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Abstract
In the supervised learning setting termed Multiple-Instance Learning (MIL), the examples are bags of

instances, and the bag label is a function of the labels of its instances. Typically, this function is the Boolean
OR. The learner observes a sample of bags and the bag labels, but notthe instance labels that determine the
bag labels. The learner is then required to emit a classification rule for bags based on the sample. MIL has
numerous applications, and many heuristic algorithms have been used successfully on this problem, each
adapted to specific settings or applications. In this work we provide a unifiedtheoretical analysis for MIL,
which holds for any underlying hypothesis class, regardless of a specific application or problem domain. We
show that the sample complexity of MIL is only poly-logarithmically dependent on the size of the bag, for
any underlying hypothesis class. In addition, we introduce a new PAC-learning algorithm for MIL, which
employs a regular supervised learning algorithm as an oracle. We provethat efficient PAC-learning for MIL
can be generated from any efficient non-MIL supervised learning algorithm that handles one-sided error.
The computational complexity of the resulting algorithm is only polynomially dependent on the bag size.

1. Introduction

We consider the learning problem termed Multiple-InstanceLearning (MIL), first introduced in Dietterich
et al. (1997). MIL is a generalization of the classical supervised classification problem. As in classical
supervised classification, in MIL the learner receives a sample of labeled examples drawn i.i.d from an
arbitrary and unknown distribution, and its objective is todiscover a classification rule with a small expected
error over the same distribution. In MIL additional structure is assumed, whereby the examples are received
asbagsof instances, such that each bag is composed of several instances. It is assumed that each instance
has a true label, however the learner only observes the labels of the bags. In classical MIL the label of a
bag is the Boolean OR of the labels of the instances the bag contains. Various generalizations to MIL have
been proposed (see e.g. Raedt, 1998; Weidmann et al., 2003).Here we consider both classical MIL and the
more general problem where OR can be replaced with an arbitrary Boolean function, known to the learner
in advance. We term the latter problemgeneralized MIL.

It is possible, in principle, to view MIL as a regular supervised classification task, where a bag is a
single example, and the instances in a bag are merely part of its internal representation. Such treatment,
however, would not take advantage of the special structure of a MIL problem and its possible connections
to the related non-MIL classification problem. As we show in this work, these connections are strong and
useful.
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MIL has been used in numerous applications. In Dietterich etal. (1997) the drug design application
motivates this setting. In this application, the goal is to predict which molecules would bind to a specific
binding site. Each molecule has several possible conformations (shapes) it can take. If at least one of the
conformations binds to the binding site, then the molecule is labeled positive. However, it is not possible
to experimentally identify which conformation was the successful one. Thus, a molecule can be thought of
as a bag of conformations, where each conformation is an instance in the bag representing the molecule.
This application employs the hypothesis class of Axis Parallel Rectangles (APRs), and had made APRs the
hypothesis class of choice in several theoretical works that we mention below. There are many other appli-
cations for MIL, including image classification (Maron and Ratan, 1998), web index page recommendation
(Zhou et al., 2005) and text categorization (Andrews, 2007).

Previous theoretical analysis of the computational aspects of MIL has been done in two main settings.
In some works (Auer et al., 1998; Blum and Kalai, 1998; Long and Tan, 1998), it is assumed that all the
instances are drawn i.i.d from a single distribution over instances, so that the instances in each bag are
statistically independent. Under this independence assumption, learning from an i.i.d. sample of bags is as
easy as learning from an i.i.d. sample of instances with one-sided label noise. This is stated in the following
theorem.

Theorem 1 (Blum and Kalai, 1998) If a hypothesis classH is PAC-learnable in polynomial time from
one-sided random classification noise, then the hypothesisclassH is PAC-learnable in polynomial time in
MIL under the independence assumption. The learning is polynomial in the bag size and in the sample size.

The assumption of statistical independence of the instances in each bag is, however, very limiting, and it
is irrelevant to many applications. More generally, one wishes to learn from an i.i.d. sample of bags drawn
from an arbitrary distributionover bags, thus the instances within a bag may be statistically dependent. For
the hypothesis class of APRs and an arbitrary distribution over bags, it is shown in Auer et al. (1998) that
if there exists a PAC-learning algorithm for MIL with APRs, and this algorithm is polynomial in both the
size of the bag and the dimension of the Euclidean space, thenit is possible to polynomially PAC-learn
DNF formulas, a problem which is solvable only ifRP = NP (Pitt and Valiant, 1986). In addition, if it is
possible to improperly learn MIL with APRs (that is, to learna classifier which is not itself an APR), then it
is possible to improperly learn DNF formulas, a problem which has not been solved to this date for general
distributions. This result implies that it is not possible to PAC-learn MIL on APRs using an algorithm
which is efficient in both the bag size and the problem dimensionality. It does not, however, preclude the
possibility of performing MIL efficiently under more restrictive assumptions.

In practice, numerous algorithms have been proposed for MIL, each focusing on a different special-
ization of this problem. Dietterich et al. (1997) propose several heuristic algorithms for finding an APR
that predicts the label of an instance and of a bag. Diverse Density (Maron and Lozano-Ṕerez, 1998) and
EM-DD (Zhang and Goldman, 2001) employ assumptions on the structure of the bags of instances. DP-
Boost (Andrews and Hofmann, 2003), mi-SVM and MI-SVM (Andrews et al., 2002), and Multi-Instance
Kernels (G̈artner et al., 2002) are approaches for learning MIL using margin-based objectives. Some of
these methods work quite well in practice. However, no generalization guarantees have been provided for
any of them.

In this work we analyze MIL and generalized MIL in a general framework, independent of a specific
application, and provide results that hold for any underlying hypothesis class. We assume some fixed
hypothesis class defined over instances. We investigate therelationship between learning with respect to
this hypothesis class in the classical supervised learningsetting with no bags, and learning with respect to
the same hypothesis class in MIL. We address both sample complexity and computational feasibility.

Our sample complexity analysis shows that for binary hypothesis and thresholded real-valued hypothe-
ses, the sample size required in generalized MIL grows only logarithmically with the bag size. We also
provide poly-logarithmic sample complexity results for the case of margin learning. From this analysis it
is possible to derive distribution-free generalization bounds for previously proposed algorithms for MIL.
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Regarding the computational aspect, we provide a new learning algorithm with provable guarantees for
classical MIL. Given a non-MIL learning algorithm for the hypothesis class, which can handle one-sided
errors, we improperly learn MIL with the same hypothesis class. The construction is simple to implement,
and provides a computationally efficient PAC-learning of MIL, with only a polynomial dependence of the
run time on the bag size.

The structure of the paper is as follows. In Section 2 the problem is formally defined and notation
is introduced. In Section 3 the sample complexity of generalized MIL for binary hypotheses is analyzed.
Section 4 provides the learning algorithm for classical MIL. In Section 5 we analyze the sample complexity
of generalized MIL with real-valued functions and for large-margin learning. We conclude in Section 6.
Appendix A includes technical proofs that have been skippedin the text. A preliminary version of this work
has been published as Sabato and Tishby (2009).

2. Problem Setting and Notation

Let X be the input space, also called the domain of instances. A bagis a set of instances fromX . The
domain of labels is{−1,+1}. Throughout this work we assume for simplicity that all bagsare of the same
sizer for some naturalr, and that the instances in each bag are ordered. Thus the domain of bags isX r.
Bags are denoted bȳx = (x[1], . . . , x[r]) ∈ X r where eachx[j] is an instance in the bag.

Denote the label of an instancex ∈ X by the probabilistic functionL(x). We assume a conditional
probability distributionDY |X , such that∀x ∈ X , y ∈ {−1,+1}, P[L(x) = y] = Dy|x. For any bag
x̄ ∈ X r, the label of the bag is determined from the labels of its instances using a fixed Boolean function
f : {−1,+1}r → {−1,+1}. ThusL(x̄) = f(L(x[1]), . . . , L(x[r])). Importantly, the identity off is
known to the learner a-priori, thus eachf defines a different generalized MIL problem (In classical MIL, f
is the Boolean OR). We further assume a probability distributionDX̄ over bags inX r. The learner receives
as input a sample of labeled bags{(x̄1, y1), . . . , (x̄m, ym)} such that the bags̄xi are drawn independently
from DX̄, and eachyi ∈ {−1,+1} is drawn according to the distribution ofL(x̄i). We letD be the
distribution overX r × {−1,+1} determined byDX̄ andDY |X as described herein.

The goal of the learner is to find a classification rule that would classify new bags drawn according to
the same (unknown) joint distributionD with low error. We point out that it is not generally possibleto find
a low-error classification rule for instances based on a bag sample. As a simple counter-example, assume
thatf is the Boolean OR, and that every bag includes both a positiveinstance and a negative instance. In
this case all bags are labeled as positive, and it is not possible to distinguish the two types of instances by
observing only bag labels.

For a functiong : Z → T , we also use its vector extensiong : Zk → T k defined asg(a) ,

(g(a[1]), . . . , g(a[k])). Forx,y ∈ R
n, 〈x,y〉 denotes the inner product ofx andy. For a natural number

k, we denote by[k] the set{1, . . . , k}. log denotes a base 2 logarithm. For two setsA andB, BA denotes
the set of functions fromA toB.
H denotes a hypothesis class that labels instances inX . Hypotheses may be binary, so thatH ⊆

{−1,+1}X , or they may be real-valued, so thatH ⊆ [−1,+1]X . The relevant assumptions onH will be
specified in context. We define the bag-labeling operator, which maps a hypothesis over instances into a
hypothesis over bags, as follows:

Definition 2 Let f : Y r → Y for some setY . Thebag-labeling operator, denoted byφf
r : Y X → Y X r

,
maps hypotheses over instances to hypotheses over bags as follows:

∀h ∈ Y X , x̄ ∈ X r, φf
r (h)(x̄) , f(h(x̄)) ≡ f(h(x[1]), . . . , h(x[r])).

The set of hypotheses over bags generated fromH byφf
r is denoted byφf

r (H) , {φf
r (h) | h ∈ H}.
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3. Sample Complexity of Binary Hypotheses Classes

In this section we consider binary hypothesis classesH ⊆ {−1,+1}X , and bound the VC-dimension of
φf
r (H) as a function of the VC-dimension ofH and of the bag sizer. We show that the VC-dimension

of φf
r (H) is at most logarithmic inr, and at most linear in the VC-dimension ofH, for any Boolean

bag-labeling functionf . Since the bounds on sample complexity are proportional to the VC-dimension of
the problem (Vapnik and Chervonenkis, 1971), it follows that the sample complexity of MIL grows only
logarithmically with the size of the bag. Thus MIL is feasible even for quite large bags, and can sometimes
be used to accelerate even single-instance learning (Sabato et al., 2010). We further show lower bounds
on the VC-dimension of MIL, indicating that the dependence of the upper bound onr and on the VC-
dimension ofH is imperative for a large class of Boolean bag-labeling functions. We also show a matching
lower bound for VC-dimension of classical MIL with separating hyperplanes.

3.1 VC-Dimension Upper Bound

The following theorem establishes a VC-Dimension upper bound for generalized MIL.

Theorem 3 Let f : {−1,+1}r → {−1,+1} be anr-ary Boolean function. Letφf
r be the bag-labeling

operator defined in Def. 2. LetH ⊆ {−1,+1}X be a hypothesis class with a finite VC-dimensiond, and
denote the VC-dimension ofφf

r (H) bydr. Then

dr ≤ max{16, 2d log(2er)}.

Proof For a hypothesish, denote byh|A its restriction to a setA, and for a set of hypothesesJ , denote by
J |A the restriction of each of its members toA, so thatJA , {h|A | h ∈ J }.

Sincedr is the VC-dimension ofφf
r (H), there exists a set of bagsS = {x̄i}i∈[dr] ⊆ X r that is

shattered byφf
r (H), so that|φf

r (H)|S | = 2dr . Let S∪ = {xi[j]}i∈[m],j∈[r] be the set of instances of bags
in S. Clearly|φf

r (H)|S | ≤ |H|S∪
|, therefore2dr ≤ |H|S∪

|. Applying Sauer’s lemma (Sauer, 1972; Vapnik
and Chervonenkis, 1971) toH we get

2dr ≤ |H|S∪
| ≤

(

e|S∪|
d

)d

≤
(

erdr
d

)d

,

Wheree is the base of the natural logarithm. It follows thatdr ≤ d(log(er)− log d) + d log dr. To provide
an explicit bound fordr, we boundd log dr by dividing to cases:

1. Eitherd log dr ≤ 1
2dr, thusdr ≤ 2d(log(er)− log d) ≤ 2d log(er),

2. or 1
2dr < d log dr. In this case,

(a) eitherdr ≤ 16,

(b) or dr > 16. In this case
√
dr < dr/ log dr < 2d, thusd log dr = 2d log

√
dr ≤ 2d log 2d.

Substituting in the implicit bound we getdr ≤ d(log(er)− log d) + 2d log 2d ≤ 2d log(2er).

Combining the cases we havedr ≤ max{16, 2d log(2er)}.

3.2 VC-Dimension Lower Bounds

In this section we show lower bounds on the VC-dimension of MIL, indicating that the dependence ond and
r in Theorem 3 is tight in two important settings. We start witha lower bound with respect to a worst-case
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hypothesis class, for any bag-labeling function which is sensitive to its inputs in a specific sense defined in
the following theorem. Functions that satisfy this requirement include the Boolean OR, AND, and Parity,
and all their variants that stem from negating some of the inputs.

Theorem 4 Let f : {−1,+1}r → {−1,+1} be anr-ary Boolean function. Assume that there exist two
Boolean vectorsc,a ∈ {−1,+1}r such that

∀j ∈ [r], y ∈ {−1,+1}, f(c[1], . . . , c[j] · y, . . . , c[r]) = a[j] · y.

For any naturald and any instance domainX with |X | ≥ rd⌊log(r)⌋, there exists a hypothesis classH
with a VC dimension at mostd, such that the VC dimension ofφf

r (H) is at leastd⌊log(r)⌋.

Proof LetS ⊆ X r be a set ofd⌊log(r)⌋ bags, such that all the instances in all the bags are distinctelements
of X . Divide S into d mutually exclusive subsets, each with⌊log(r)⌋ bags. Denote bagp in subsett by
x̄(p,t). We define the hypothesis class

H , {h[k1, . . . , kd] | ∀i ∈ [d], ki ∈ [2⌊log(r)⌋]},

whereh[k1, . . . , kd] is defined as follows (see illustration in Table 1): Forx ∈ X which is not an instance
of any bag inS, h[k1, . . . , kd] = −1. Forx = x(p,t)[j], let b(p,n) be bitp in the binary representation of the
numbern. We define

h[k1, . . . , kd](x(p,t)[j]) =

{

c[j] · a[j] · (2b(p,j−1) − 1) j = kt,

c[j] j 6= kt,

t p Instance labelh(x(p,t)[r]) Bag labelφOR
r (h)(x̄i)

1 − − − + − − − − +
1 2 − − − + − − − − +

3 − − − − − − − − −
1 − − − − − − − + +

2 2 − − − − − − − + +
3 − − − − − − − + +
1 − − − − − − − − −

3 2 − + − − − − − − +
3 − − − − − − − − −

Table 1: An example of the hypothesesh = h[4, 8, 3], with f = OR (so thatc anda are all−1 vectors),
r = 8, andd = 3. Each line represents a bag inS, each column represents an instance in the bag.

We now show thatS is shattered byφf
r (H), indicating that the VC-dimension ofφf

r (h) overX is at
least|S| = d⌊log(r)⌋. To complete the proof, we further show that the VC dimensionofH is no more than
d.

• S is shattered byφf
r (H): Let {y(p,t)}p∈⌊log(r)⌋,t∈[d] be some labeling over{−1,+1} for the bags in

S. For eacht ∈ [d] let

kt , 1 +

⌊log(r)⌋
∑

p=1

y(p,t) + 1

2
· 2p−1.
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Then for allp ∈ [⌊log(r)⌋] andt ∈ [d],

φf
r (h[k1, . . . , kd])(x̄(p,t)) = f(c[1], . . . , c[kt]·a[kt]·(2b(p,kt−1)−1), . . . , c[r]) = 2b(p,kt−1)−1 = y(p,t).

Thush[k1, . . . , kd] labelsS according to{y(p,t)}.
• The VC-dimension ofH is no more thand: Let A ⊆ X of sized + 1. If there is an element in
A which is not an instance inS then this element is labeled−1 by all h ∈ H, thereforeA is not
shattered. Otherwise, all elements inA are instances in bags inS. Since there ared subsets ofS,
there exist two elements inA which are instances of bags in the same subsett. Denote these instances
byx(p1, t)[j1] andx(p2, t)[j2]. Consider all the possible labelings of the two elements by hypotheses
in H. If A is shattered, there must be four possible labelings for these elements. However, by the
definition ofh[k1, . . . , kd] it is easy to see that ifj1 = j2 = j then there are at most two possible
labelings by hypotheses inH, and ifj1 6= j2 then there are at most three possible labelings. ThusA
is not shattered byH, hence the VC-dimension ofH is no more thand.

Theorem 7 below provides a lower bound for the VC-dimension of MIL for the common case where
f is the Boolean OR and the hypothesis class is the class of separating hyperplanes inRn, denoted by
Wn , {x 7→ sign(〈w,x〉) | w ∈ R

n}. We denote the VC-dimension ofφOR
r (Wn) by dr,n. The lower

bound is proved using two lemmas: Lemma 5 provides a lower bound fordr,3, and Lemma 6 linksdr,n for
smalln with dr,n for largen. The resulting general lower bound is then stated in Theorem7.

Lemma 5 Letdr,n the VC-dimension ofφOR
r (Wn) as defined above. Thendr,3 ≥ ⌊log(2r)⌋.

Proof DenoteL , ⌊log(2r)⌋. We will construct a setS of L bags of sizer that is shattered byW3. The
construction is illustrated in Figure 1.

3

2

2

1

3

3

12

2

1
−1

+1

1
3

Figure 1: An illustration of the constructed shattered set,with r = 4 andL = log 4 + 1 = 3. Each
dot corresponds to an instance. The numbers next to the instances denote the bag to which an
instance belongs, and match the sequenceN defined in the proof. In this illustration bags1 and
3 are labeled as positive by the bag-hypothesis represented by the solid line.

Let n = (n1, . . . , nK) be a sequence of indices from[L], created by concatenating all the subsets of
[L] in some arbitrary order, so thatK = L2L−1, and every index appears2L−1 ≤ r times inn. Define a
setA = {ak | k ∈ [K]} ⊆ R

3 whereak , (cos(2πk/K), sin(2πk/K), 1) ∈ R
3, so thata1, . . . ,aK are

equidistant on a unit circle on a plane embedded inR
3. Define the set of bagsS = {x̄1, . . . , x̄L} such that

x̄i = (xi[1], . . . , xi[r]) where{xi[j] | j ∈ [r]} = {ak | nk = i}.
We now show thatS is shattered byW3: Let (y1, . . . , yL) be some binary labeling ofL bags, and let

Y = {i | yi = +1}. By the definition ofn, there existj1, j2 such thatY = {nk | j1 ≤ k ≤ j2}. Clearly,
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there exists a hyperplanew ∈ R
3 that separates the vectors{ak | j1 ≤ k ≤ j2} from the rest of the vectors

in A. Thussign(〈w,ak〉) = +1 if and only if j1 ≤ k ≤ j2. It follows thatφOR
r (w)(x̄i) = +1 if and only

if there is ak ∈ {j1, . . . , j2} such thatak is an instance in̄xi, that is such thatnk = i. This condition holds
if and only if i ∈ Y , hencew classifiesS according to the given labeling. It follows thatS is shattered by
W3, therefored3r ≥ |S| = ⌊log(2r)⌋.

Lemma 6 Letk, n, r be natural number such thatk ≤ n. Thendr,n ≥ ⌊n/k⌋dr,k.

Proof For a vectorx ∈ R
k and a numbert ∈ {0, . . . , ⌊n/k⌋} define the vectors(x, t) ,

(0, . . . , 0, x[1], . . . , x[k], 0, . . . , 0) ∈ R
n, where x[1] is at coordinatekt + 1. Similarly, for a bag

x̄i = (xi[1], . . . ,xi[r]) ∈ (Rk)r, define the bags(x̄i, t) , (s(xi[1], t), . . . , s(xi[r], t)) ∈ (Rn)r.
Let Sk = {x̄i}i∈[dr,k] ⊆ (Rk)r be a set of bags with instances inRk that is shattered byφOR

r (Wk).

DefineSn, a set of bags with instances inRn: Sn , {s(x̄i, t)]}i∈[dr,k],t∈[⌊n/k⌋] ⊆ (Rn)r. ThenSn is
shattered byWn: Let {y(i,t)}i∈[dr,k],t∈[⌊n/k⌋] be some labeling forSn. Sk is shattered byWk, hence there
are separatorsw1, . . . ,w⌊n/k⌋ ∈ R

k such that∀i ∈ [dr,k], t ∈ ⌊n/k⌋, φOR
r (wt)(x̄i) = y(i,t).

Setw ,
∑⌊n/k⌋

t=0 s(wt, t). Then〈w, s(x, t)〉 = 〈wt,x〉. Therefore

φOR
r (w)(s(x̄i, t)) = OR(sign(〈w, s(xi[1], t)〉), . . . , sign(〈w, s(xi[r], t)〉))

= OR(sign(〈wt,xi[1]〉), . . . , sign(〈wt,xi[r]〉)) = φOR
r (wt)(x̄i) = y(i,t).

Sn is thus shattered, hencedr,n ≥ |Sn| = ⌊n/k⌋dr,k.

The desired theorem is an immediate consequence of the two lemmas above:

Theorem 7 LetWn be the class of separating hyperplanes inR
n as defined above. The VC-dimension of

φOR
r (Wn) is at least⌊n/3⌋⌊log 2r⌋.

4. PAC-Learning for MIL

In the previous section we addressed the sample complexity of generalized MIL, showing that it grows only
logarithmically with the bag size. We now turn to consider the computational aspect of MIL, focusing on
classical MIL, in which the bag-labeling function is the Boolean OR. We provide a simple algorithm for
MIL which uses as an oracle a learning algorithm which operates on single instances. In this section we
assume real-valued hypotheses, that isH ⊆ [−1,+1]X . The bag-labeling function is accordingly general-
ized to amax instead of OR. The related sample complexity analysis of MILfor real-valued hypotheses is
deferred to Section 5.

The proposed algorithm, namedMILearn, uses an algorithmA as a black-box.A operates on single
instances and returns a hypothesis inH, while MILearn operates on a sample of bags and selects a bag-
hypothesis fromφmax

r (H). We show that ifA perfoms one-sided or agnostic learning of single instances
with respect toH, thenMILearn is aweak learnerfor MIL with respect toφmax

r (H). MILearn can thus
be used as the building block in a boosting algorithm (Freundand Schapire, 1997). The boosting algorithm
returns a linear combination of bag-hypotheses that classifies unseen bags with high accuracy. Furthermore,
if A is efficient then our algorithm is also efficient, with a polynomial dependence on the bag size.

We describe the weak learner in Section 4.1. We then proceed to explain the boosting construction in
Section 4.2, and conclude the section with a short discussion of implications in Section 4.3.
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4.1 The Weak Learner

We start with some notation. A labeled and weighted sample ofinstances is a set of triplets(w, x, y) ∈
R

+ × X × {−1,+1}, wherew is the weight of the instance,x is the instance, andy is the instance label.
A labeled and weighted sample of bags is a set of triplets(w, x̄, y) ∈ R

+ × X r × {−1,+1}, wherew
is the weight of the bag,̄x is the bag, andy is the bag label. Theedgeof a hypothesis is a measure of
how successful the hypothesis is in classifying with respect to a distribution. For an instance hypothesis
h : X → [−1,+1] and a distributionD overX × {−1,+1}, the edge ofh with respect toD is

Γ(h,D) , E(X,Y )∼D[Y · h(X)].

Note that ifh(x) is interpreted as the probability ofh to emit1 for inputx, then 1−Γ(h,D)
2 is the expected

error ofh onD. For a weighted and labeled instance sampleS = {(wi, xi, yi)}i∈[m], DS is the probability
distribution overX → [−1,+1] defined byPDS

[(X,Y ) = (xi, yi)] = wi/
∑m

j=1 wj . Where it is clear
from context, we useS interchangeably withDS . ThusΓ(h, S) ≡ Γ(h,DS). Γ(h,D) andΓ(h, S) are
defined similarly for a bag hypothesish ∈ φmax

r (H), a distributionD overX r × [−1,+1], and a labeled
and weighted sample of bagsS.

The proposed algorithmMILearn, listed as Algorithm 1 below, accepts as input a bag sample denoted
SB , and assumes access to an algorithmA. A receives a labeled and weighted instance sample and returns
an instance hypothesish ∈ H. We denote byA(S) ∈ H the result of runningA with inputS. hpos denotes
the constant positive hypothesis:∀x ∈ X , hpos(x) = +1. For simplicity we assumehpos ∈ H. The
output ofMILearn is a bag-hypothesis inφmax

r (H) that classifiesSB with an edge that depends on the best
achievable edge forSB , as we presently show.

MILearn is a simple algorithm: It constructs a sample of instancesSI from the instances that make
up bags inSB , labeling each instance inSI with the label of the bag it came from. The weight of an
instance with a positive label is set to be the weight of the bag it came from, divided byr, and the weight
of an instance with a negative label is set to be the same as theweight of the bag it came from. Having
constructedSI , MILearn runsA on SI . It then selects whether to returnφmax

r (A(SI)) or φmax
r (hpos),

whichever provides the better edge onSB .

Algorithm 1 : MILearn
Assumptions:

• Access to an algorithmA, that receives a weighted instance sample and returns a hypothesis inH.

• hpos ∈ H.

Input : SB , {(wi, x̄i, yi)}i∈[m] – a labeled and weighted sample of bags;

Output : hM ∈ φmax
r (H).

α(+1) ← 1
r , α(−1) ← 1.1

SI ← {(αyi
· wi, xi[j], yi)}i∈[m],j∈[r].2

hI ← A(SI).3

if Γ(φmax
r (hI), SB) ≥ Γ(φmax

r (hpos), SB) then4

hM ← φmax
r (hI),5

else6

hM ← φmax
r (hpos).7

8
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We now prove thatMILearn provides guarantees for the edge of the resulting hypothesis, depending
on the properties onA. Before stating the result, we define some auxiliary notation. For a distributionD
overX × {−1,+1}, we denote byΩ(D) the set of hypotheses which have only one-sided error onD. We
specifically require that such hypotheses err only onpositiveexamples inS. Formally,

Ω(D) , {h ∈ [−1,+1]X | PD[h(X) = −1 | Y = −1] = 1}.

If D is a distribution overX r × {−1,+1}, then

Ω(D) , {h ∈ [−1,+1]X | PD[φmax
r (h)(X) = −1 | Y = −1] = 1}.

The definition forD andh defined on bags is similar.
In the following theorem we compare the edge achieved usingMILearn to the best possible edge for

the sampleSB . The best edge forSB achievable by a hypothesis inH is denotedγ∗, and the best edge
achievable by a hypothesis inH with one-sided error is denotedγ∗

+. Formally:

γ∗ , max
h∈H

Γ(φmax
r (h), SB), (1)

γ∗
+ , max

h∈H∩Ω(SB)
Γ(φmax

r (h), SB). (2)

Theorem 8 LetH ⊆ [−1,+1]X be a set of instance hypotheses. LethM be the hypothesis returned by
MILearn when receivingSB as input, and letγ , Γ(hM , SB). Then

(a) If for any instance sampleS, Γ(A(S), S) ≥ maxh∈H∩Ω(S) Γ(h, S)− η for someη > 0, then

γ ≥ γ∗
+ − r2η

2r − 1
. (3)

(b) If for any instance sampleS, Γ(A(S), S) ≥ maxh∈H Γ(h, S)−η for someη > 0, andγ∗−η ≥ 1− 1
r2 ,

then

γ ≥ 1− r2(1− γ∗ + η)

2r − 1
≥ 0. (4)

Proof We prove part (a) of the theorem, and defer the similar proof of part (b) to Appendix A. Denote
the total weight of examples in a sampleS by W (S). In addition, denoteW+ ,

∑

i:yi=+1 wi andW− ,
∑

i:yi=−1 wi, where{wi} are the weights of the bags inSB . We assume w.l.o.g. thatW (SB) ≡ W+ +

W− = 1. Let h∗
+ , argmaxh∈H∩Ω(SB) Γ(φ

max
r (h), SB). SI andhI are as defined in steps 2 and 3 of

MILearn. The proof of Theorem 8(a) employs the following technical lemmas. Their proofs are provided
in Appendix A.

Lemma 9 For any instance hypothesish, Γ(φmax
r (h), SB) ≥W (SI)Γ(h, SI) + (1− r)W−.

Lemma 10 If the condition onA in (a) holds, thenΓ(hI , SI) ≥ Γ(h∗
+, SI)− η.

Lemma 11 For any instance instance hypothesish,

W (SI)Γ(h, SI) ≥ 1
rΓ(φ

max
r (h), SB) + ( 1r − 1)W+ − (r − 1

r )
∑

yi=−1

wiφ
max
r (h)(x̄i).

9
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Forh ∈ Ω(SB),
∑

yi=−1 wiφ
max
r (h)(x̄i) = −W−. Therefore, from Lemma 11,

W (SI)Γ(h, SI) ≥ 1
rΓ(φ

max
r (h), SB) + ( 1r − 1)W+ + (r − 1

r )W−. (5)

Applying Lemma 9, Lemma 10 and Eq. (5) sequentially, we have

Γ(φmax
r (hI), SB) ≥W (SI)Γ(hI , SI) + (1− r)W− ≥W (SI)(Γ(h

∗
+, SI)− η) + (1− r)W−

≥ 1
rΓ(φ

max
r (h∗

+), SB) + ( 1r − 1)W+ + (1− 1
r )W− − rη = 1

rγ
∗
+ + (1− 1

r )(1− 2W+)− rη, (6)

where the last equality follows from the assumption thatW+ +W− = 1. By step4 of MILearn,

γ = max{Γ(φmax
r (hI), SB),Γ(φ

max
r (hpos), SB)} ≥ max

{

1
rγ

∗
+ + (1− 1

r )(1− 2W+)− rη, 2W+ − 1
}

.

It is easy to verify that for anyW+ ∈ [0, 1], γ ≥ γ∗

+−r2η

2r−1 .

Theorem 8 guarantees that ifA performs approximate ERM with respect toH on its non-bag input
sample, thenMILearn achieves an approximation to the optimal edge of a hypothesis in φmax

r (H) on its
bag input sample. It is also easy to see that the time complexity of MILearn is bounded byO(c(A) + rm),
wherec(A) is an upper bound on the time complexity ofA. In addition, the results of Theorem 8 can easily
be extended to the case where instead of access to an approximate ERM algorithm, we have access to a
PAC-learning algorithm, with no assumption on its internalmechanism.

Definition 12 (One-sided and agnostic PAC-learning algorithms) Let B(ǫ, δ, S) be an algorithm that
accepts as inputδ, ǫ ∈ (0, 1), and a labeled sampleS ∈ (X × {−1,+1})m, and emits as output a hy-
pothesish ∈ H.
B is aone-sided PAC-learning algorithmforH with complexityc(ǫ, δ) if B runs for no more thanc(ǫ, δ)

steps, and for any probability distributionD overX × {−1,+1}, if S is an i.i.d. sample fromD of size
c(ǫ, δ) then with probability at least1− δ overS and the randomization ofB,

Γ(B(S), D) ≥ sup
h∈H∩Ω(D)

Γ(h,D)− 2ǫ.

Similarly,B is anagnostic PAC-learning algorithmfor H if with probability at least1 − δ overS and
the randomization ofB,

Γ(B(S), D) ≥ sup
h∈H

Γ(h,D)− 2ǫ.

With access to a one-sided or agnostic PAC-learning algorithm, we can construct an algorithmA such
that the required guarantees for Theorem 8 would hold with high probability over the randomization ofA.
Let S be the input toA. A creates an unweighted sampleS̃ from S by drawingc(η/2, δ) labeled instances
independently according toDS , and returnsB(S̃). If B is a one-sided PAC-learning algorithm, then with
probability at least1− δ, Γ(A(S), S) ≥ maxh∈H Γ(h, S)− η. Similarly, if B is an agnostic PAC-learning
algorithm, then with probability at least1− δ, Γ(A(S), S) ≥ maxh∈H∩Ω(S) Γ(h, S)− η. Thus, by a slight
modification of the proof of Theorem 8, we get the following theorem.

Theorem 13 Let δ, η ∈ (0, 1). Under the same definitions as in Theorem 8, IfA is created from
a one-sided PAC-learning algorithmB with complexityc(ǫ, δ) as described above, thenMILearn uses
O(max(c(η/2, δ),mr)) steps, and with probability at least1− δ emits a hypothesis with edgeγ that satis-
fies Eq. (3). IfB is an agnostic PAC-learning algorithm, then Eq. (4) holds instead.

Specifically, if B is a one-sided PAC-learning algorithm, we can setη ≤ γ∗

+

2r2 to get a guaranteed
approximation forγ∗

+. If B is an agnostic PAC-learning algorithm andγ ≥ 1− 1
2r2 , we can setη = 1

2r2 to
get a positiveγ with high probability.

10
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4.2 Boosting with the Weak Learner

Theorem 8 and Theorem 13 show that under suitable conditions, MILearn produces a hypothesis whose
edge approximates the edge of the best hypothesis inφmax

r (H). In this section we conclude thatMILearn
can be used as the weak learner in a boosting algorithm for MIL. The result is a learning algorithm for MIL
with guaranteed generalization.

There are plenty of possible boosting algorithms. For concreteness, we base the following discussion on
AdaBoost∗ (Rätsch and Warmuth, 2005), since it provides suitable guarantees on themarginof its output
hypothesis. The margin of a linear combination of hypotheses on a sampleS = {(xi, yi)}mi=1 is defined as
follows:

M(α, S) = min
i∈[m]

yi
∑

h

Pα[h]h(xi),

whereα is some distribution with finite support over hypotheses. The input toAdaBoost∗ is an i.i.d.
labeled sample. Like all boosting algorithms,AdaBoost∗ assumes access to aweak learner, which is
an algorithm that accepts a weighted sample and returns a hypothesis from some fixed hypothesis class.
AdaBoost∗ activates its weak learner several times on different weighted samples, and returns as output a
linear combination of the returned hypotheses. If the hypothesis returned by the weak learner in each round
has edge at leastρ, then after2 lnm

ν2 iterations,AdaBoost∗ finds a linear combination of hypothesesα,
with M(α, S) ≥ ρ − ν. The generalization error ofα can be bounded using its margin onS, and using
d, the complexity of the underlying hypothesis class. The following bound (Schapire et al., 1998; Schapire
and Singer, 1999) holds with probability1− δ over the training samples:

P[Y
∑

h

Pα[h]h(X) ≤ 0] ≤ O





(

d log2(m/d)

mM2(α, S)
+ log(1/δ)

)

1
2



 . (7)

In our case, the input sample is a labeled sample of bags, the fixed hypothesis class isφmax
r (H), and the

output ofAdaBoost∗ is a linear combination of hypotheses in this class. We will show that ifMILearn is
used as the weak learner, then under suitable assumptions the margin guarantees indeed hold, and a resulting
generalization bound with a polynomial dependence onr follows.

For a sample of bagsS, let ρ∗ be the largest margin that can be achieved for this sample by alinear
combination of hypotheses fromφmax

r (H). Formally, letA be the set of distributions overφmax
r (H) with

finite support, and define
ρ∗ , max

α∈A
M(α, S).

LetSw be the sampleS with its bags weighted according tow ∈ (R+)m. From the Min-Max theorem (von
Neumann 1928, and further developed in Rätsch and Warmuth 2005),

ρ∗ = min
w:

∑
wi=1

max
h

Γ(h, Sw),

whenever the maximum onφmax
r (H) is defined. Thus, for any weighting of the sampleS, there exists a sin-

gle hypothesish ∈ φmax
r (H) with edge at leastρ∗. The input toMILearn in every iteration ofAdaBoost∗

is the weighted sampleSB ≡ Sw. Thus in each round,γ∗ ≥ ρ∗, whereγ∗ is the best achievable edge,
defined in Eq. (1).

For instance, assume that the conditions onA in Theorem 8(b) hold withη = 0, and supposeρ∗ ≥
1 − 1

r2 . Then for every input sampleSw, γ∗ ≥ ρ∗. Thus by Theorem 8MILearn returns a hypothesis

with edge at leastρ = 1−r2(1−ρ∗)
2r−1 ≥ 0. Settingν = ρ/2, we get thatAdaBoost∗ achieves a margin

of 1−r2(1−ρ∗)
4r−2 after a number of iterations which is polynomial in the bag size r.1 It is easy to extend

1. One can also replace the hard margin requirement with a soft margin formulation, following Warmuth et al. (2007) and Shalev-
Shwartz and Singer (2008).
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this argument also for the case whereMILearn only satisfies the conditions with high probability, as in
Theorem 13. In this case, the confidence parameterδ used inMILearn should be inversely proportional to
the number of iterations ofAdaBoost∗, which is polynomial inr.

A more specifics analysis can be done in therealizable case, where there exists a single hypothesis in
φmax
r (H) that classifies the training sample perfectly. In this caseρ∗ = γ∗ = γ∗

+ = 1. Assume thatA is a
one-sided ERM algorithm, i.e. Theorem 8(a) holds for any weight vectorw, with η = 0. Thus, a margin
of 1

4r−2 can be achieved usingAdaBoost∗ with N = 8(2r − 1)2 lnm runs ofA. If we assume instead a
one-sided PAC-learning algorithmB(ǫ, δ, S), we can achieve a similar result with a probability of at least
1 − δ, using Theorem 13 with the confidence parameterδ/N . Thus, if the complexity ofA is bounded by
a polynomial in1/ǫ and1/δ, then the complexity of the MIL algorithm is polynomial inr, 1

ǫ and 1
δ .

The generalization bound for boosting in Eq. (7) depends on1/M2(α, S), which is polynomial inr in
the cases described above, and ond, the complexity ofφmax

r (H). For binary hypothesis classes,d is the VC-
dimension ofφmax

r (H), which, by Theorem 3, grows logarithmically withr. For real-valued hypotheses,d
is the pseudo-dimension ofφmax

r (H). Similar generalization results for boosting can be derived for margin-
learning as well, using covering-numbers arguments as discussed in Schapire et al. (1998). In Section 5
the sample complexity of MIL with real-valued hypotheses isanalyzed, showing that the dependence of the
class complexity onr is poly-logarithmic. Thus, in all cases, Eq. (7) implies that the required sample size
to achieve learning with errorǫ and confidence1− δ is polynomial inr, 1

ǫ andln( 1δ ).

4.3 From Single-Instance Learning to Multi-Instance Learning

From the discussion in the previous section we can draw the following conclusion on the relationship
between single-instance learning and efficient MIL for the realizable case.

Corollary 14 If there exists a one-sided PAC-learning algorithm forH whose computational complexity is
polynomial in 1

ǫ and 1
δ , then there exists a PAC-learning algorithm for MIL onH which is polynomial in

r,1ǫ and 1
δ .

Theorem 1 and Cor. 14 are similar in structure: Both state that if the single-instance problem is solv-
able with one-sided error, then the realizable MIL problem is solvable. Theorem 1 applies only to bags
with statistically independent instances, while Cor. 14 applies to bags drawn from an arbitrary distribution.
The assumption of Theorem 1 is weaker, though, as it only requires that the single-instance PAC-learning
algorithm handle random one-sided noise, while Cor. 14 requires that the single-instance algorithm handle
arbitrary one-sided noise.

Of course, Cor. 14 does not contradict the hardness result provided for APRs in Auer et al. (1998).
Indeed, this hardness result states that if there exists a MIL algorithm for d-dimensional APRs which is
polynomial in bothr andd, thenRP = NP. Our result does not imply that such an algorithm exists, since
there is no known agnostic or one-sided PAC-learning algorithm for APRs which is polynomial ind.

Nontheless,MILearn and Cor. 14 provide us with a simple and general way, independent of hypothesis
class, to create a PAC-learning algorithm for MIL from a non-MIL one-sided learning algorithm. When-
ever an appropriate polynomial algorithm exists for the non-MIL learning problem, the resulting MIL al-
gorithm will also be polynomial inr. To illustrate, consider Shalev-Shwartz et al. (2010), in which an
algorithmB is described for agnostic PAC-learning of fuzzy kernelizedhalf-spaces with anL-Lipschitz
transfer function, whereL is a constant. The proposedB has time-complexity and sample-complexity at
most poly((Lǫ )

L · ln( 1δ )). Since this complexity bound is polynomial in1/ǫ and in1/δ, Cor. 14 applies
and we can generate an algorithm for PAC-learning MIL with complexity which depends directly on the
complexityB, and is polynomial inr, 1

ǫ and 1
δ . More generally, using the construction we proposed here,

any advancement in the development of algorithms for agnostic or one-sided learning of any hypothesis
class translates immediately to an algorithm for PAC-learning MIL with the same hypothesis class, and
with corresponding complexity guarantees.
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5. MIL with Real-Valued Functions

We now return to the issue of sample complexity, and extend our analysis to hypotheses that range over real
values and to large-margin learning. For classes of thresholded functions, we show in Section 5.1 that if
the bag classification rule is an extension of a monotone Boolean function, then the sample complexity of
MIL depends logarithmically onr, as was shown in Section 3 for binary hypotheses. For margin learning,
a poly-logarithmic bound on sample complexity is shown Section 5.2. This bound holds for all Lipschitz
bag-labeling functions, including extensions of monotoneBoolean functions.

5.1 Thresholded Functions

Monotone Boolean functionsmap Boolean vectors from{−1,+1}n into {−1,+1}, such that the map
is monotone-increasing in every operand. The set of monotone Boolean functions is exactly the set of
functions that can be represented by some composition of ANDand OR functions. A natural extension of
monotone Boolean functions to real functions from[−1,+1]n into [−1,+1] is achieved by replacing OR
with max and AND withmin. Formally, the real functions that extend monotone Booleanfunctions are
defined as follows:

Definition 15 A function from[−1,+1]r into [−1,+1] is an extension of anr-ary monotone Boolean func-
tion if it belongs to the setMr defined inductively as follows, where the input to a functionisy ∈ [−1,+1]r:

(1) ∀j ∈ [n], y 7−→ y[j] ∈Mr;
(2) ∀k ∈ N

+, f1, . . . , fk ∈Mr =⇒ y 7−→ maxj∈[k]{fj(y)} ∈ Mr;
(3) ∀k ∈ N

+, f1, . . . , fk ∈Mr =⇒ y 7−→ minj∈[k]{fj(y)} ∈ Mr.
(8)

In the following theorem we bound the pseudo-dimension (seee.g. Anthony and Bartlett (1999) for
definitions) of the generalized MIL problem, where the bag-labeling operator is an extension of a monotone
Boolean function. The result has the same form as Theorem 3, which applied to binary hypotheses and
Boolean bag-labeling functions.

Theorem 16 Let H ⊆ [−1,+1]X be a set of instance hypotheses with pseudo-dimensiond . Let f :
[−1,+1]r → [−1,+1] be an extension of a monotone Boolean function, and letdr be the pseudo-dimension
of φf

r (H). Then
dr ≤ max{2d log(2er), 16}.

Proof For a functionh from some domain into[−1,+1] and a scalarz ∈ R, let hz be a function from
the same domain into{−1,+1}, defined byhz(y) = sign(h(y) − z), wheresign(x) = +1 if x ≥ 0, and
sign(x) = −1 otherwise. For a set of functionsH, define the setBH , {hz | h ∈ H, z ∈ R}. The
pseudo-dimension ofH is equal to the VC-dimension ofBH (Anthony and Bartlett, 1999).

Denote1 = (1, . . . , 1). Using Def. 15, it is easy to verify by induction that forf ∈Mr

sign(f(y)− z) ≡ sign(f(y − z1)) ≡ f(sign(y − z1)).

Consider the thresholded functionφf
r (h)z for h ∈ H andz ∈ R. For all x̄ ∈ X r,

φf
r (h)z(x̄) = sign(φf

r (h)(x̄)− z) = sign(f(h(x̄))− z)

= f(sign(h(x̄)− z1)) = f(hz(x̄)) = φf
r (hz)(x̄).

Therefore,Bφf
r (H) = φf

r (BH). Hencedr is the VC dimension ofφf
r (BH). Now, d is the VC-dimension

of BH, BH is a set of hypotheses into{−1,+1}, andf restricted to{−1,+1}r is also binary. Therefore
Theorem 3 applies and the desired bound follows.
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5.2 Learning with a Margin

To complete the picture for real-valued hypotheses, we address the sample complexity of large-margin
classification for MIL, used, for instance, in MI-SVM (Andrews et al., 2002). MI-SVM attempts to optimize
an adaptation of the soft-margin SVM objective to MIL, in which the margin of a bag is the maximal margin
achieved by any of its instances. It has not been shown, however, whether minimizing the objective function
of MI-SVM or analogous margin formulations for MIL allows learning with a reasonable sample size. We
fill in this gap in Theorem 17 below, which bounds theγ-Fat-shattering dimension (see e.g. Anthony and
Bartlett 1999) of MIL. The objective of MI-SVM amounts to replacing the hypothesis classH of separating
hyperplanes with the class of bag-hypothesesφmax

r (H). Sincemax is the real-valued extension of OR,
this objective function is natural in our formulation. Our result applies more generally to any bounded
c-Lipschitz bag-labeling function, and to any hypothesis class over instances.

A functionf : Rr → R is c-Lipschitz with respect to the infinity norm if

∀a,b ∈ R
r, |f(a)− f(b)| ≤ c‖a− b‖∞.

It is easy to verify using induction onMr that extensions of monotone Boolean functions are1-Lipschitz
with respect to the infinity norm. Forγ > 0, denote byF1(γ) theγ-fat-shattering dimension ofH, and by
Fr(γ) theγ-fat-shattering dimension ofφf

r (H).
Theorem 17 LetB, c > 0. LetH ⊆ [0, B]X be a real-valued hypothesis class and letf : [0, B]r → [0, cB]
be a function which isc-lipschitz with respect to the infinity norm. Then

Fr(γ) ≤ 6F1(
γ

64c
) log2(2048

B2c4

γ2
rFr(γ)). (9)

Before turning to the proof of Theorem 17, we note that the bound in Eq. (9) is in implicit form, since
Fr(γ) appears on both sides of the bound. To better understand its meaning, we restate the bound as a
function ofr. Fixing γ andF1(γ/(64c)) and settingβ = 6F1(γ/(64c)) andη = 2048B2c4/γ2, we have

√

Fr −
√

β logFr ≤
√

β log(ηr). (10)

Therefore Eq. (9) indicates a poly-logarithmic bound onFr.
To prove Theorem 17, we use thecovering numberof the single-instance and multi-instance hypothesis

classes. ForH ⊆ [0, B]X , γ > 0 andS ⊆ X , the set ofγ-coversof S byH is

covγ(H, S) , {C ⊆ H | ∀h ∈ H, ∃ĥ ∈ C,max
s∈S
|h(s)− ĥ(s)| ≤ γ}.

Theγ-covering numberof a hypothesis classH ⊆ [0, B]X and a numberm ∈ N is

N∞(γ,H,m) , max
S⊆X :|S|=m

min
C∈covγ(H,S)

|C|.

The following two theorems link the covering number of a function class with its fat-shattering dimen-
sion. For a function classF , denote itsγ-Fat shattering dimension byFatF (γ).

Theorem 18 (Anthony and Bartlett, 1999, Theorem 12.10)LetF be a set of real functions and letγ >
0. For m ≥ FatF (16γ),

eFatF (16γ)/8 ≤ N∞(γ, F,m). (11)

Theorem 19 (Anthony and Bartlett, 1999, Theorem 12.8)LetF be a set of real functions from a domain
X to the bounded interval[0, B]. Letγ > 0. Letd = FatF (

γ
4 ). For all m ≥ d,

N∞(γ, F,m) < 2

(

4B2m

γ2

)d log 4eBm
dγ

. (12)
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To prove Theorem 17, we bound the covering number of a bag hypothesis class by the covering number
of the single-instance hypothesis class:

Lemma 20 Let f : [0, B]r → [0, cB] bec-Lipschitz with respect to the infinity norm for somec > 0. For
any naturalm, r > 0, and realγ > 0, and for any hypothesis classH ⊆ [0, B]X ,

N∞(cγ, φf
r (H),m) ≤ N∞(γ,H, rm). (13)

Proof Let S = {x̄i}i∈[m] ⊆ X r be a set ofm bags. LetS∪ = {xi[j]}i∈[m],j∈[r] be the set of instances

in bags ofS. Let C ∈ covγ(H, S∪) be aγ-cover ofS∪. For allh ∈ H there exists an̂h ∈ C such that
maxi∈[m] ‖h(x̄i)− ĥ(x̄i)‖∞ ≤ γ. From the Lipschitz condition onf we have

|φf
r (h)(x̄i)− φf

r (ĥ)(x̄i)| ≡ ‖f(h(xi))− f(ĥ(xi))‖∞ ≤ c‖h(xi)− ĥ(xi)‖∞ ≤ cγ.

Sinceφf
r (ĥ) ∈ φf

r (C), it follows that φf
r (C) ∈ covcγ(φ

f
r (H), S). Since this is true for allC ∈

covγ(H, S∪), we haveφf
r (covγ(H, S∪)) ⊆ covcγ(φ

f
r (H), S). Therefore,

N∞(cγ, φf
r (H),m) ≡ max

S⊆X r:|S|=m
min

φf
r (C)∈covcγ(φ

f
r (H),S)

|φf
r (C)|

≤ max
S⊆X r:|S|=m

min
φf
r (C)∈φf

r (covγ(H,S∪))
|φf

r (C)|

= max
S⊆X r:|S|=m

min
C∈covγ(H,S∪)

|C|

= max
S⊆X :|S|=rm

min
C∈covγ(H,S)

|C| = N∞(γ,H, rm).

Proof [of Theorem 17] From Theorem 18 and Lemma 20 it follows that for m ≥ Fr(16γ),

Fr(16γ) ≤
8

log e
logN∞(γ, φf

r (H),m) ≤ 6 logN∞(γ/c,H, rm).

In addition, from Eq. (12) we have that ifm ≥ d , FatF (
γ
4 ) ≥ 1 andF is into [0, B] then, forγ ≤ B/e,

logN∞(γ,H,m) < d log2(
4B2m

γ2
) = FatF (

γ

4
) log2(

4B2m

γ2
).

Combining the two inequalities and substitutingB with cB, we get that ifm ≥ Fr(16γ) and rm ≥
F1(

γ
4c ) ≥ 1, then

Fr(16γ) ≤ 6F1(
γ

4c
) log2(

4B2c4rm

γ2
).

Settingm = ⌈Fr(16γ)⌉ ≤ Fr(16γ) + 1, it follows that ifFr(16γ) ≥ 1 andFr(16γ) ≥ F1(
γ
4c )/r ≥ 1

r ,
then

Fr(16γ) ≤ 6F1(
γ

4c
) log2(4

B2c4

γ2
r(Fr(16γ) + 1)) ≤ 6F1(

γ

4c
) log2(8

B2c4

γ2
rFr(16γ)).

Substituting16γ with γ, we have that the bound in Eq. (9) holds forγ/16 ≤ B/e, which trivially holds
sinceγ ≤ B.
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6. Conclusions

In this work we have provided a new theoretical analysis for Multiple Instance Learning with any underlying
hypothesis class. We have shown that the dependence of the sample complexity of generalized MIL on the
number of instances in a bag is only poly-logarithmic, thus implying that the performance of MIL is only
mildly sensitive to the size of the bag. The analysis includes binary hypotheses, real-valued hypotheses,
and margin learning, all of which are used in practice in MIL applications. For classical MIL, where the
bag-labeling function is the Boolean OR, we have shown a new learning algorithm, that classifies bags by
accessing a learning algorithm designed for single instances. This algorithm provably PAC-learns MIL.
In both the sample complexity analysis and the computational analysis, we have shown tight connections
between classical supervised learning and Multiple Instance Learning. This connection holds regardless of
the underlying hypothesis class.
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SABATO AND TISBHY

Appendix A. Technical Proofs

Proof [of Lemma 9] Letα be defined as inMILearn, so thatα(+1) = 1
r andα(−1) = 1. We have

W (SI)Γ(h, SI) =
∑

i∈[m],j∈[r]

α(yi)wiyih(xi[j]) =
∑

yi=+1

1
rwi

∑

j∈[r]

h(xi[j])−
∑

yi=−1

wi

∑

j∈[r]

h(xi[j])

≤
∑

yi=+1

wi max
j∈[r]

h(xi[j])−
∑

yi=−1

wi(max
j∈[r]

h(xi]j])− r + 1) ≤
∑

i∈[m]

wiyiφ
max
r (h)(x̄i) + (r − 1)

∑

yi=−1

wi

= Γ(φmax
r (h), SB) + (r − 1)W−.

Proof [of Lemma 10]
Let h ∈ Ω(SB). From the definition ofΩ, for anyi such thatyi = −1, φmax

r (h)(x̄i) = −1. Thus for
all j ∈ [r], h(xi[j]) = −1. It follows thatPSI

[h(X) = −1 | Y = −1] = 1, thush ∈ Ω(SI). Therefore
Ω(SB) ⊆ Ω(SI). By the condition onA in Theorem 8(a),Γ(hI , SI) ≥ maxh∈H∩Ω(SI) Γ(h, SI) − η. In
addition, sinceh∗

+ ∈ H ∩ Ω(SB), we have

max
h∈H∩Ω(SI)

Γ(h, SI) ≥ max
h∈H∩Ω(SB)

Γ(h, SI) ≥ Γ(h∗
+, SI).

ThereforeΓ(hI , SI) ≥ Γ(h∗
+, SI)− η.

Proof [of Lemma 11]

W (SI)Γ(h, SI) =
∑

i∈[m]

α(yi)wiyi
∑

j∈[r]

h(xi[j])

=
∑

yi=+1

1
rwi

∑

j∈[r]

h(xi[j])−
∑

yi=−1

wi

∑

j∈[r]

h(xi[j])

≥
∑

yi=+1

1
rwi(max

j∈[r]
h(xi[j])− r + 1)− r

∑

yi=−1

wi max
j∈[r]

h(xi[j])

= 1
rΓ(φ

max
r (h), SB) + ( 1r − 1)W+ − (r − 1

r )
∑

yi=−1

wiφ
max
r (h)(x̄i)

Proof [of Theorem 8(b)] Denoteh∗ , argmaxh∈H Γ(φmax
r (h), SB). From Lemma 9, Lemma 11 the

assumptions in Theorem 8(b),

Γ(φmax
r (hI), SB) ≥W (SI)Γ(hI , SI) + (1− r)W− ≥W (SI)(Γ(h

∗, SI)− η) + (1− r)W−

≥ 1
rγ

∗ + ( 1r − 1)W+ + (1− r)W− − (r − 1
r )

∑

yi=−1

wiφ
max
r (h∗)(x̄i)− rη.

Now,

−
∑

yi=−1

wiφ
max
r (h∗)(x̄i) =

∑

yi=−1

wiyiφ
max
r (h∗)(x̄i) = γ∗ −

∑

yi=+1

wiyiφ
max
r (h∗)(x̄i) ≥ γ∗ −W+.
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Therefore

Γ(φmax
r (hI), SB) ≥ 1

rγ
∗+( 1r−1)W++(1−r)W−+(r− 1

r )(γ
∗−W+)−rη = rγ∗+1−r−(2−2

r
)W+−rη,

where the last equality follows fromW− +W+ = 1. By step4 of MILearn,

γ = max{Γ(φmax
r (hI), SB),Γ(φ

max
r (hpos), SB)} ≥ max

{

rγ∗ + 1− r − (2− 2

r
)W+ − rη, 2W+ − 1

}

.

It is easy to verify that for anyW+ ∈ [0, 1], γ ≥ r2(γ∗−η−1)+1
2r−1 . To guaranteeγ ≥ 0, we require

γ∗ − η ≥ 1− 1
r2 .
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