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Abstract

We formulate the Bargman-Michel-Telegdi (BMT) equation for electron spin
motion in a plane wave and in the Dirac delta-function pulse. We compare the BMT
solution with the Wolkow solution of the Dirac equation. The Wolkow solution for
the spin is not identical with the solution following from the BMT .

1 Introduction

The problem of interaction an elementary particles with the laser field is, at present time,
one of the most prestige problem in the particle physics. It is supposed that, in the future,
the laser will play the same role in particle physics as the linear or circular accelerators
working in today particle laboratories. The lasers nowadays provide one of the most
powerful sources of electromagnetic (EM) radiation under laboratory conditions and thus
inspire the fast growing area of high field science aimed at the exploration of novel physical
processes (Mourou et al. 2006; Marklund et al., 2006; Salamin et al., 2006).

Lasers have already demonstrated the capability to generate light with the intensity
of 2× 1022W/cm2 (Yanovsky, et al., 2008) and projects to achieve 1026W/cm2 (Dunne,
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2006) are under way. Further intensity growth towards and above 1023W/cm2 will bring
us to experimentally unexplored regimes.

Here, we consider the interaction of an electron with a plane wave field or, with a
ultrashort (Dirac δ-function) laser pulse. The quantum motion of electron in a plane
wave was firstly described by Wolkow (1935). It involves the classical limit with the
classical solution.

First, we consider the classical approach to motion of a charged particle in a plane
field and then in a Dirac δ-function pulse which is the final goal of attosecond laser pulses
(Agostini et al.,2004).

Then we formulate the Bargman-Michel-Telegdi equation for electron spin motion in
a plane wave and in the laser pulse. We compare the solution with the solution which
was derived from the Wolkow solution of the Dirac equation for zero and the anomalous
magnetic moment of particle with spin one half.

2 Classical interaction of a charged particle with a

plane wave

To find motion of an electron in a periodic electromagnetic field, it is suitable to solve
Lorentz equation in general with four potential Aµ = aµA(ϕ), where ϕ = kx, k2 = 0. Fol-
lowing Meyer (1971) we apply his method and then we are prepared to consider radiation
reaction which has some influence on the motion of electron in the electromagnetic field.

The Lorentz equation with Aµ = aµA(ϕ) reads:

dpµ
dτ

=
e

m
Fµνp

ν =
e

m
(kµa · p− aµk · p)A′(ϕ); A′ =

dA

dϕ
, (1)

where τ is proper time and pµ = m(dxµ/dτ). After multiplication of the last equation
by kµ, we get with regard to the Lorentz condition 0 = ∂µA

µ = aµ∂µA(ϕ) = kµa
µA′, or,

k · a = 0 and k2 = 0, the following equation:

d(k · p)
dτ

= 0 (2)

and it means that k · p is a constant of the motion and it can be defined by the initial
conditions for instance at time τ = 0. If we put pµ(τ = 0) = p0

µ, then we can write
k · p = k · p0. At this moment we have with dϕ = k · dx:

k · p =
mk · dx
dτ

= m
dϕ

dτ
, (3)

or,

dϕ

dτ
=
k · p0

m
. (4)

So, using the last equation and relation d/dτ = (d/dϕ)dϕ/dτ , we can write equation
(1) in the form (dpµ/dτ = (dϕ/dτ)(dpµ/dϕ)):

dpµ
dϕ

=
e

k · p0
(kµa · p− aµk · p0)A′(ϕ) = e

(
kµ

a·
k·0
− aµ

)
A′(ϕ) (5)
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giving (after multiplication by aµ)

d(a · p)
dϕ

= −ea2A′, (6)

or,

a · p = a · p0 − ea2A. (7)

Substituting the last formula into (5), we get:

dpµ
dϕ

= −e
(
aµ −

kµa · p0

k · p0

)
dA

dϕ
− e2a2

2k · p0

d(A2)

dϕ
kµ. (8)

This equation can be immediately integrated to give the resulting momentum in the
form:

pµ = p0
µ − e

(
Aµ −

Aνp0
νkµ

k · p0

)
− e2AνAνkµ

2k · p0
. (9)

3 Classical interaction of a charged particle with a

δ-function pulse

One of the primary goals of ultrashort laser science is to provide more insights into
the dynamics of atomic electrons. One general interest is the direct probing in time
of hyperfast electronic rearrangements following the creation of an inner-shell hole. There
is a study using sub-femtosecond burst of XUV light probed the motion of an electron
wave packet under the influence of an infrared lasers electric field. Furthermore, the
precise timing of the electron wave packet emitting the high harmonics can be measured
by observing the two-photon ionization electron energy spectrum These pioneering
experiments are reviewed by Agostini et al. (2004).

What are the limits and future of attosecond pulses? The goal of the laser physics
is to generate very short pulses. At present time we are able to generate the attosecond
pulses (Agostini et al., 2004). Nevertheless, the final goal of short pulse laser laboratories
is to generate laser pulse in the δ-function form, and there is no theory which restricts
the attainability of such pulses. It is not excluded that the mystery of the Higgs boson
will be revealed just using such laser pulses. So, let us first remember the rigorous theory
of δ-function.

The δ-function mathematical theory can be presented in a very simple way (Marty-
nenko, 1973). Namely, using the definition of the unite Heaviside step function denoted
as the η-function. It is defined by the relation:

η(t) =

{
0, t < 0
1, t ≥ 0

. (10)

The η-function is the limiting case of the sequence ηn(t).

ηn(t) =
1

2
+

1

π
arctan(nt); | arctan(nt)| < π

2
. (11)
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Using this sequence, we define the δ-generating sequence

δn(t) =
d

dt
ηn(t), (12)

or,

δn(t) =
n

π(t2n2 + 1)
. (13)

The δ-function is then defined as the limiting case of the last relation

δ(t) = lim
n→∞

n

π(t2n2 + 1)
. (14)

So, we get that the δ-function is derived as

δ(t) =

{
0, t 6= 0
∞, t = 0

. (15)

If we perform the integration of the δn function, we get:∫ ∞
−∞

δn(t)dt =
∫ ∞
−∞

n

π(t2n2 + 1)
dt =

2

π

∫ ∞
0

d(arctan(nt)) = 1. (16)

For t = 0, we have

δn(t) =
n

π
; δ(t) = lim

n→∞
δn(t) (17)

and ∫ ∞
−∞

δ(t)dt = 1. (18)

So, we write

d

dt
η(t) = δ(t) =

{
0, t 6= 0
∞, t = 0

;
∫ ∞
−∞

δ(t)dt = 1. (19)

Let us remark that the δ-function was in the history of mathematics used also by
Poisson, Cauchy, Hermite and others. At present time the δ-function is called the Dirac
δ-function because it was introduced into quantum mechanics rigorously by Dirac.

The δ-function has also meaning in classical mechanics. Newtons second law for the
interaction of a massive particle with mass m with an impact force δ(t) is as follows:

m
d2x

dt2
= Pδ(t), (20)

where P is some constant. If we express δ-function by the relation δ(t) = η̇(t),
then from eq. (20) ẋ(t) = P/m follows immediately. The physical meaning of the
quantity P can be deduced from equation F = Pδ(t). After t-integration we have∫
Fdt =

∫
m(dv/dt)dt = mv = P , where m is mass of a body and v its final velocity

(with v(0) = 0). It means that the value of P can be determined a posteriori and then
this value can be used in more complex equations than eq. (20). Of course it is necessary
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to suppose that δ-form of the impact force is adequate approximation of the experimental
situation.

Now, if we put into formula (9) the four-potential Aµ = aµA(ϕ) = aµη(ϕ) of the
impact force, then for ϕ > 0 when η > 1, we get:

pµ = p0
µ − e

(
aµ −

aνp0
νkµ

k · p0

)
− e2aνaνkµ

2k · p0
. (21)

The last equation can be used to determination of the magnitude of aµ similarly as it
was done in discussion to the eq. (20). It can be evidently expressed as the number of
k-photons in electromagnetic momentum. For ϕ < 0, it is η = 0 and therefore pµ = p0

µ

It is still necessary to say what is the practical realization of the δ-form potential. We
know from the Fourier analysis that the Dirac δ-function can be expressed by integral in
the following form:

δ(ϕ) =
1

π

∫ ∞
0

cos(sϕ)ds. (22)

So, the δ-force and δ-potential can be realized as the continual superposition of the
harmonic waves. In case it will be not possible to realize experimentally it, we can
approximate the integral formula by the summation formula as follows:

δ(ϕ) ≈ 1

π

∞∑
0

cos(sϕ). (23)

If we consider the δ-form electromagnetic pulse, then we can write

Fµν = aµνδ(ϕ). (24)

where ϕ = kx = ωt − kx. In order to obtain the electromagnetic impulsive force in this
form, it is necessary to define the four-potential in the following form:

Aµ = aµη(ϕ), (25)

where function η is the Heaviside unit step function defined by the relation:

η(ϕ) =

{
0, ϕ < 0
1, ϕ ≥ 0

. (26)

If we define the four-potential by the equation (25), then the electromagnetic tensor
with impulsive force is of the form:

Fµν = ∂µAν − ∂νAµ = (kµaν − kνaµ)δ(ϕ) = aµνδ(ϕ). (27)

4 Motion of the spin-vector in electromagnetic field

Bargmann, Michel and Telegdi (BMT) (Berestetzkii et al., 1989) derived so called BMT
equation for motion of spin in the electromagnetic field, in the form

daµ
ds

= αFµνa
ν + βvµF

νλvνaλ, (28)
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where aµ is so called axial vector describing the classical spin, vµ is velocity and constants
α and β were determined after the comparison of the postulated equations with the non-
relativistic quantum mechanical limit. The result of such comparison is the final form of
so called BMT equations:

daµ
ds

= 2µFµνa
ν − 2µ′vµF

νλvνaλ, (29)

where µ is magnetic moment of electron following directly from the Dirac equation and
µ′ is anomalous magnetic moment of electron which can be calculated as the radiative
correction to the interaction of electron with electromagnetic field and it follows from
quantum electrodynamics.

The BMT equation has more earlier origin. The first attempt to describe the spin
motion in electromagnetic field using the special theory of relativity was performed by
Thomas (1926). However, the basic ideas on the spin motion was established by Frenkel
(1926, 1958). After appearing the Frenkel basic article, many authors published the
articles concerning the spin motion (Ternov et al., 1980; Tomonaga, 1997; Ohanian, 1986).
At present time, spin of electron is considered as its physical attribute which follows only
from the Dirac equation.

It was shown by Rafanelli and Schiller (1964), (Pardy, 1973) that the BMT equation
can be derived from the classical limit, i.e. from the WKB solution of the Dirac equation
with the anomalous magnetic moment.

If we introduce the average value of the vector of spin in the rest system by the quantity
ζ, then the 4-pseudovector aµ is of the from aµ = (0, ζ) (Berestetzkii et al., 1989; Pardy,
2012). The momentum four-vector of a particle is pµ = (m, 0) in the rest system of a
particle. Then the equation aµpµ = 0 is valid not only in the rest system of a particle
but in the arbitrary system as a consequence of the relativistic invariance. The following
general formula is also valid in the arbitrary system aµaµ = −ζ2.

The components of the axial 4-vector aµ in the reference system, where particle
is moving with the velocity v = p/ε can be obtained by application of the Lorentz
transformation to the rest system and they are as follows (Berestetzkii et al., 1989):

a0 =
|p|
m

ζ‖, a⊥ = ζ⊥, a‖ =
ε

m
ζ‖, (30)

where suffices ‖,⊥ denote the components of a, ζ parallel and perpendicular to the
direction p. The formulas for the spin components can be also rewritten in the more
compact form as follows (Berestetzkii et al., 1989):

a = ζ +
p(ζp)

m(ε+m)
, a0 =

ap

ε
=

ζp

m
, a2 = ζ2 +

(pζ)2

m2
. (31)

The equation for the change of polarization can be obtained immediately from the
BMT equation in the following form (Berestetzkii et al., 1989):

da

dt
=

2µm

ε
a×H +

2µm

ε
(av)E− 2µ′ε

m
v(aE) +

+
2µ′ε

m
v(v(a×H)) +

2µ′ε

m
v(av)(vE), (32)
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where we used the relativistic relations c = 1, ds = dt
√

1− v2 , ε = m
√

1− v2 and the
following components of the electromagnetic field (Landau et al., 1988):

F µν =


0 −Ex −Ey −Ez
Ex 0 −Hz Hy

Ey Hz 0 −Hx

Ez −Hy Hx 0

 d
= (E,H); Fµν = (−E,H). (33)

Inserting equation a from eq. (31) into eq. (32) and using equations

p = εv, ε2 = p2 +m2,
dp

dt
= eE + e(v ×H),

dε

dt
= e(vE), (34)

we get after long but simple mathematical operations the following equation for the
polarization ζ

dζ

dt
=

2µm+ 2µ′(ε−m)

ε
ζ ×H +

2µ′ε

ε+m
(vH)(v × ζ) +

2µm+ 2µ′ε

ε+m
ζ × (E× v). (35)

The equation of motion of spin in electric field as far as first order terms in velocity v
is obtained from eq. (32) in the form

dζ

dt
= (µ+ µ′)ζ × (E× v) =

(
e

2m
+ 2µ′

)
ζ × (E× v). (36)

5 BMT equation in the delta-function pulse

Bargmann-Michel-Telegdi equation (BMT equation) is equation derived in 1959 For spin
motion in electromagnetic field. If we denote the axial vector describing spin as Sµ, then
the BMT equation reads:

dSµ
dτ

= 2µFµνS
ν − 2

(
µ− eh̄

2mc

)
vµFνλv

νSλ (37)

where µ is the magnetic moment of spinning particle.
In case of the periodic magnetic field Aµ = aµA(ϕ), which gives Fµν = (kµaν −

kνaµ)A′(ϕ), we have for BMT equation the following form:

dSµ
dτ

= 2µ(kµaν − kνaµ)A′(ϕ)Sν − 2

(
µ− eh̄

2mc

)
vµ(kνaλ − kλaν)A′(ϕ)vνSλ (38)

In case of the δ-function pulse it is Aµ = aµη
′(ϕ) = aµδ(ϕ), or A′ = δ(ϕ) and then

we get fro eq. (35) using the formula d/dτ = dϕ/dτ(d/dϕ) = kv(0)(d/dϕ) the following
equation:

dSµ
dϕ

=
1

kv(0)

{
2µ(kµaν − kνaµ)δ(ϕ)Sν − 2

(
µ− eh̄

2mc

)
vµ(kνaλ − kλaν)δ(ϕ)vνSλ

}
(39)
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Now, let us approach the solution of the last equation. With the elementary knowledge
of the properties of the Dirac δ-function

∫
f(x)δ(x)dx = f(0) we get

Sµ(ϕ) =
1

kv(0)

{
2µ(kµaν − kνaµ)Sν(0)− 2

(
µ− eh̄

2mc

)
vµ(kνaλ − kλaν)vνSλ(0)

}
(40)

6 Wolkow solution of the Dirac equation with Heav-

iside four-potential

We know that the four-potential is inbuilt in the Dirac equation and we also know that
if the potential is dependent on ϕ, then, there is explicit solution of the Dirac equation
which was found by Wolkow (1935) and which is called Wolkow solution. The quantum
mechanical problem is to find solution of the Dirac equation with the δ-form four-potential
(25) and from this solution determine the quantum motion of the charged particle under
this potential. Let us first remember the Wolkow solution of the Dirac equation

(γ(p− eA)−m)Ψ = 0. (41)

Wolkow (1935) found the explicit solution of this equation for four-potential Aµ =
Aµ(ϕ), where ϕ = kx. His solution is of the form (Berestetzkii et al., 1989):

Ψp = R
u√
2p0

eiS =

[
1 +

e

2(kp)
(γk)(γA)

]
u√
2p0

eiS, (42)

where u is an electron bi-spinor of the corresponding Dirac equation

(γp−m)u = 0. (43)

The mathematical object S is the classical Hamilton-Jacobi function, which was
determined in the form:

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
A2
]
dϕ. (44)

If we write Wolkow wave function Ψp in the form (42), then, for the impulsive vector
potential (25) we have:

S = −px−
[
e
ap

kp
− e2

2kp
a2

]
ϕ, R =

[
1 +

e

2kp
(γk)(γa)η(ϕ)

]
. (45)

Our goal is to determine acceleration generated by the electromagnetic field of the
δ-form which means that the four-potential Aµ is the Heaviside step function (10). To
achieve this goal, let us define current density (Berestetzkii et al., 1989) as follows:

jµ = Ψ̄pγ
µΨp, (46)

where Ψ̄ is defined as the transposition of (42), or,

Ψ̄p =
ū√
2p0

[
1 +

e

2(kp)
(γA)(γk)

]
e−iS. (47)
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After insertion of Ψp and Ψ̄p into the current density, we have with Aµ = aµη(ϕ), η2 =
η:

jµ =
1

p0

{
pµ − eaµ + kµ

(
e(pa)

(kp)
− e2a2

2(kp)

)}
. (48)

for η > 0, which is evidently related to eq. (21).
The so called kinetic momentum corresponding to jµ is as follows (Berestetzkii et al.,

1989):

Jµ = Ψ∗p(p
µ − eAµ)Ψp) = Ψ̄pγ

0(pµ − eAµ)Ψp) =

{
pµ − eAµ + kµ

(
e(pA)

(kp)
− e2A2

2(kp)

)}
+ kµ

ie

8(kp)p0

Fαβ(u∗σαβu), (49)

where

σαβ =
1

2
(γαγβ − γβγα). (50)

Now, we express the four-potential by the step function. In this case the kinetic
momentum contains the tensor Fµν involving δ-function. It means that there is a
singularity at point ϕ = 0. This singularity plays no role in the situation for ϕ > 0
because in this case the δ-function is zero. Then, the kinetic momentum is the same as
jµ.

7 Spin motion of electron from the Wolkow solution

In case of the Wolkow solution of the Dirac equation, the mathematical object which
describes spin is as follows:

Sµ = iψ̄γ5γµψ. (51)

After insertion of eqs. (42) and (47) into the last equation we get with k̂ = γk, Â = γA,
the following formula:

Sµ = iψ̄γ5γµψ = i
ū

2p0

[
γ5γµ +

e

2kp
γ5γµÂk̂ +

e

2kp
k̂Âγ5γµ +

e

2kp
k̂Âγ5γµ

e

2kp
Âk̂

]
u. (52)

Using elementary relations,

ūu = 2m,uū = 2m, Sµ(0) = iūγ5γµu, vµ = ūγµu, (53)

we get after elementary operations, the following equation for the spin motion

Sµ = iψ̄γ5γµψ = Sµ(0)

1 +

(
e

2kp

)
1

2m2
(vk)(vA) +

(
e

2kp

)2
1

16m4
(vk)2(vA)2

 . (54)
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For Aµ = aµη(ϕ), we get for ϕ > 0

Sµ = iψ̄γ5γµψ = i
ū

2p0

[
γ5γµ +

e

2kp
γ5γµâk̂ +

e

2kp
k̂âγ5γµ +

e

2kp
k̂âγ5γµ

e

2kp
âk̂

]
u (55)

and

Sµ = iψ̄γ5γµψ =
1

2p0

Sµ(0)

1 +

(
e

2kp

)
1

2m2
(vk)(va) +

(
e

2kp

)2
1

16m4
(vk)2(va)2

 . (56)

There is a surprise that the Wolkow solution for the spin and vector motion is not
identical with the solution following from the BMT equation and Lorentz equation.

8 Discussion

We have presented, in this article, the solution of the BMT equation for spin motion of a
charged particle in the electromagnetic wave of the Dirac δ-function pulse field.

The present article is continuation of the author discussion on electron in laser field
(Pardy, 1998; Pardy, 2001, Pardy 2002) and Lorentz-Dirac equation in delta-fumction
pulse (Pardy, 2012), where the Compton model of laser acceleration was proposed and
quantum theory of motion of electron in laser field was applied.

The δ-form laser pulses are here considered as an idealization of the experimental
situation in laser physics. Nevertheless, it was demonstrated theoretically that at present
time the zeptosecond and subzeptosecond laser pulses of duration 10−21 − 10−22 s can be
realized by the petawat lasers. It means that the generation of the ultrashort laser pulses
is the keen interest in development of laser physics (Agostini et al., 2004).

Let us remark that while the δ-form pulses are not still used in the theoretical laser
physics, such exotic pulses are constantly used in the synchrotron physics, where the
equation for the betatron radial vibration involves the derivative of the δ function:

r′′ +
c2

R2
r =

1

E

∑
i

h̄cnδ′(t− ti), (57)

where r being the radial deflection from radius R of the local orbit with energy E and
the number of harmonic n.

So the synchrotron theory uses not only δ-form pulses of photons radiated by an
electron accelerated on an orbit, but also their derivative (here denoted by symbol ′).

We have seen that the δ-function form of force is an impact which causes that the body
obtains the nonzero velocity or nonzero momentum at t = 0. The situation in quantum
field theory is a such that δ-function is a source which can generate elementary particles.
It is not excluded that the Big Bang started at t = 0 by δ-function form of impact. The
idea that the existence of universe started with the zero radius was formulated many years
ago by Friedmann and Lamâitre. While the Friedmann solution follows from the Einstein
general relativity, quantum chromodynamics gives no answer that the Big Bang started
by the δ-function form source of quarks and leptons.
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New experiments can be realized and new measurements performed by means of the
ultrashort laser pulses, giving new results and discoveries. For instance well known
transmutation of elements by laser pulse. Specially the photo-desintegration of heavy
hydrogen

1H
2 + γ −→ 1H

1 + n (58)

will be replaced in the ELI project by

1H
2 + δ−pulse −→ 1H

1 + anything (59)

and in general the following nuclear transmutation will be realized:

ZN
A + δ−pulse −→ ZN

B + anything (60)

So, it is obvious that the interaction of particles with the laser pulses can form, in
the near future, the integral part of the laser and particle physics in such laboratories as
ESRF, CERN, DESY, SLAC and specially in ELI.
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