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Abstract

In the supervised learning setting termed Multiple-Instance Learning MHe examples are bags of
instances, and the bag label is a function of the labels of its instancesallygiais function is the Boolean
OR. The learner observes a sample of bags and the bag labels, the nwgtance labels that determine the
bag labels. The learner is then required to emit a classification rule fertizeed on the sample. MIL has
numerous applications, and many heuristic algorithms have been usegbssiully on this problem, each
adapted to specific settings or applications. In this work we provide a utifgentetical analysis for MIL,
which holds for any underlying hypothesis class, regardless of &ispgaplication or problem domain. We
show that the sample complexity of MIL is only poly-logarithmically depenidenthe size of the bag, for
any underlying hypothesis class. In addition, we introduce a new PA@Gihgpalgorithm for MIL, which
employs a regular supervised learning algorithm as an oracle. We thaivefficient PAC-learning for MIL
can be generated from any efficient non-MIL supervised learningridthgn that handles one-sided error.
The computational complexity of the resulting algorithm is only polynomiallyetkeient on the bag size.

1. Introduction

We consider the learning problem termed Multiple-Instalbearning (MIL), first introduced in Dietterich
et al. (1997). MIL is a generalization of the classical sufsed classification problem. As in classical
supervised classification, in MIL the learner receives apdarof labeled examples drawn i.i.d from an
arbitrary and unknown distribution, and its objective islitecover a classification rule with a small expected
error over the same distribution. In MIL additional struetis assumed, whereby the examples are received
asbagsof instancessuch that each bag is composed of several instances. Kusasl that each instance
has a true label, however the learner only observes theslab¢he bags. In classical MIL the label of a
bag is the Boolean OR of the labels of the instances the bagiogn Various generalizations to MIL have
been proposed (see e.g. Raedt, 1998; Weidmann et al., 208 we consider both classical MIL and the
more general problem where OR can be replaced with an asbB@olean function, known to the learner
in advance. We term the latter problgyaneralized MIL

It is possible, in principle, to view MIL as a regular supeed classification task, where a bag is a
single example, and the instances in a bag are merely pax oftérnal representation. Such treatment,
however, would not take advantage of the special structiuseMiL problem and its possible connections
to the related non-MIL classification problem. As we showhiis wwork, these connections are strong and
useful.
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MIL has been used in numerous applications. In Dietterichle1997) the drug design application
motivates this setting. In this application, the goal is tedict which molecules would bind to a specific
binding site. Each molecule has several possible conféomm{shapes) it can take. If at least one of the
conformations binds to the binding site, then the molecsilateled positive. However, it is not possible
to experimentally identify which conformation was the segsful one. Thus, a molecule can be thought of
as a bag of conformations, where each conformation is aarinstin the bag representing the molecule.
This application employs the hypothesis class of Axis RalrRlectangles (APRs), and had made APRs the
hypothesis class of choice in several theoretical worksvileamention below. There are many other appli-
cations for MIL, including image classification (Maron andt&n, 1998), web index page recommendation
(Zhou et al., 2005) and text categorization (Andrews, 2007)

Previous theoretical analysis of the computational aspafcMIL has been done in two main settings.
In some works (Auer et al., 1998; Blum and Kalai, 1998; Lond &an, 1998), it is assumed that all the
instances are drawn i.i.d from a single distribution ovestamces, so that the instances in each bag are
statistically independent. Under this independence agsam learning from an i.i.d. sample of bags is as
easy as learning from an i.i.d. sample of instances withsided label noise. This is stated in the following
theorem.

Theorem 1 (Blum and Kalai, 1998) If a hypothesis clas${ is PAC-learnable in polynomial time from
one-sided random classification noise, then the hypotloéesis? is PAC-learnable in polynomial time in
MIL under the independence assumption. The learning isyoiyal in the bag size and in the sample size.

The assumption of statistical independence of the instinaeach bag is, however, very limiting, and it
is irrelevant to many applications. More generally, onehessto learn from an i.i.d. sample of bags drawn
from an arbitrary distributiolver bagsthus the instances within a bag may be statistically degetndror
the hypothesis class of APRs and an arbitrary distributi@r bags, it is shown in Auer et al. (1998) that
if there exists a PAC-learning algorithm for MIL with APR3ydhthis algorithm is polynomial in both the
size of the bag and the dimension of the Euclidean space,itli®mpossible to polynomially PAC-learn
DNF formulas, a problem which is solvable onlyRfP = NP (Pitt and Valiant, 1986). In addition, if it is
possible to improperly learn MIL with APRs (that is, to learclassifier which is not itself an APR), then it
is possible to improperly learn DNF formulas, a problem wahias not been solved to this date for general
distributions. This result implies that it is not possibteRAC-learn MIL on APRs using an algorithm
which is efficient in both the bag size and the problem dinmmadity. It does not, however, preclude the
possibility of performing MIL efficiently under more resttive assumptions.

In practice, numerous algorithms have been proposed for, Béich focusing on a different special-
ization of this problem. Dietterich et al. (1997) proposeesal heuristic algorithms for finding an APR
that predicts the label of an instance and of a bag. DiverssiBe(Maron and Lozano#ez, 1998) and
EM-DD (Zhang and Goldman, 2001) employ assumptions on ttetstre of the bags of instances. DP-
Boost (Andrews and Hofmann, 2003), mi-SVM and MI-SVM (Angeeet al., 2002), and Multi-Instance
Kernels (Gartner et al., 2002) are approaches for learning MIL usingginébased objectives. Some of
these methods work quite well in practice. However, no gaimation guarantees have been provided for
any of them.

In this work we analyze MIL and generalized MIL in a generalnfiework, independent of a specific
application, and provide results that hold for any undedyhypothesis class. We assume some fixed
hypothesis class defined over instances. We investigateekgonship between learning with respect to
this hypothesis class in the classical supervised leasetting with no bags, and learning with respect to
the same hypothesis class in MIL. We address both samplelegitypand computational feasibility.

Our sample complexity analysis shows that for binary hypsithand thresholded real-valued hypothe-
ses, the sample size required in generalized MIL grows adwrithmically with the bag size. We also
provide poly-logarithmic sample complexity results foettase of margin learning. From this analysis it
is possible to derive distribution-free generalizatiomuthds for previously proposed algorithms for MIL.
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Regarding the computational aspect, we provide a new legralgorithm with provable guarantees for
classical MIL. Given a non-MIL learning algorithm for the gythesis class, which can handle one-sided
errors, we improperly learn MIL with the same hypothesisslarhe construction is simple to implement,
and provides a computationally efficient PAC-learning oLiMivith only a polynomial dependence of the
run time on the bag size.

The structure of the paper is as follows. In Section 2 the lprokis formally defined and notation
is introduced. In Section 3 the sample complexity of genszdl MIL for binary hypotheses is analyzed.
Section 4 provides the learning algorithm for classical MiLSection 5 we analyze the sample complexity
of generalized MIL with real-valued functions and for langergin learning. We conclude in Section 6.
Appendix A includes technical proofs that have been skippéde text. A preliminary version of this work
has been published as Sabato and Tishby (2009).

2. Problem Setting and Notation

Let X be the input space, also called the domain of instances. Ashaget of instances frol’. The
domain of labels i§—1, +1}. Throughout this work we assume for simplicity that all bags of the same
sizer for some naturat, and that the instances in each bag are ordered. Thus thardofrtzags isx™.
Bags are denoted by = (x[1],...,z[r]) € X" where each:[;] is an instance in the bag.

Denote the label of an instaneec X by the probabilistic functior.(z). We assume a conditional
probability distributionDy|x, such thatvz € X,y € {-1,+1}, P[L(x) = y] = D,,. For any bag
X € X7, the label of the bag is determined from the labels of itsainsgs using a fixed Boolean function
[ {-1,41}" — {-1,+1}. ThusL(x) = f(L(z[1]),...,L(z[r])). Importantly, the identity off is
known to the learner a-priori, thus eaghiefines a different generalized MIL problem (In classicaLMf
is the Boolean OR). We further assume a probability distitlouD over bags inX’”. The learner receives
as input a sample of labeled bafgx1, y1), - - -, (Xm, ¥m )} Such that the bags; are drawn independently
from Dx, and eachy; € {—1,+1} is drawn according to the distribution d@f(x;). We let D be the
distribution overX” x {—1, 41} determined byDg andDy | x as described herein.

The goal of the learner is to find a classification rule that alassify new bags drawn according to
the same (unknown) joint distributial with low error. We point out that it is not generally possitidind
a low-error classification rule for instances based on a bagpte. As a simple counter-example, assume
that f is the Boolean OR, and that every bag includes both a positstance and a negative instance. In
this case all bags are labeled as positive, and it is not lplessi distinguish the two types of instances by
observing only bag labels.

For a functiong : Z — 7, we also use its vector extensign: Z¥ — T* defined agg(a) =
(g9(al1]),...,g(alk])). Forx,y € R™, (x,y) denotes the inner product &fandy. For a natural number
k, we denote byk] the set{1,...,k}. log denotes a base 2 logarithm. For two sétand B, B“ denotes
the set of functions froml to B.

‘H denotes a hypothesis class that labels instances. irHypotheses may be binary, so thdt C
{—1,+1}%, or they may be real-valued, so tidtC [—1,+1]*. The relevant assumptions @ will be
specified in context. We define the bag-labeling operatoigchvinaps a hypothesis over instances into a
hypothesis over bags, as follows:

Definition 2 Let f : Y — Y for some sel’. Thebag-labeling operatpdenoted bys/ : Y — Y*",
maps hypotheses over instances to hypotheses over badwasfo

Vhe YV e X", ¢l (h)(X)2 f(MR) = f(h(z]1]),...,hz[r]).

The set of hypotheses over bags generated fioy ¢/ is denoted by (#) £ {¢f(h) | h € H}.
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3. Sample Complexity of Binary Hypotheses Classes

In this section we consider binary hypothesis clagges {—1,+1}*, and bound the VC-dimension of
#f(H) as a function of the VC-dimension 6{ and of the bag size. We show that the VC-dimension
of ¢/ (#H) is at most logarithmic in-, and at most linear in the VC-dimension #f, for any Boolean
bag-labeling functiory. Since the bounds on sample complexity are proportiondld¢dAC-dimension of
the problem (Vapnik and Chervonenkis, 1971), it followst tthee sample complexity of MIL grows only
logarithmically with the size of the bag. Thus MIL is feasildven for quite large bags, and can sometimes
be used to accelerate even single-instance learning @abal., 2010). We further show lower bounds
on the VC-dimension of MIL, indicating that the dependen&¢he upper bound om and on the VC-
dimension of{ is imperative for a large class of Boolean bag-labeling fioms. We also show a matching
lower bound for VC-dimension of classical MIL with sepangtihyperplanes.

3.1 VC-Dimension Upper Bound

The following theorem establishes a VC-Dimension uppemnidor generalized MIL.

Theorem 3 Let f : {—1,+1}" — {—1,+1} be anr-ary Boolean function. Lep/ be the bag-labeling
operator defined in Def. 2. Lé¢ C {—1,+1}* be a hypothesis class with a finite VC-dimensipand
denote the VC-dimension ¢f (H) byd,.. Then

d, < max{16,2dlog(2er)}.

Proof For a hypothesig, denote by, its restriction to a setl, and for a set of hypothesgs, denote by
J ), the restriction of each of its membersAg so that7, £ {h, | h € J}.

Sinced, is the VC-dimension of/(#), there exists a set of bags = {xX;},c(q,) € X" that is
shattered by! (), so that|¢f (H),| = 29, Let S¥ = {z;[j]}ic(m),jer be the set of instances of bags
in S. Clearly|¢f (H),,| < |H,,. |, therefore2d~ < |H,_,|. Applying Sauer's lemma (Sauer, 1972; Vapnik
and Chervonenkis, 1971) % we get

S9N\ erd, \*
dr < < el < (==
2% < Hpol < ( p) <\ )~

Wheree is the base of the natural logarithm. It follows thiat< d(log(er) — log d) + dlog d,.. To provide
an explicit bound fokl,., we boundi log d,. by dividing to cases:

1. Eitherdlogd, < 1d,,thusd, < 2d(log(er) —logd) < 2dlog(er),
2. or3d, < dlogd,. In this case,

(a) eitherd, < 16,

(b) ord, > 16. In this case/d, < d,./logd, < 2d, thusdlogd, = 2dlog+/d, < 2dlog2d.
Substituting in the implicit bound we gét < d(log(er) — log d) + 2dlog 2d < 2dlog(2er).

Combining the cases we haig < max{16, 2d log(2er)}. |

3.2 VC-Dimension Lower Bounds

In this section we show lower bounds on the VC-dimension df NMidicating that the dependence éand
r in Theorem 3 is tight in two important settings. We start vétlower bound with respect to a worst-case
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hypothesis class, for any bag-labeling function which rss#téve to its inputs in a specific sense defined in
the following theorem. Functions that satisfy this reguoieait include the Boolean OR, AND, and Parity,
and all their variants that stem from negating some of thatmp

Theorem 4 Let f : {—1,+1}" — {—1,+1} be anr-ary Boolean function. Assume that there exist two
Boolean vectors, a € {—1,+1}" such that

Vj € [T’],’y € {713+1}7 f(c[l}vvc[]] ~y,...,C[T]) = a[.]] Y.

For any naturald and any instance domai’ with |X'| > rd|log(r)|, there exists a hypothesis clakis
with a VC dimension at mogt such that the VC dimension of (H) is at leastd |log(r) .

Proof LetS C X" be a set ofl|log(r) | bags, such that all the instances in all the bags are distiactents
of X. Divide S into d mutually exclusive subsets, each wittog(r) | bags. Denote bag in subsett by
X(p,t)- We define the hypothesis class

H = {hlk1,...,kd) | Vi€ [d],k; € [Qtlog(v")J]}7

whereh[ky, ..., kq] is defined as follows (see illustration in Table 1): Roe X which is not an instance
ofany baginS, hlki, ..., k4 = —1. Forz = x(, ,[1], letb, ) be bitp in the binary representation of the
numbern. We define

h[kl, .. "kd}(x(p,t) DD _ {C[j] . a[]] . (Qb(p,j—l) — 1) g =k,

clJ] J # ke,

t|p Instance labeh (x4 [r]) Bag labelp®F (h)(x;)

- - - + - - — - +
12— - — 4+ — — - = +

3l - - - - - - - _ —

1[— — — — — — — 7 +
22| - - - - — — — + +

3|- - - — - - — 4 +

1= - - - — - - = —
3|2]- + - - - - - - +

3|l - - - - - - - _ _

Table 1: An example of the hypotheses= h[4, 8, 3], with f = OR (so thatkc anda are all—1 vectors),
r = 8, andd = 3. Each line represents a bagdneach column represents an instance in the bag.

We now show thafS is shattered by/ (#), indicating that the VC-dimension af/ (h) over X is at
least|.S| = d|log(r)]|. To complete the proof, we further show that the VC dimensioH is no more than
d.

e Sis shattered by (H): Let {Yp.t) }peliog(r)] te[a) D€ SOMeE labeling ovefr—1, +1} for the bags in
S. For eacht € [d] let
[log(r)]
a 2 : Yp,p) T1 1
kt = 1 + P T . 2P .
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Then for allp € [|log(r)]] andt € [d],

(bf(h[/ﬁ, ey kd])(i(p,t)) = f(c[l], . ,C[k’t]ﬂ[kt]-(Qb(p,kt,l)—1), ey C[’I“]) = 2b(p,k‘t71)_1 = y(p,t).
Thush[ky, ..., kq] labelsS according to{y, 4 }-

e The VC-dimension of{ is no more thani: Let A C X of sized + 1. If there is an element in
A which is not an instance i§ then this element is labeled1 by all h € H, thereforeA is not
shattered. Otherwise, all elementsAnare instances in bags i#. Since there ard subsets of5,
there exist two elements i which are instances of bags in the same subd4aénote these instances
by z(p1,t)[j1] andz(p2, t)[j2]. Consider all the possible labelings of the two elementsypptheses
in H. If Ais shattered, there must be four possible labelings foretleéemments. However, by the
definition of [k, ..., k4] it is easy to see that ify = j, = j then there are at most two possible
labelings by hypotheses i, and if j; # j> then there are at most three possible labelings. Thus
is not shattered b${, hence the VC-dimension { is no more thanl.

Theorem 7 below provides a lower bound for the VC-dimensibN ik for the common case where
f is the Boolean OR and the hypothesis class is the class ofatepahyperplanes ifiR™, denoted by
W, £ {x — sign((w,x)) | w € R"}. We denote the VC-dimension ¢’%(W,,) by d,.,,. The lower
bound is proved using two lemmas: Lemma 5 provides a lowenthéer d,. 5, and Lemma 6 links!,. ,, for
smalln with d,. ,, for largen. The resulting general lower bound is then stated in Thearem

Lemma5 Letd,, the VC-dimension afO®(W,,) as defined above. Thef 3 > [log(2r)].

Proof Denotel £ |log(2r)]|. We will construct a sef of L bags of size- that is shattered byV;. The
construction is illustrated in Figure 1.

Figure 1: An illustration of the constructed shattered géth » = 4 andL = log4 + 1 = 3. Each
dot corresponds to an instance. The numbers next to thenaestalenote the bag to which an
instance belongs, and match the seque¥agefined in the proof. In this illustration bagsand
3 are labeled as positive by the bag-hypothesis represemtietsolid line.

Letn = (ni,...,nx) be a sequence of indices froih], created by concatenating all the subsets of
[L] in some arbitrary order, so thaf = L2-~1, and every index appea2é—! < r times inn. Define a
setd = {a; | k € [K]} C R3 wherea;, = (cos(2mk/K),sin(2rk/K),1) € R3, so thatay, ..., ax are
equidistant on a unit circle on a plane embeddeRinDefine the set of bags = {%;,...,%;} such that
% = (z[L], .., ai[r]) where{z;[j] | j € [r]} = {ax | nx = i}.

We now show that is shattered byVs: Let (y1, ...,y ) be some binary labeling df bags, and let
Y = {i | y; = +1}. By the definition ofn, there exisy, j> such thatt” = {n, | j1 < k < ja}. Clearly,
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there exists a hyperplarve € R? that separates the vectdis;, | j; < k < j»} from the rest of the vectors
in A. Thussign((w,a;)) = +1if and only if j; < k < jo. It follows that¢O™ (w)(x;) = +1 if and only

if there is ak € {j1,...,j2} such thaty is an instance i&;, that is such that;, = ¢. This condition holds
if and only if i € Y, hencew classifiesS according to the given labeling. It follows thétis shattered by
Ws, therefored? > |S| = |log(2r)]. [ |

Lemma 6 Letk,n,r be natural number such th&t< n. Thend, ,, > |n/k|d, .

Proof For a vectorx € R* and a numbert € {0,...,|n/k|} define the vectors(x,t) =
0,...,0,z[1],...,x[k],0,...,0) € R™ wherex[l] is at coordinatekt + 1. Similarly, for a bag
% = (xi[1], ..., x[r]) € (R¥)", define the bag(x;,t) = (s(x;[1],1),...,s(xi[r],t)) € (R™)".

Let Sk = {Xi}ic(a,,] € (R¥)" be a set of bags with instancesi that is shattered by>™ (Wy.).
Define S,,, a set of bags with instances kr: S,, = {3(5(1;., t)]}ie[dr,k]ﬁtg[wk” C (R™)". Thens, is
shattered byV,,: Let {y(; ) }ic(d,..].tc[|n/k)] D€ SOMeE labeling fok,,. Sy is shattered byVy,, hence there
are separatore, ..., w, ;| € R¥ suchthawi € [d, ]t € [n/k], ¢O%(wy)(%i) =y

Setw £ 21"/ s(wy, t). Then(w, s(x,t)) = (wy,x). Therefore

6" (w)(s(x4,t)) = OR(sign((w, s(x[1],1))),..., sign((w, s(x;[r],1))))
= OR(sign((ws, x;[1])), ..., sign((we, x:[r]))) = &7 (We) (%:) = y(i,0)-

Sy, is thus shattered, hende,, > |S,| = |n/k|d, k. [ |

The desired theorem is an immediate consequence of the twuods above:

Theorem 7 LetW,, be the class of separating hyperplanes®tif as defined above. The VC-dimension of
#OR(W,,) is at least|n/3||log 2.

4. PAC-Learning for MIL

In the previous section we addressed the sample complehdgreralized MIL, showing that it grows only
logarithmically with the bag size. We now turn to considex tomputational aspect of MIL, focusing on
classical MIL, in which the bag-labeling function is the Bean OR. We provide a simple algorithm for
MIL which uses as an oracle a learning algorithm which ogsran single instances. In this section we
assume real-valued hypotheses, thatis [—1,+1]*. The bag-labeling function is accordingly general-
ized to amax instead of OR. The related sample complexity analysis of MlLreal-valued hypotheses is
deferred to Section 5.

The proposed algorithm, namédLearn, uses an algorithri as a black-box.4 operates on single
instances and returns a hypothesig4nwhile MILearn operates on a sample of bags and selects a bag-
hypothesis fromp?#*(#). We show that itA perfoms one-sided or agnostic learning of single instances
with respect taH, thenMILearn is aweak learnerfor MIL with respect top**(?). MILearn can thus
be used as the building block in a boosting algorithm (FreamdiSchapire, 1997). The boosting algorithm
returns a linear combination of bag-hypotheses that ¢iassinseen bags with high accuracy. Furthermore,
if A is efficient then our algorithm is also efficient, with a pabynial dependence on the bag size.

We describe the weak learner in Section 4.1. We then proeeexain the boosting construction in
Section 4.2, and conclude the section with a short discusgionplications in Section 4.3.
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4.1 The Weak Learner

We start with some notation. A labeled and weighted samplesténces is a set of tripletsv, z,y) €
RT x X x {—1,+1}, wherew is the weight of the instance, is the instance, anglis the instance label.
A labeled and weighted sample of bags is a set of trigletsx,y) € R x X" x {—1,+1}, wherew

is the weight of the bagx is the bag, and is the bag label. Thedgeof a hypothesis is a measure of
how successful the hypothesis is in classifying with respea distribution. For an instance hypothesis
h: X — [-1,+1] and a distributiorD overX x {—1,+1}, the edge of with respect taD is

L(h,D) £ E(x y)~p[Y - H(X)].

Note that ifh(z) is interpreted as the probability éfto emit1 for input z, then% is the expected
error of h on D. For a weighted and labeled instance sanspte {(w;, z;, yi) }iem]» Ds is the probability
distribution overt — [—1,+1] defined byPp,[(X,Y) = (z;,5:)] = wi/ Y-, w;. Where itis clear
from context, we usé interchangeably wittDs. ThusI'(h,S) = I'(h, Dg). T'(h, D) andT'(h, S) are
defined similarly for a bag hypothesise ¢**(#), a distributionD over X" x [—1,+1], and a labeled
and weighted sample of bags

The proposed algorithmILearn, listed as Algorithm 1 below, accepts as input a bag sampietdd
Sp, and assumes access to an algorithmA receives a labeled and weighted instance sample and returns
an instance hypothestse #. We denote byA(S) € # the result of runningd with input S. ks denotes
the constant positive hypothesigz € X', hpos(x) = +1. For simplicity we assumé,s € H. The
output ofMILearn is a bag-hypothesis igi"**(H) that classifiesS s with an edge that depends on the best
achievable edge fo¥ 3, as we presently show.

MILearn is a simple algorithm: It constructs a sample of instan€e$rom the instances that make
up bags inSp, labeling each instance ifi; with the label of the bag it came from. The weight of an
instance with a positive label is set to be the weight of thggibaame from, divided by, and the weight
of an instance with a negative label is set to be the same asdiyht of the bag it came from. Having
constructedS;, MILearn runs.4 on S;. It then selects whether to retut®®*(A(S)) or ¢ (hpos),
whichever provides the better edge p.

Algorithm 1: MILearn
Assumptions

e Access to an algorithma, that receives a weighted instance sample and returns @legi® inA.
® Npos € H.

Input: Sp £ {(w;, X4, ;) }iejm) — @ labeled and weighted sample of bags;
Output: hps € P> (H).

[y

Q1) < %, Q(_1) < 1.

N

St {(ay, - wi, z3[J], yi) Yicpml,jer -
3 h] — .A(S])

if T(¢p**(h1), SB) > (7™ (hpos), Sp) then
| har ¢ (hy),

else
| s e 2 (o).

IN

~N o o
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We now prove thaMILearn provides guarantees for the edge of the resulting hypathdepending
on the properties onl. Before stating the result, we define some auxiliary nomatfeor a distributionD
overX x {—1,+1}, we denote by)(D) the set of hypotheses which have only one-sided errdp ove
specifically require that such hypotheses err onlypositiveexamples inS. Formally,

QD)2 {he[-1,+1]Y |Pp[h(X)=-1|Y = —1] = 1}.
If D is adistribution overt”™ x {—1,+1}, then

QD) £ {h € [-1,+1" [ Pp[¢P™(h)(X) = 1| Y = —1] = 1}.
The definition forD andh defined on bags is similar.

In the following theorem we compare the edge achieved usingarn to the best possible edge for
the sampleS. The best edge fofp achievable by a hypothesis # is denotedy*, and the best edge
achievable by a hypothesis # with one-sided error is denoted . Formally:

* 4 max

v = I&aﬁir(ﬂsr (h),SB), W
. max

,YJF B hE?—Illr’lT%Z}((SB) F(¢r (h)7 SB) (2)

Theorem 8 LetH C [1,+1]* be a set of instance hypotheses. Lgt be the hypothesis returned by
MILearn when receivingSs as input, and lety 2 I'(hyy, Sg). Then
(a) If for any instance samplé, I'(A(S), S) > maxjeunqcs) I'(h, S) —n for somen > 0, then
> 2= 3)
TE T o1
(b) Iffor any instance samplg, IT'(A(S), S) > maxpecy I'(h, S)—n for somep > 0, andy*—n > 1— %,
then
_ 2 A
v S S i) >
2r —1

0. 4)

Proof We prove part (a) of the theorem, and defer the similar prégfaot (b) to Appendix A. Denote
the total weight of examples in a samgleby W (.S). In addition, denotéV, = Zi:yi:+1 w; andW_ £
> iyi=—1 Wi, where{w;} are the weights of the bags k. We assume w.l.o.g. that'(Sp) = W, +

W_ = 1. Leth: £ argmaxy,cyna(s,) L (@y**(h), Sp). St andh; are as defined in steps 2 and 3 of

MILearn. The proof of Theorem 8(a) employs the following technieshinas. Their proofs are provided
in Appendix A.

Lemma 9 For any instance hypothests T'(¢™**(h), Sg) > W (S;)T'(h, Sr) + (1 — r)W_.
Lemma 10 If the condition on4 in (a) holds, therd’(h;, S;) > I'(h%, St) — 7.

Lemma 11 For any instance instance hypothesis

W (St)L(h, S1) 2 ED(¢7(h), S5) + (3 = DWa — (r = 1) > wig?™ (h)(%).

Yi=—
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Forh € Q(Sg), >_, -, wid)"**(h)(X;) = —W_. Therefore, from Lemma 11,
W(SD)U(h, S1) > t0(¢**(h), SB) + (3 = YWy + (r — H)W_. 5)
Applying Lemma 9, Lemma 10 and Eq. (5) sequentially, we have
T(¢™*(hy), Sp) > W(SDT(hr, Sr) + (1 — 7)W= > W(S)(T(h%, S1) —n) + (1 — r)W_
> ;L(op™(h1),Sp) + (3 = Wi + (1= HWo —rp=2vp + (1= )1 = 2W5) =, (6)
where the last equality follows from the assumption that + W_ = 1. By step4 of MILearn,
v = max{T(@(h), S5), (67 (hpos), S5)} > max {15 + (1 - 1)(1 = 2Wy) —rn, 20, —1}.

* _ 2
Itis easy to verify that for anyi’,. € [0,1], v > 5. [ ]

Theorem 8 guarantees thatf performs approximate ERM with respect#p on its non-bag input
sample, themILearn achieves an approximation to the optimal edge of a hypathesi™**(H) on its
bag input sample. Itis also easy to see that the time contplef#ILearn is bounded by)(c(A) + rm),
wherec(.A) is an upper bound on the time complexity.4f In addition, the results of Theorem 8 can easily
be extended to the case where instead of access to an apptextRM algorithm, we have access to a
PAC-learning algorithm, with no assumption on its intenma&lchanism.

Definition 12 (One-sided and agnostic PAC-learning algortims) Let B(e, d,.5) be an algorithm that
accepts as input, e € (0,1), and a labeled sampl§ € (X x {—1,+1})™, and emits as output a hy-
pothesish € H.

B is aone-sided PAC-learning algorithfor H with complexity:(e, 6) if B runs for no more thar(e, J)
steps, and for any probability distributio over X x {—1,+1}, if S is an i.i.d. sample fronD of size
c¢(e, 0) then with probability at least — ¢ over.S and the randomization ds,

I'(B(S),D) > sup T'(h,D)—2e.

heHNQ(D)

Similarly, 5 is anagnostic PAC-learning algorithifior 7 if with probability at leastl — § over.S and

the randomization oB,
I'(B(S),D) > sup I'(h, D) — 2e.
heH

With access to a one-sided or agnostic PAC-learning alguaritve can construct an algorithzhsuch
that the required guarantees for Theorem 8 would hold wigh probability over the randomization gf.
Let S be the input to4. A creates an unweighted sampldrom S by drawinge(n/2, 6) labeled instances
independently according tBs, and returns3(S). If B is a one-sided PAC-learning algorithm, then with
probability at least — 6, '(A(S),.S) > maxpey I'(h, S) — . Similarly, if B is an agnostic PAC-learning
algorithm, then with probability at least— 6, I'(A(S), S) > maxpcynacs) I'(h, S) —n. Thus, by a slight
modification of the proof of Theorem 8, we get the followingdhem.

Theorem 13 Let §,n € (0,1). Under the same definitions as in Theorem 8,Alfis created from
a one-sided PAC-learning algorithiB with complexityc(e, §) as described above, thefILearn uses
O(max(c(n/2,0), mr)) steps, and with probability at least— § emits a hypothesis with edgehat satis-
fies Eq. (3). I8 is an agnostic PAC-learning algorithm, then Eqg. (4) holdstéad.

g

272

we can sef) =

Specifically, if B is a one-sided PAC-learning algorithm, we can get
approximation fory} . If B is an agnostic PAC-learning algorithm amd> 1 —
get a positivey with high probability.

to get a guaranteed
L to

brel

1
2r2
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4.2 Boosting with the Weak Learner

Theorem 8 and Theorem 13 show that under suitable condititiigarn produces a hypothesis whose
edge approximates the edge of the best hypothegi&ifi(7). In this section we conclude thHILearn
can be used as the weak learner in a boosting algorithm for Whk result is a learning algorithm for MIL
with guaranteed generalization.

There are plenty of possible boosting algorithms. For cetecress, we base the following discussion on
AdaBoost * (Ratsch and Warmuth, 2005), since it provides suitable gieearon thenarginof its output
hypothesis. The margin of a linear combination of hypoteesea samplé = {(z;,y;)}!*, is defined as
follows:

i€[m]

M(a, S) = min y; Z]P’a[h]h(xi),
h

where« is some distribution with finite support over hypothesese Tiput toAdaBoost * is an i.i.d.
labeled sample. Like all boosting algorithmAjaBoost * assumes access toneak learner which is
an algorithm that accepts a weighted sample and returns athegis from some fixed hypothesis class.
AdaBoost * activates its weak learner several times on different weidjsamples, and returns as output a
linear combination of the returned hypotheses. If the hypsis returned by the weak learner in each round
has edge at leagt, then after2 1;;” iterations,AdaBoost * finds a linear combination of hypotheses
with M («, S) > p — v. The generalization error @f can be bounded using its margin Shand using
d, the complexity of the underlying hypothesis class. Thifihg bound (Schapire et al., 1998; Schapire

and Singer, 1999) holds with probability— § over the training samples:

Y S Ralnln() <0 <0 | (DD 4 0g17)) ) %
h b

In our case, the input sample is a labeled sample of bags,xém fiypothesis class i52**(#), and the
output ofAdaBoost * is a linear combination of hypotheses in this class. We witvg that ifMILearn is
used as the weak learner, then under suitable assumpt®nsatigin guarantees indeed hold, and a resulting
generalization bound with a polynomial dependence toilows.

For a sample of bags, let p* be the largest margin that can be achieved for this samplelimngar
combination of hypotheses fromi***(#). Formally, letA be the set of distributions over™**(H) with
finite support, and define

EAY
pr = gléi}M(a, S).
Let Sy be the samplé with its bags weighted according te € (R™)™. From the Min-Max theorem (von
Neumann 1928, and further developed i@tsth and Warmuth 2005),

p= w:%%u%:l mI?XF(h7 Sw)’
whenever the maximum apf***(#) is defined. Thus, for any weighting of the samglethere exists a sin-
gle hypothesig € ¢™**(H) with edge at least*. The input taMILearn in every iteration oAdaBoost *
is the weighted sampl8z = S,,. Thus in each roundy* > p*, wherey* is the best achievable edge,
defined in Eq. (1).

For instance, assume that the conditions4m Theorem 8(b) hold witlhy = 0, and suppose* >
1 — L. Then for every input samplé,,, v* > p*. Thus by Theorem 8ILearn returns a hypothesis

r2”

with edge at leasp = # > 0. Settingr = p/2, we get thatAdaBoost * achieves a margin

of % after a number of iterations which is polynomial in the bazesil It is easy to extend

1. One can also replace the hard margin requirement with a sofimfarmulation, following Warmuth et al. (2007) and Shalev-
Shwartz and Singer (2008).

11
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this argument also for the case wheérH.earn only satisfies the conditions with high probability, as in
Theorem 13. In this case, the confidence parandetesed inMILearn should be inversely proportional to
the number of iterations ddaBoost *, which is polynomial inv.

A more specifics analysis can be done in thalizable casewhere there exists a single hypothesis in
PP (H) that classifies the training sample perfectly. In this gase- 7* = 45 = 1. Assume thatd is a
one-sided ERM algorithm, i.e. Theorem 8(a) holds for anygheivectorw, with n = 0. Thus, a margin
of .1 can be achieved usifgdaBoost * with N = 8(2r — 1)?Inm runs of A. If we assume instead a
one-sided PAC-learning algorith#(e, d,.S), we can achieve a similar result with a probability of at teas
1 — 4, using Theorem 13 with the confidence paraméféy¥. Thus, if the complexity of4 is bounded by
a polynomial inl /e and1/4, then the complexity of the MIL algorithm is polynomialm% and%.

The generalization bound for boosting in Eq. (7) depends/di?(«, S), which is polynomial in- in
the cases described above, andptine complexity ofs™2*(H). For binary hypothesis classess the VC-
dimension ofp™#*(#), which, by Theorem 3, grows logarithmically with For real-valued hypotheses,
is the pseudo-dimension ¢f***(#). Similar generalization results for boosting can be derfez margin-
learning as well, using covering-numbers arguments asskst in Schapire et al. (1998). In Section 5
the sample complexity of MIL with real-valued hypothesearnslyzed, showing that the dependence of the
class complexity om is poly-logarithmic. Thus, in all cases, Eq. (7) impliestttiee required sample size
to achieve learning with errerand confidencé — ¢ is polynomial inr, % andln(%).

4.3 From Single-Instance Learning to Multi-Instance Learning

From the discussion in the previous section we can draw thewimg conclusion on the relationship
between single-instance learning and efficient MIL for thalizable case.

Corollary 14 If there exists a one-sided PAC-learning algorithm#6mwhose computational complexity is
polynomial in% and % then there exists a PAC-learning algorithm for MIL &hwhich is polynomial in

1 1
r,=andz.

‘e )

Theorem 1 and Cor. 14 are similar in structure: Both stateittihe single-instance problem is solv-
able with one-sided error, then the realizable MIL problensélvable. Theorem 1 applies only to bags
with statistically independent instances, while Cor. 1gligs to bags drawn from an arbitrary distribution.
The assumption of Theorem 1 is weaker, though, as it onlyireg|that the single-instance PAC-learning
algorithm handle random one-sided noise, while Cor. 14iregthat the single-instance algorithm handle
arbitrary one-sided noise.

Of course, Cor. 14 does not contradict the hardness resmlided for APRs in Auer et al. (1998).
Indeed, this hardness result states that if there existsLaalglorithm for d-dimensional APRs which is
polynomial in bothr andd, thenRP = A'P. Our result does not imply that such an algorithm existgesin
there is no known agnostic or one-sided PAC-learning algorfor APRs which is polynomial id.

NonthelessMILearn and Cor. 14 provide us with a simple and general way, indegranaf hypothesis
class, to create a PAC-learning algorithm for MIL from a rdi- one-sided learning algorithm. When-
ever an appropriate polynomial algorithm exists for the-ih learning problem, the resulting MIL al-
gorithm will also be polynomial ir. To illustrate, consider Shalev-Shwartz et al. (2010), hick an
algorithm 53 is described for agnostic PAC-learning of fuzzy kernelibadf-spaces with arL-Lipschitz
transfer function, wheré is a constant. The proposétihas time-complexity and sample-complexity at
most poly((£)~ - In(%)). Since this complexity bound is polynomial ine and in1/4, Cor. 14 applies
and we can generate an algorithm for PAC-learning MIL witinptexity which depends directly on the
complexity B, and is polynomial irr, % and%. More generally, using the construction we proposed here,
any advancement in the development of algorithms for agnostone-sided learning of any hypothesis
class translates immediately to an algorithm for PAC-leeymMIL with the same hypothesis class, and
with corresponding complexity guarantees.

12
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5. MIL with Real-Valued Functions

We now return to the issue of sample complexity, and exteméuwoalysis to hypotheses that range over real
values and to large-margin learning. For classes of thidsddunctions, we show in Section 5.1 that if
the bag classification rule is an extension of a monotonedswofunction, then the sample complexity of
MIL depends logarithmically om, as was shown in Section 3 for binary hypotheses. For maggiming,

a poly-logarithmic bound on sample complexity is shown Bech.2. This bound holds for all Lipschitz
bag-labeling functions, including extensions of monotBoelean functions.

5.1 Thresholded Functions

Monotone Boolean functionmap Boolean vectors froni—1,+1}" into {—1,+1}, such that the map
is monotone-increasing in every operand. The set of moeoBoolean functions is exactly the set of
functions that can be represented by some composition of ANIDOR functions. A natural extension of
monotone Boolean functions to real functions frpai, +1]™ into [—1, +1] is achieved by replacing OR
with max and AND withmin. Formally, the real functions that extend monotone Boolesctions are
defined as follows:

Definition 15 A function from{—1, +1]" into [—1, 4+1] is an extension of an-ary monotone Boolean func-
tionif it belongs to the seM,. defined inductively as follows, where the input to a fundsone [—1, +1]":

(DVjenl, y=ylile My
(2)Vk e Nt fi,.... fx e M, =y max;ep{fi(y)} € My; (8)
(3) Vk € N+7 fl?' . 'afk € MT‘ Yy = mlnje[k]{f](y)} (= ./\/lr_

In the following theorem we bound the pseudo-dimension ége Anthony and Bartlett (1999) for
definitions) of the generalized MIL problem, where the balgeling operator is an extension of a monotone
Boolean function. The result has the same form as Theorenmhghvapplied to binary hypotheses and
Boolean bag-labeling functions.

Theorem 16 Let H C [~1,+1]* be a set of instance hypotheses with pseudo-dimenkiorLet f :
[-1,+1]" — [-1, +1] be an extension of a monotone Boolean function, andl.Ibe the pseudo-dimension
of ¢/ (#). Then

d, < max{2dlog(2er),16}.

Proof For a functionh from some domain int¢—1,+1] and a scalat € R, let h, be a function from
the same domain intg—1, +1}, defined byh, (y) = sign(h(y) — z), wheresign(z) = +1if z > 0, and
sign(z) = —1 otherwise. For a set of functiond, define the seBy £ {h. | h € H,z € R}. The
pseudo-dimension df is equal to the VC-dimension @5 (Anthony and Bartlett, 1999).
Denotel = (1,...,1). Using Def. 15, it is easy to verify by induction that fre M.,
sign(f(y) — z) = sign(f(y — 21)) = f(sign(y — 21)).
Consider the thresholded functigi (), for h € # andz € R. For allx € &,

ol (h), (%) = sign(¢] (h)(%) — 2) = sign(f(h(X)) - 2)
= f(sign(h(x) — 21)) = f(h=(%)) = ¢! (h:)(%).
Therefore,B ;s ;) = #1(By). Henced,. is the VC dimension ob; (B ). Now, d is the VC-dimension

of By, By is a set of hypotheses info-1, +1}, andf restricted to{ —1,+1}" is also binary. Therefore
Theorem 3 applies and the desired bound follows. |

13
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5.2 Learning with a Margin

To complete the picture for real-valued hypotheses, weessddthe sample complexity of large-margin
classification for MIL, used, for instance, in MI-SVM (Andvs et al., 2002). MI-SVM attempts to optimize
an adaptation of the soft-margin SVM objective to MIL, in whithe margin of a bag is the maximal margin
achieved by any of its instances. It has not been shown, rewetether minimizing the objective function
of MI-SVM or analogous margin formulations for MIL allowsdening with a reasonable sample size. We
fill in this gap in Theorem 17 below, which bounds thé-at-shattering dimension (see e.g. Anthony and
Bartlett 1999) of MIL. The objective of MI-SVM amounts to Heping the hypothesis clags of separating
hyperplanes with the class of bag-hypothegg$*(#). Sincemax is the real-valued extension of OR,
this objective function is natural in our formulation. Owsult applies more generally to any bounded
c-Lipschitz bag-labeling function, and to any hypothes&sslover instances.

A function f : R™ — R is c-Lipschitz with respect to the infinity norm if

Va,b e R",|f(a) — f(b)| < clla —blw.

It is easy to verify using induction oM ,. that extensions of monotone Boolean functionslatépschitz
with respect to the infinity norm. Fer > 0, denote byF; (v) the~-fat-shattering dimension ¢, and by
F.(v) they-fat-shattering dimension af/ (H).

Theorem 17 LetB, c > 0. LetH C [0, B]* be areal-valued hypothesis class andflet[0, B]" — [0, ¢B]
be a function which ig-lipschitz with respect to the infinity norm. Then

B2t

Fo() < 6F1 () 1og* (2048 =—r Fo (7)) ©)

Before turning to the proof of Theorem 17, we note that thenidan Eq. (9) is in implicit form, since
F-(v) appears on both sides of the bound. To better understancesing, we restate the bound as a
function ofr. Fixing vy andF; (v/(64¢)) and setting3 = 6.F; (v/(64c)) andn = 2048 B%c* /42, we have

VFr = /Blog F < \/Blog(nr). (10)

Therefore Eq. (9) indicates a poly-logarithmic bound/&n
To prove Theorem 17, we use tbevering numbeof the single-instance and multi-instance hypothesis
classes. FoH C [0, B]*, v > 0 andS C X, the set ofy-coversof S by H is

cov,(H,8) £ {C CH | VYheH,Fhel, max |h(s) — h(s)| < ~}.

The~-covering numbeof a hypothesis clas® C [0, B]* and a numbem € N is

Noo(y, H,m) & max min ~ |C|.
SCX:|S|=m Cé&cov,(H,S)
The following two theorems link the covering number of a fiimie class with its fat-shattering dimen-
sion. For a function clasE, denote itsy-Fat shattering dimension Batz ().

Theorem 18 (Anthony and Bartlett, 1999, Theorem 12.10) et F' be a set of real functions and let>
0. Form > Fatp(167),
eFatr(167)/8 < Noo (v, F,m). (11

Theorem 19 (Anthony and Bartlett, 1999, Theorem 12.8)Let F' be a set of real functions from a domain
X to the bounded intervdl, B]. Lety > 0. Letd = Fatp (7). Forallm > d,

. 4deBm

4B2m) dlog =4

(12)

Noo(, Fym) <2 ( 2
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To prove Theorem 17, we bound the covering number of a bagthgpis class by the covering number
of the single-instance hypothesis class:

Lemma 20 Let f : [0, B]" — [0, cB] bec-Lipschitz with respect to the infinity norm for some- 0. For
any naturalm,r > 0, and realy > 0, and for any hypothesis clags C [0, B]*

Nao(ev, 6L (H),m) < Noo(v, H,rm). (13)

Proof LetS = {X;};cim) € X7 be a set ofn bags. LetSY = {x;[j]}icim), ;e b€ the set of instances
in bags ofS. LetC € cov., (1, SV) be ay-cover of S¥. For allh € H there exists ah € C such that
max;e(m) ||h(X;) — h(%;)|lso < 7. From the Lipschitz condition ofi we have

[6F (h)(%:) = &F () ()| = |1 f (A(x:)) = f ((x0)) oo < ellh(xi) = h(xi)]low < €.

Since ¢/ (h) € ¢/(C), it follows that ¢/ (C) € cove,(¢f(H),S). Since this is true for alC' ¢
cov.,(H, SY), we havep (cov, (H, SY)) C cove, (¢ (H),S). Therefore,

Ne(ev,pf(H),m)=  max min ol (C
(€7, 1. (H), m) scax ¢£(C)ecovm(¢£(ﬂ),3)‘ (O]
< max min lpf ()|

SCXTI|S|I=m ¢l (C)edl (covq (H.5))

max min |C|
SCXr:|S|=m Ce&cov,(H,SY)

=  max min  |C| =Ny (v, H,rm).
SCX:|S|=rm Cé&cov(H,S)

Proof [of Theorem 17] From Theorem 18 and Lemma 20 it follows thatfo> F,.(16+),

Fo(167) < 1 log Noo (7, 6] (H),m) < 610g Noc v/, Hy rm).

In addition, from Eq. (12) we have thatif > d £ Fatp(2) > 1andF isinto [0, B] then, fory < Ble,

4B*m 4B?
log Noo (7, H,m) < dlog? (7) Fatp(l)logQ( Qm).

72 4 Y

Combining the two inequalities and substitutiBywith ¢B, we get that ifm > F,.(16v) andrm >

Fi(g) > 1, then

o, 4B%ctrm

Settingm = [F,.(167)] < F,.(167) + 1, it follows that if 7,.(167) > 1 and F,.(16) > Fi(L)/r >
then

3=

FL169) < 67 () log (45 (7 (169) + 1) < 671 (1) log? (82 17, 167).

Substitutingl 6+ with ~, we have that the bound in Eq. (9) holds fof16 < B/e, which trivially holds
sincey < B. |
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6. Conclusions

In this work we have provided a new theoretical analysis fatthle Instance Learning with any underlying
hypothesis class. We have shown that the dependence ofrtipbeseomplexity of generalized MIL on the
number of instances in a bag is only poly-logarithmic, thaglying that the performance of MIL is only
mildly sensitive to the size of the bag. The analysis inctudimary hypotheses, real-valued hypotheses,
and margin learning, all of which are used in practice in Mfipkcations. For classical MIL, where the
bag-labeling function is the Boolean OR, we have shown a eewning algorithm, that classifies bags by
accessing a learning algorithm designed for single ingmnd his algorithm provably PAC-learns MIL.
In both the sample complexity analysis and the computdtianalysis, we have shown tight connections
between classical supervised learning and Multiple Ircgtdrearning. This connection holds regardless of
the underlying hypothesis class.
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Appendix A. Technical Proofs
Proof [of Lemma 9] Leta be defined as iNILearn, so thatn(+1) = 1 anda(

W(SI)F(hvsl) = Z a(yl) 2yz z Z wz Z h xz - Z w; Z h(xz[j])

—1) = 1. We have

i€[m],j€[r] =+1 J€lr] yi=—1  je[r]
w; max h(x;| wi(max h(z;|j]) —r+ 1) WY o ( )+ (r—1 w;
< 3 (i) = 37 wimash(el) Lgﬂjﬂ i Y

=L(¢"(h),SB) + (r —HW_.

Proof [of Lemma 10]
Leth € Q(Sp). From the definition of2, for anyi such thaty; = —1, ¢**(h)(X;) = —1. Thus for

all j € [r], h(z;[j]) = —1. It follows thatPg,[h(X) = =1 | Y = —1] = 1, thush € Q(S;). Therefore
Q(Sp) € Q(Sr). By the condition ond in Theorem 8()I'(hr, St) > maxyeynas,) I'(h, Sr) —n. In
addition, sincéx. € H N Q(Sp), we have

max I'(h,Sr) > max I'(h,Sr)>T(hY,Sq).

REHNQ(ST) REHNQ(SE)
Thereforel'(hr, Sr) > I'(h%,S1) —n |
Proof [of Lemma 11]
W(SHI'(h, S1) = Z a(yi)wiy; Z h(:[5])
i€[m] Jelr]
Z w,thz z:sz:hxZ
yi=+1 JE[T yi=—1 JE[r
> Z lwl(maxh(a:z[] —r4+1)—r Z wzmaxh (z:[4])
yimt1 JElr] JE[r]
= ;@™ (n),Sp) + (; )W — (T -1 > wier™(h)(x)
yi=—1
|

Proof [of Theorem 8(b)] Denoté* = argmax;,cy, I'(¢™*(h), Sp). From Lemma 9, Lemma 11 the

assumptions in Theorem 8(b),
(¢ (h1),SB) = W(S)U(hr, Sr) + (1 —r)W_ > W(Sp)(T'(R*, S1) —n) + (1 —r)W_
>y (- Wy + (L= n)Wo = (= 1) 3w (0 (%:) — .
yi=—1
Now,
— Y wdP () (%) = Y wig (R (%) =" = Y way () (%) 2 — W

yi=—1 yi=—1 y;=+1
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Therefore

[(¢7*(h1), SB) = %V*JF(%*1)W++(1*7")W—+(T*%)(’Y**W+)*7’T} = r7*+1frf(Qf§)W+frn,
where the last equality follows frof_ + W, = 1. By step4 of MILearn,

= max{T (% (r), S5, T(62 (hyos), Sp)} > max {m* FLor (2= )Wy, 20, - 1} .

It is easy to verify that for anyV, € [0,1], v > w To guaranteey > 0, we require

Yr-n>1- 5. [

r2
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