

t1 =
1

3
(2tα + tβ + I(3,t)), t2 =

1

3
(−tα + tβ + I(3,t)), t1 =

1

3
(−tα − 2tβ + I(3,t)),

where I(3,t) is the image of the central generator of gl(3), I(3,t) = t1 + t2 + t3. Since I(3,t) is
central, one immediately writes relations for DR(gl3). We illustrate it on the example of relations
between the generator zα and the gl(3) generators t1, t2 and t3:

zαt1 = t1zα
hα + 3

hα + 2
− t2zα

1

hα + 2
− z−βzα+β

hβ + 2

(hβ + 1)(hα + hβ + 3)
,
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zαt2 = −t1zα
1

hα + 2
+ t2zα

hα + 3

hα + 2
+ z−βzα+β

hα + hβ + 4

(hβ + 1)(hα + hβ + 3)
,

zαt3 = t3zα − z−βzα+β
hα + 2

(hβ + 1)(hα + hβ + 3)
.

3. Braid group action. There are two braid group generators, q̌α and q̌β, for the diagonal
reduction algebra DR(sl3). Given the action of q̌α, the action of q̌β on DR(sl3) can be recon-
structed by using the automorphism ω, see (3.8), arising from the outer automorphism of the
root system of sl3, which exchanges the roots α and β,

q̌β = ωq̌αω
−1.

The action of the automorphism ω on the Cartan subalgebra 〈hα, hβ〉 of the diagonal Lie alge-
bra sl3 and on the generators of the reduction algebra DR(sl3) reads

hα ↔ hβ, tα ↔ tβ,

zα ↔ zβ, z−α ↔ z−β,

zα+β ↔ −zα+β , z−α−β ↔ −z−α−β.

The action of the braid group generator q̌α on the Cartan subalgebra 〈hα, hβ〉 of the diagonal
Lie algebra sl3 reads:

q̌α(hα) = −hα − 2, q̌α(hβ) = hα + hβ + 1. (6.30)

This action reduces to the standard action of the Weyl group for the shifted generators h̊α =
hα + 1 and h̊β = hβ + 1.

The action of q̌α on the zero weight generators {tα, tβ} of the diagonal reduction algebra
DR(sl3) is given by:

q̌α(tα) = −tα
hα + 2

hα
, q̌α(tβ) = tα

hα + 1

hα
+ tβ. (6.31)

Finally, the action of q̌α on the rest of the generators is

q̌α(zα) = −z−α
hα + 1

hα − 1
, q̌α(z−α) = −zα,

q̌α(zβ) = zα+β , q̌α(zα+β) = −zβ
hα + 1

hα
, (6.32)

q̌α(z−α−β) = −z−β, q̌α(z−β) = z−α−β
hα + 1

hα
.

The set of ordering relations (6.2)–(6.29) is covariant with respect to the braid group gener-
ated by q̌α and q̌β. “Covariant” means that the elements of the braid group map a relation to
a linear over U(h) combination of relations. For example, the operator q̌α, up to multiplicative
factors from U(h), transforms the relation (6.27) into itself and permutes the relations (6.28)
and (6.29). Due to the choice (6.1) of the order, the set of relations (6.2)–(6.29) is invariant
with respect to the anti-involution ǫ. The set of relations (6.2)–(6.29) is covariant under the
involution ω as well.

4. Central elements of DR(sl3). The degree 1 and degree 2 (in generators zij) central
elements of the reduction algebra DR(sl3) are:

C{DR(sl3),1} = tα(2hα + hβ + 6) + tβ(hα + 2hβ + 6),

C{DR(sl3),2} =
1

3
(tα ⋄ tα + tβ ⋄ tβ + tα ⋄ tβ + h2α + h2β + hαhβ)
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+ z−α ⋄ zα
hα + 3

hα + 2
+ z−β ⋄ zβ

hβ + 3

hβ + 2

+ z−α−β ⋄ zα+β

hα + hβ + 4

hα + hβ + 3

(
1 +

1

hα + 1
+

1

hβ + 1

)
+ 2(hα + hβ).

Both Casimir operators, C{DR(sl3),1} and C{DR(sl3),2} arise from the quadratic Casimir opera-
tor C{sl3,2} of the Lie algebra sl3, whose ordered form is

C{sl3,2} = (E−αEα + E−βEβ + E−α−βEα+β) +
1

3
(H2

α +H2
β +HαHβ) +Hα +Hβ.

The operator C{DR(sl3),1} is the image of C{sl3,2} ⊗ 1 − 1 ⊗ C{sl3,2} and the operator C{DR(sl3),2}

is the image of C{sl3,2} ⊗ 1 + 1⊗ C{sl3,2}. We calculate C{sl3,2} ⊗ 1 + 1⊗ C{sl3,2} and replace the
multiplication by the product ⋄. Here one needs, in addition to (5.30)–(5.34), the expression
for H23 ⋄H23 which is obtained by applying the involution ω to (5.31) and the equality (in the
notation of Section 5.3):

H12 ⋄H23 ≡ H12H23 + E21E12
2

h̊12 + 1
+ E32E23

2

h̊23 + 1

− E31E13

(
1 +

2

h̊12 + 1
+

2

h̊23 + 1

)
1

h̊13 + 1
.

The central elements C{DR(sl3),1} and C{DR(sl3),2} are invariant with respect to the braid group:

q̌α
(
C{DR(sl3),i}

)
= C{DR(sl3),i}, q̌β

(
C{DR(sl3),i}

)
= C{DR(sl3),i}, i = 1, 2.

The central elements C{DR(sl3),1} and C{DR(sl3),2} are invariant with respect to the anti-involution
ǫ and the involution ω as well.

5. Diagonal reduction algebra DR(sl2). For the diagonal reduction algebra of sl2 we use
the following notation:

z+ := zα, z− := z−α, t := tα, h := hα.

The cut provides the following description of the algebra Z2 with generators z+, z− and t:

z+ ⋄ t = t ⋄ z+
h+ 4

h+ 2
, (6.33)

z+ ⋄ z− = h− t ⋄ t
1

h
+ z− ⋄ z+

h(h+ 3)

(h+ 1)(h + 2)
, (6.34)

t ⋄ z− = z− ⋄ t
h+ 2

h
. (6.35)

The Casimir operators for DR(sl2) are

C{DR(sl2),1} := (h+ 2)t, (6.36)

C{DR(sl2),2} := z− ⋄ z+
(h+ 3)

(h+ 2)
+ t ⋄ t

1

4
+
h(h+ 4)

4
. (6.37)

Both operators, C{DR(sl2),1} and C{DR(sl2),2} arise from the quadratic Casimir operator C{sl2,2} of
the Lie algebra sl2,

C{sl2,2} = E−E+ +
1

4
H(H + 2),
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C{DR(sl2),1} is the image of C{sl2,2} ⊗ 1− 1⊗ C{sl2,2} and C{DR(sl2),2} is the image of C{sl2,2} ⊗ 1 +
1⊗ C{sl2,2}.

The Casimir operators can be obtained by the cutting also, as explained in Subsection 4.6,
see Proposition 7. One replaces the sl3 generators by the gl3 generators in the Casimir operators
for sl3 then cuts and rewrites, using the notation (3.9) and (3.10), the result according to the gl2
formulas

t
(2)
1 =

1

2

(
t+ I(2,t)

)
, t

(2)
2 =

1

2

(
− t+ I(2,t)

)
,

t = t
(2)
1 − t

(2)
2 , I(2,t) = t

(2)
1 + t

(2)
2 .

The cut of C{DR(sl3),1} is

3

2
C{DR(sl2),1} +

1

2
I(2,t) ⋄

(
I(2,h) + 6

)
− t

(3)
3 ⋄

(
I(2,h) + 6

)
− I(2,t)h3 + 2t

(3)
3 h3 (6.38)

and the cut of C{DR(sl3),2} is

C{DR(sl2),2} +
1

12
I(2,t) ⋄ I(2,t) +

1

12
I(2,h) ⋄

(
I(2,h) + 12

)

−
1

3
I(2,t) ⋄ t

(3)
3 −

(
1

3
I(2,h) + 2

)
h3 +

1

3

(
t
(3)
3 ⋄ t

(3)
3 + h23

)
. (6.39)

As expected, the coefficients of (t
(3)
3 )⋄ihj3 for all i and j in the expressions (6.38) and (6.39) are

central elements of the algebra Z2.
Due to (6.30), (6.31) and (6.32), the action of the braid group generator reads

q̌(h) = −h− 2, q̌(t) = −t
h+ 2

h
, q̌(z+) = −z−

h+ 1

h− 1
, q̌(z−) = −z+. (6.40)

It preserves the commutation relations of DR(sl2). The Casimir operators (6.36) and (6.37) are
invariant under the transformation (6.40) and under the anti-involution ǫ.

It should be noted that q̌ can be included in a family of more general automorphisms of the
reduction algebra DR(sl2).

Lemma 8. The most general automorphism of the reduction algebra DR(sl2) transforming the

weights of elements in the same way as the operator q̌ and linear over U(h) in the genera-

tors z+, z− and t is

h 7→ −h− 2, t 7→ βt
h+ 2

h
, z+ 7→ z−

1

(h− 1)γ(h)
,

z− 7→ z+(h+ 3)γ(h + 2), (6.41)

where β = ±1 is a constant and γ(h) is an arbitrary function.

Proof. We are looking for an invertible transformation which preserves the relations (6.33)–
(6.35) and has the form

h 7→ f1(h), t 7→ tf2(h), z+ 7→ z−f3(h), z− 7→ z+f4(h) (6.42)

with f1(h), f2(h), f3(h), f4(h) ∈ U(h). Applying the transformation (6.42) to the relations (6.33)
and (6.35), we find (after simplifications) the conditions:

(h+ 2)
(
f1(h) + 4

)
f2(h− 2)− x

(
f1(h) + 2

)
f2(h) = 0, (6.43)

(h+ 4)
(
f1(h) + 2

)
f2(h)− (x+ 2)f1(h)f2(h+ 2) = 0. (6.44)
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Replacing h by h − 2 in the second equation and then excluding f2 from the system (6.43),
(6.44), we obtain the difference equation

f1(h) − f1(h− 2) + 2 = 0,

whose general solution in U(h) is

f1(h) = −h+ c, (6.45)

where c is a constant.
Applying the transformation (6.42) to the relation (6.34) and collecting the free term and

the terms with t ⋄ t and z− ⋄ z+, we find (after simplifications)

1 +
h
(
f1(h) + 3

)
G(h)(

f1(h) + 2
)(
f1(h) + 1

) = 0, (6.46)

f2(h)
2

f1(h)
+

f1(h)
(
f1(h) + 3

)
G(h)

h
(
f1(h) + 2

)(
f1(h) + 1

) = 0, (6.47)

G(h + 2) +
h(h+ 3)f1(h)

(
f1(h) + 3

)

(h+ 1)(h + 2)
(
f1(h) + 2

)(
f1(h) + 1

)G(h) = 0, (6.48)

where G(h) := f3(h)f4(h− 2). Excluding G from the system (6.46), (6.47), we obtain

f1(h)
2 = h2f2(h)

2 or f2(h) = β
f1(h)

h
(6.49)

with β2 = 1.
The substitution of (6.45) and (6.49) into (6.43) leads to

c = −2

and it then follows from (6.46) that

G(h) =
h+ 1

h− 1
.

The remaining relation (6.48) is now automatically satisfied. The proof is finished. �

The Casimir operator C{DR(sl2),2} is invariant under the general automorphism (6.41). The
Casimir operator C{DR(sl2),1} is invariant under the automorphism (6.41) iff β = −1.

The map q̌ defined by (6.40) is a particular choice of (6.41), corresponding to β = −1 and
γ(h) = − 1

h+1 .
The map (6.40) is not an involution (but it squares to the identity on the weight zero subspace

of the algebra). However, the general map (6.41) squares to the identity on the whole algebra
iff the function γ is odd,

γ(−h) = −γ(h).

Acknowledgments
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