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Abstract

We use the Nikiforov-Uvarov method to calculate the bound states (energy spectra and wave

functions) of a two-dimensional (2D) electron gas interacted with an exactly solvable pseudohar-

monic confinement potential in a strong uniform magentic field inside dot and Aharonov-Bohm flux

field inside a pseudodot. We give a unified treatment for both Schrödinger and spin-0 Klein-Gordon

energy spectrum and wave functions as functions of chemical potential parameter, magnetic field

strength, AB flux field and magnetic quantum number. We obtain analytic expression for the

light interband absorption coefficient and threshold frequency of absorption as functions of applied

magnetic field and geometrical size of quantum pseudodot. The temperature dependence energy

levels for GaAs are also calculated.
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I. INTRODUCTION

Over a long time, a considerable interest has been paid for studying size effects in orbital

magnetism [1,2] and the magnetic properties of low-dimensional metallic and semiconduct-

ing structures with restricted geometries [3] on nanostructures such as dots, wires, wells,

antidots, well wires and antiwells [4,5,6]. Such structures can confine charge carriers in one,

two and three dimensions. Experimental research is currently made to study the optical and

quantum properties of low-dimensional semiconducting structures for the fabrication pur-

poses and subsequent working of electronic and optical devices. More studies analyzing these

structures have been focused on the interband light absorption coefficient in the spherical

[7,8,9], parabolic, cylindrical and rectangular [10] quantum dots in the presence and absence

of magnetic field [11]. More other works on optical properties in nanostructures [12,13],

band structure calculations, transport properties of Aharonov-Bohm (AB) type oscillations

[14] and Altshuler-Aharonov-Spivak (AAS) type oscillation [15].

The quantum antidot structure has been modeled in the presence and absence of repul-

sive antidot potential, harmonic confining oscillator potential, the presence and absence of

magnetic and Aharonov-Bohm (AB) flux fields in cylindrical coordinates [16]. This allows

one to obtain an exact bound state solutions for the Schrödinger equation. The influence

of dots and antidots on thermodynamic properties (e.g., magnetization) of the system, the

magnetotransport properties and also the magneto-optical (MO) spectroscopic character-

istics of a two-dimensional (2D) electron gas in a magnetic field are studied in [16]. The

nature of MO transitions in this system demonstrate the appearance of rich spectrum of

nonequidistant frequencies are different from the MO spectrum for a dot modeled by a har-

monic confining potential. The quantum antidot is modeled as an electron moving outside

a cylinder of radius a in the presence of magnetic and AB flux fields to find analytic expres-

sions for energy and wave function [17]. The numerical and analytical solutions obtained

for the dynamics of two classical electrons interacting via a Coulomb field in a 2D antidot

superlatice potential in the presence of crossed electric and magnetic fields are quite dif-

ferent than the noninteracting electrons [18]. Some authors have studied a 2D theoretical

model for the quantum dot in which electrons were confined by a nonhomogenous magnetic

field (the so-called magnetic antidot) [19]. The pseudoharmonic (PH) potential [20,21] is

used in modeling the quantum dots (QDs) and quantum antidots (QADs) in nanostructures
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[22]. The spectral properties in a 2D electron confined by a pseudoharmonic quantum dot

(PHQD) potential in the presence of external strong uniform magnetic field
−→
B along the z

direction in the presence of AB flux field created by a selenoid inserted inside the pseudodot

have been studied. The Schrödinger and spinless Klein-Gordon equation are solved exactly

for their bound states (energy spectrum and wave function) [22]. The advantage of the

Klein-Gordon solution is that it provides us relativistic corrections to the commonly known

nonrelativistic solution.

It is well-known that factors such as impurity, electric and magnetic fields, pressure,

and temperature play important roles in the electronic, optical and transport properties

of low-dimensional semiconductor nanostructures [4,23-28]. In this regard, we carry out

detailed exact analytic analysis of one-particle energetic spectrum and wave functions of both

Schrödinger and Klein-Gordon equations with a pseudoharmonic potential in the presence of

magnetic field and Aharonov-Bohm flux field by using the Nikiforov-Uvarov method [29,30].

The resulting energy spectrum serves as a base for calculating the corresponding interband

light (optical) absorption coefficient and the threshold frequency value of absorption for

the given model. In addition, the effect of the temperature on the effective mass is also

calculated.

The structure of the paper is as follows. In Sec. 2, the basic formulas of the Nikiforov-

Uvarov (NU) method are outlined in short. In Sec. 3, we studied the nonrelativistic quan-

tum dot and antidot with the pseudoharmonic potential in the presence of magnetic and

Aharonov-Bohm flux fields. The exact analytic expressions for the energy spectra and wave

functions are calculated. In Sec. 4, the analytic expressions for the bound states of the KG

electron interacted via the pseudoharmonic potential in the presence of magnetic field and

AB flux field are calculated. These basic formulas are also reduced to Schrödinger solutions

for the pseudoharmonic potential model and free-field interactions under the non-relativistic

limits. Results and discussions are performed in Sec. 5. The conclusions and outlook are

presented in Sec. 6.

II. NIKIFOROV-UVAROV METHOD

This method is usually used in solving a second-order hypergeometric-type differential

equations satisfying special orthogonal functions [29]. In spherical or cylindrical coordinates,
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the resulting Schrödinger-like equation with a given potential is reduced to a hypergeometric

type equation through making a convenient change of variables, say, r → s and then solved

systematically for its exact or approximate eigensolutions (energy levels and wave functions).

The most convenient equation, we consider here, takes the standard form [30]

f ′′(s) +
τ̃(s)

σ(s)
f ′(s) +

σ̃(s)

σ2(s)
f(s) = 0, (1)

where σ(s) and σ̃(s) are polynomials at most of second order, and τ̃ (s) is a first-degree

polynomial and f(s) is a hypergeometric type polynomial.

Next, we try to reduce Eq. (1) to a more comprehensible form by taking f(s) = φ(s)y(s)

and choosing an appropriate function φ(s):

y′′(s) +

(
2
φ′(s)

φ(s)
+
τ̃(s)

σ(s)

)
y′(s) +

(
φ′′(s)

φ(s)
+
φ′(s)

φ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)

)
y(s) = 0. (2)

which appears to be more complicated than the standard form given in (1). To simplify (2),

at first, we take the coefficient of y′(s),

2
φ′(s)

φ(s)
+
τ̃ (s)

σ(s)
=
τ (s)

σ(s)
, (3)

and set
φ′(s)

φ(s)
=
π(s)

σ(s)
, (4)

to obtain

π(s) =
1

2
[τ (s)− τ̃ (s)], (5)

where π(s) is a polynomial of degree at most one. Overmore, the above equation can be

rewritten in the form:

τ (s) = τ̃(s) + 2π(s), (6)

in which τ(s) is a polynomial of order one. On the other hand, we can express the term

φ′′(s)/φ(s) appearing as one of the coefficients of Eq. (2) as

φ′′(s)

φ(s)
=

(
φ′(s)

φ(s)

)′

+

(
φ′(s)

φ(s)

)2

=

(
π(s)

σ(s)

)′

+

(
π(s)

σ(s)

)2

. (7)

In this case, the coefficient of y(s) can be simply recasted in the form:

φ′′(s)

φ(s)
+
φ′(s)

φ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
=

σ̄(s)

σ2(s)
(8)
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where

σ̄(s) = σ̃(s) + π2(s) + π(s)[τ̃ (s)− σ′(s)] + π′(s)σ(s). (9)

Substituting the right-hand sides of Eq. (3) and Eq. (8) into Eq. (2), we finally obtain

y′′(s) +
τ(s)

σ(s)
y′(s) +

σ̄(s)

σ2(s)
y(s) = 0. (10)

The above transformation allows one to set the hypergeometric function f(s) = φ(s)y(s),

where φ(s) needs to satisfy the relation (4) with an arbitrary linear polynomial π(s). Thus,

making the substitution:

σ̄(s) = λσ(s),

where λ is a constant. Hence, Eq. (10) turns into the so-called hypergeometric type equation:

σ(s)y′′ + τ (s)y′ + λy = 0, (11)

whose solution is already been given in [31]. Now, comparing Eq. (9) with Eq. (11) leads

to the following quadratic equation:

π2(s) + [τ̃ (s)− σ′(s)]π(s) + σ̃(s)− kσ(s) = 0, (12)

where

k = λ− π′(s). (13)

Thus, the solution of quadratic equation (12) is given by

π(s) =
σ′(s)− τ̃ (s)

2
±

√(
σ′(s)− τ̃ (s)

2

)2

− σ̃(s) + kσ(s), (14)

where the parameter k inside the square root sign must be found explicitly to enable one

to find the physical solutions of Eq. (14) for the plus and minus signs. Therefore, the

expression under the square root sign has to be the square of a polynomial, since π(s) is a

polynomial of degree at most one which provides an equation of the quadratic form available

for the constant k. Having set the discriminant of this quadratic equal to zero, the constant

k is determined clearly. Once the constant k is found, the task of the determination of the

polynomial π(s) from (14) becomes simple and straightforward. Further, τ(s) and λ can

also be found from Eq. (6) and Eq. (13), respectively.
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To make the solutions of Eq. (11) more general, we try to show that all the derivatives of

hypergeometric type function are also of hypergeometric type. This can be easily acheived

by differentiating Eq. (11) and letting v1(s) = y′(s)

σ(s)v′′1(s) + τ 1(s)v
′
1(s) + µ1v1(s) = 0, (15)

where τ 1(s) = τ(s) + σ′(s) and µ1 = λ + τ ′(s). τ 1(s) is a polynomial of degree at most

one and µ1 is independent of the variable s. Equation (15) is obviously a hypergeometric

type equation again. Further, taking v2(s) = y′′(s) as a new representation and making the

differentiation for the second time, we obtain

σ(s)v′′2(s) + τ 2(s)v
′
2(s) + µ2v2(s) = 0, (16)

where

τ 2(s) = τ 1(s) + σ′(s) = τ (s) + 2σ′(s), (17)

µ2 = µ1 + τ ′1(s) = λ+ 2τ ′(s) + σ′′(s). (18)

Repeating this process, a general equation of hypergeometric type for vn(s) = y(n)(s) is

constructed as a family of particular solutions corresponding to a given λ;

σ(s)v′′n(s) + τn(s)v
′
n(s) + µnvn(s) = 0, (19)

and hence the general recurrence relations for τn(s) and µn can be found as

τn(s) = τ(s) + nσ′(s), (20)

µn = λ+ nτ ′(s) +
n(n− 1)

2
σ′′(s), (21)

respectively. When we set µn = 0, then Eq. (21) becomes

λ = λnr
= −nτ ′(s)− n(n− 1)

2
σ′′(s), n = 0, 1, 2, . . . (22)

and hence Eq. (19) has a particular solution

y(s) = yn(s) =
Bn

ρ(s)

dn

drn
[σn(s)ρ(s)] , (23)

which is known as the Rodrigues relation of degree n and ρ(s) is the weight function satisfying

[σ(r)ρ(r)]′ = τ(r)ρ(r). (24)

Finally, to obtain an eigenvalue solution through the NU method, the relationship between

λ and λnr
must be set up by means of Eq. (13) and Eq. (22).
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III. NONRELATIVISTIC QDS AND QADS INFLUENCED BY MAGNETIC

AND AB FLUX FIELDS

A. Exactly solvable bound states

Consider a two-dimensional (2D) single charged electron, e with an electronic effective

mass, µ interacting via a radially symmetrical dot (electron) and antidot (hole). We will

study the spectral properties of such dot and an antidot in a uniform magnetic field,
−→
B = Bẑ

and an AB flux field, applied simultanously. The Schrödinger equation is given by [32]
[
1

2µ

(−→p +
e

c

−→
A
)2

+ Vconf(~r)

]
ψ(~r, φ) = Eψ(~r, φ), (25)

where
−→
A is the vector potential and the repulsive pseudoharmonic confinement quantum dot

(PHQD) potential, Vconf(~r), describing the harmonic quantum dot and antidot structures,

VD(r) = V0r
2/r20 and VAD(r) = V0r

2
0/r

2, respectively, is taken as [20,21]

Vconf(~r) = V0

(
r

r0
− r0

r

)2

, (26)

where r0 and V0 are the zero point (effective radius) and the chemical potential. The

vector potential
−→
A may be represented as a sum of two terms,

−→
A =

−→
A 1 +

−→
A 2 such that

−→∇ × −→
A 1 =

−→
B and

−→∇ × −→
A 2 = 0, where

−→
B = Bẑ is the applied magnetic field, and

−→
A 2

describes the additional magnetic flux ΦAB created by a selenoid inserted inside the antidot

(pseudodot). Hence, the vector potentials have azimuthal components given by [22]

−→
A 1 =

Br

2
φ̂,

−→
A 2 =

ΦAB

2πr
φ̂,

−→
A =

(
Br

2
+

ΦAB

2πr

)
φ̂. (27)

Let us consider the 2D cylindrical form of the wave functions:

ψ(~r, φ) =
1√
2π
eimφg(r), m = 0,±1,±2, . . . , (28)

where m is the magnetic quantum number. Now, inserting the wave functions (28) into the

Schrödinger equation (25), we obtain the following equation for the radial wave function

g(r):

g′′(r) +
1

r
g′(r) +

(
ν2 − β2

r2
− γ2r2

)
g(r) = 0, (29)

where we have defined the parameters:

ν2 =
2µ

~2
(E + 2V0)−

µωc

~
(m+ ξ) , (30a)
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β2 = (m+ ξ)2 + a2, (30b)

γ2 =
2µ

~2

V0
r20

+
(µωc

2~

)2

, (30c)

where ξ = ΦAB/Φ0 with the flux quantum Φ0 = hc/e, ωc = eB/µc is the cyclotron frequency

and a = kF r0 with kF =
√

2µV0/~2 is the fermi wave vector of the electron. The magnetic

quantum number m relates to the quantum number β [Eq. (30b)].[1] Consequently, the

radial wave function g(r) is required to satisfy the boundary conditions, i.e., g(0) = 0 and

g( r → ∞) = 0. In order to solve Eq. (29) by NU method, it is necessary to introduce the

following variable s = r2, r ∈ (0,∞) →s∈ (0,∞) which recasts Eq. (29) in the form of

hypergeometric type differential equation (1) as

g′′(s) +
2

(2s)
g′(s) +

1

(2s)2
(
−γ2s2 + ν2s− β2

)
g(s) = 0, (31)

where we set g(r) ≡ g(s). Applying the basic ideas of Ref. [30], by comparing Eq. (31) with

Eq. (1) gives us the following polynomials:

τ̃(s) = 2, σ(s) = 2s, σ̃(s) = −γ2s2 + ν2s− β2. (32)

In the present case, if we substitute the polynomials given by Eq. (32) into Eq. (14), the

following equality for the polynomial π(s) can be obtained

π(s) = ±1

2

√
γ2s2 + (2k − ν2)s+ β2. (33)

The expression under the square root of the above equation must be the square of a poly-

nomial of first degree. This is possible only if its discriminant is zero and the constant

parameter k can be determined from the condition that the expression under the square

root has a double zero. Hence, k is obtained as k+,− = ν2/2 ± βγ. In that case, it can be

written in the four possible forms of π(s);

π(s) =





+ (γs± β) , for k+ = 1
2
ν2 + βγ,

− (γs± β) , for k− = 1
2
ν2 − βγ.

(34)

One of the four possible forms of π(s) must be chosen to obtain an energy spectrum formula.

Therefore, the most suitable form can be established by the choice:

π(s) = β − γs,

[1] For this system, only two independent integer quantum numbers are required.
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for k−. The trick in this selection is to find the negative derivative of τ (s) given in Eq. (6).

Hence, τ(s) and τ ′(s) are obtained as

τ(s) = 2 (1 + β)− 2γs, τ ′(s) = −2γ < 0 . (35)

In this case, a new eigenvalue equation becomes

λn = 2γn, n = 0, 1, 2, . . . (36)

where it is beneficial to invite the quantity λn = −nτ ′(s)− n(n−1)
2

σ′′(s) in Eq. (22) with n

is the radial quantum number. Another eigenvalue equation is obtained from the equality

λ = k− + π′ in Eq. (13),

λ =
ν2

2
− γ (β + 1) . (37)

In order to find an eigenvalue equation, the right-hand sides of Eq. (36) and Eq. (37) must

be compared with each other, i.e., λn = λ. In this case the result obtained will depend on

En,m in the closed form:

ν2 = 2 (2n+ 1 + β) γ. (38)

Upon the substitution of the terms of right-hand sides of Eqs. (30a)-(30c) into Eq. (38),

we can immediately obtain the following expression for the energy spectrum formula in the

presence of PH potential :

En,m(ξ, β) = ~Ω

(
n+

|β|+ 1

2

)
+

1

2
~ωc (m+ ξ)− 2V0, Ω =

√
ω2
c + 4ω2

D, (39)

where |β| =
√

(m+ ξ)2 + a2 > 0 is an integer and ωD =
√
2V0/µr20. We have two sets of

quantum numbers (n,m, β) and (n′, m′, β′) for dot (electron) and antidot (hole), respectively.

Therefore, expression (39) for the energy levels of the electron (hole) may be readily used

for a study of the thermodynamic properties of quantum structures with dot and antidot in

the presence and absence of magnetic field.

If we ignore the last −2V0 term, the above formula becomes the Bogachek-Landman

[16] energy levels, En,m(ξ, β) = ~Ω
(
n + |β|+1

2

)
+ 1

2
~ωc (m+ ξ) , in the presence of dot and

antidot potential. In the absence of pseudoharmonic quantum dot (PHQD), i.e., V0 = 0,

Ω → ωc, then En,m(ξ) = ~ωc

[
n+ 1

2
(|m+ ξ|+ 1)

]
+ 1

2
~ωc (m+ ξ) which is the formula in

the presence of magnetic and AB flux fields [16]. If we put ξ = 0, i.e., in the absence

of AB flux field, we find En,m = ~ωc

[
n + 1

2
(|m| +m+ 1)

]
which is the Landau energy
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levels [33]. In the absence of magnetic field (ωc = 0) and an AB flux field (ξ = 0), we

find En,m = (4~V0/µr
2
0)

[
n+

(√
m2 + 2µV0r20/~

2 + 1
)
/2

]
− 2V0. When m = 0, we have

En = (4~V0/µr
2
0) (n + 1/2) for harmonic oscillator energy spectrum.

Next, we calculate the corresponding wave functions for the present PH potential model.

We find the first part of the wave function through Eq. (4), i.e.,

φm(s) = exp

(∫
π(s)

σ(s)
ds

)
= s|β|/2e−γs/2. (40)

Then, the weight function defined by Eq. (24) as

ρ(s) =
1

σ(s)
exp

(∫
τ (s)

σ(s)
ds

)
= s|β|e−γs, (41)

which gives the second part of the wave function (Rodrigues formula); namely, Eq.(23):

yn,m(s) ∼ s−|β|eγs
dnr

dsnr

(
sn+|β|e−γs

)
∼ L(|β|)

n (γs) , (42)

where L
(b)
a (x) = (a+b)!

a!b!
F (a, b+ 1; x) is the associated Laguarre polynomial and Fa, b; x) is

the confluent hypergeometric function. Using g(s) = φm(s)yn,m(s), in this way we may write

the radial wave function in the following fashion

g(r) = Cn,mr
|β|e−γr2/2F

(
−n, |β|+ 1; γr2

)
, (43)

and finally the total wave function (28) becomes

ψn,m(~r, φ) =

√
γ|β|+1n!

π (n+ |β|)!r
|β|e−γr2/2L(|β|)

n

(
γr2

)
eimφ

=
1

|β|!

√
γ|β|+1 (n+ |β|)!

πn!
r|β|e−γr2/2F

(
−n, |β|+ 1; γr2

)
eimφ. (44)

The energy levels in Eq. (39) differ from the usual Landau levels in cylindrical coordinate

system [34] to which it transforms when ξ = 0 (i.e., ΦAB = 0), and a → 0 (i.e., when the

chemical potential of dot and antidot vanishes, i.e., V0 → 0). Nevertheless, the Landau

levels are nearly continuous discrete spectrum for a particle confined to a large box with

B = 0 to equally spaced levels corresponding to B > 0. Each increment of energy, ~ωc,

corresponding to free particle states, which is the degeneracy of each Landau level leading

to a larger spacing as magnetic field B tends to become stronger [33]. The present model

removes this degeneracy with energy levels spectrum becomes

En,m = ~ωc

[
n +

1

2
(|m|+m+ 1)

]
, (45)
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and the wave function reads as

ψn,m(~r, φ) =
1

m!

√
γm+1 (n +m)!

πn!
rme−γr2/2F

(
−n,m+ 1; γr2

)
eimφ, (46)

where γ = (µωc)/2~. In the limit when ωc � g =
√

8V0

µ
c
r0
,then we have

Enm = ε0 + ε1ωc + ε2ω
2
c − ε4ω

4
c + ..., (47)

where

ε0 = −2V0+Nnmg, ε1 =
~m

2
, ε2 =

Nnm

2g
, ε4 =

Nnm

8g3
, Nnm = ~

(
n+

m+ 1

2

)
, g =

1

r0

√
8V0
µ
.

(48)

B. Interband light absorption coefficient

Expressions (39) and (44), obtained above for charge carriers (electron or hole) energy

spectrum and the corresponding wave function in quantum pseudodot under the influence

of external magnetic field and AB flux field, allow to calculate the direct interband light

absorption coefficient K(ω) in such system and the threshold frequency of absorption. The

light absorption coefficient can be expressed as [11,12,35]:

K(ω) = N
∑

n,m,β

∑

n′,m′,β′

∣∣∣∣
∫
ψe

n,m,β(~r, φ)ψ
h
n′,m′,β′(~r, φ)rdrdφ

∣∣∣∣
2

δ
(
∆− Ee

n,m,β −Eh
n′,m′,β′

)
,

= N
∑

n,m,β

∑

n′,m′,β′

γ|β|+|β′|+2 (n + |β|)! (n′ + |β′|)!
π2n!n′! (|β|!)2 (|β′|!)2

∣∣∣∣∣∣

2π∫

0

ei(m+m′)φdφ

∞∫

0

rdre−(γ+γ′)r2/2r|β|+|β′|

× F
(
−n, |β|+ 1; γr2

)
F

(
−n′, |β′|+ 1; γ′r2

)∣∣2 δ
(
∆−Ee

n,m,β − Eh
n′,m′,β′

)
, (49)

where ∆ = ~ω − εg, εg is the width of forbidden energy gap, ω is the frequency of incident

light, N is a quantity proportional to the square of dipole moment matrix element modulus,

ψe(h) is the wave function of the electron (hole) and Ee(h) is the corresponding energy of the

electron (hole).

Now, we use the integrals [33]

2π∫

0

ei(m+m′)φdφ =





2π if m = −m′,

0 if m 6= −m′,
(50)
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and
∞∫

0

e−κxxλ−1F (−n, λ; qx)F (−n′, λ; q′x) dx = Γ(λ)κn+n′−λ (κ− q)−n (κ− q′)
−n′

× 2F1

(
n, n′, λ;

qq′

(κ− q) (κ− q′)

)
, (51)

where Γ(x) is the Euler-Gamma function and 2F1 (a, b, c; z) is the hypergeometric function,

to calculate the light absorption coefficient:

K(ω) = N
∑

n,m,β

∑

n′,m′,β′

P β
n,n′Q

β
n,n′δ

(
∆− Ee

n,m,β −Eh
n′,m′,β′

)
, (52)

where

P β
n,n′ =

1

(|β|!)4
(γγ′)

|β|+1

(
γ + γ′

γ − γ′

)2(n+n′)
(n + |β|)! (n′ + |β|)!

n!n′!
, (53)

and

Qβ
n,n′ =

[
|β|!

(
2

γ + γ′

)|β|+1

2F1

(
n, n′, |β|+ 1;− 4γγ′

(γ − γ′)2

)]2

. (54)

Using Eqs. (39) and (49), we find the threshold frequency value of absorption as

~ω = εg+~


n+

√
(m+ ΦAB/Φ0)

2 + 2µV0r20/~
2 + 1

2




√(
qB

µc

)2

+
8V0
µr20

+
q~B

2µc

(
m+

ΦAB

Φ0

)

+~


n′ +

√
(m′ + ΦAB/Φ0)

2 + 2µ′V0r20/~
2 + 1

2




√(
qB

µ′c

)2

+
8V0
µ′r20

+
q~B

2µ′c

(
m′ +

ΦAB

Φ0

)
−4V0.

(55)

When n = m = 0, then

~ω00 = εg +
~

2

(√
(ΦAB/Φ0)

2 + 2µV0r20/~
2 + 1

)√(
qB

µc

)2

+
8V0
µr20

+
q~B

2µc

ΦAB

Φ0

+
~

2

(√
(m′ + ΦAB/Φ0)

2 + 2µ′V0r
2
0/~

2 + 1

)√(
qB

µ′c

)2

+
8V0
µ′r20

+
q~B

2µ′c

ΦAB

Φ0
− 4V0. (56)

C. Temperature dependence of the effective mass

The variation of the effective mass with temperature is determined according to the

expression [28,36,37]

µe

µ(T )
=

1

f(T )
= 1 + EΓ

p

[
2

EΓ
g (T )

+
1

EΓ
g (T ) + ∆0

]
, (57)
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where µe is the electronic mass, EΓ
p = 7.51 eV is the energy related to the momentum matrix

element, ∆0 = 0.341 eV is the spin-orbit splitting and EΓ
g (T ) is the temperature-dependence

of the energy gap (in eV units) at the Γ point which is given by [12,36,38,39]

EΓ
g (T ) = 1.519− (5.405× 10−4)T 2

T + 204
(eV ). (58)

Table 1 lists the temperature-dependent effective mass to the effective mass of donor electron,

i.e., µ(T )/µe for different values of temperatures. It is seen from Table 1 that raising the

temperature will decrease the value of f(T ) = µ(T )/µe. As a matter of fact, the decrease

in this value means that kinetic energy of the donor electron decrease and consequently

lowering the binding energy. The results are similar to Ref. [28]. Hence the temperature

dependence energy spectrum formula can be expressed as

En,m(B, T ) =
~ωc

f(T )



√
1 + 4

ω2
D

ω2
c

f(T )


n +

√
(m+ ξ)2 + a2f(T ) + 1

2


 +

m+ ξ

2


− 2V0,

which for GaAs turns to be

En,m(B, T ) = 14.9254~ωc



√

1 + 0.268
ω2
D

ω2
c


n +

√
(m+ ξ)2 + 0.067a2 + 1

2


 +

m+ ξ

2


−2V0,

where we have used µ = 0.067µe.

IV. THE SPINLESS KLEIN-GORDON PARTICLE IN MAGNETIC AND AB

FLUX FIELDS

The Klein-Gordon (KG) equation is wave equation mostly used in describing particle

dynamics in relativistic quantum mechanics. Nonetheless, physically this equation describes

a scalar particle (spin 0). Moreover, this wave equation, for free particles, is constructed

using two objects: the four-vector linear momentum operator Pµ = i~∂µ and the scalar

rest mass M, allows one to introduce naturally two types of potential coupling. One is the

gauge-invariant coupling to the four-vector potential {Aµ (
−→r )}3µ=0 which is introduced via

the minimal substitution Pµ → Pµ − gAµ, where g is a real coupling parameter. The other,

is an additional coupling to the space-time scalar potential Sconf(
−→r ) which is introduced

by the substitution M → M + Sconf(
−→r ). The term “four-vector” and “scalar” refers to

the corresponding unitary irreducible representation of the Poincaré space-time symmetry
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group (the group of rotations and translations in (3+1)-dimensional Minkowski space-time).

Gauge invariance of the vector coupling allows for the freedom to fix the gauge (eliminating

the non physical gauge modes) without altering the physical content of the problem. Many

choose to simplify the solution of the problem by taking the space component of the vector

potential to vanish (i.e.,
−→
A ). One may write the time-component of the four-vector potential

as gA0 = Vconf(~r), then it ends up with two independent potential functions in the KG

equation. These are the “vector” potential Vconf(
−→r ) and the “scalar” potential Sconf(

−→r )
[40,41].

The free KG equation is written as

(∂µ∂µ +M2)ψKG(t,
−→r ) = 0. (59)

Moreover, the vector and scalar couplings mentioned above introduce potential interactions

by mapping the free KG equation as
{
c2

(−→p +
e

c

−→
A
)2

+ [M + Sconf(~r)]
2

}
ψ(−→r , φ) = [E − Vconf(~r)]

2 ψ(−→r , φ), (60)

where ψ(−→r , φ) is 2D cylindrical wave function defined as in (28). This type of coupling

attracted a lot of attention in the literature due to the resulting simplification in the solution

of the relativistic problem. The scalar-like potential coupling is added to the scalar mass

so that in case when Sconf(~r) = ±Vconf(−→r ), the KG equation could always be reduced to a

Schrödinger-type second order differential equation as follows
[
c2

(−→p +
e

c

−→
A
)2

+ 2
(
E ±Mc2

)
Vconf(

−→r ) +M2c4 −E2

]
ψ(−→r , φ) = 0. (61)

Hence, the bound state solutions of the above two cases are to be treated separetely as

follows.

A. The Sconf(
−→r ) = +Vconf(

−→r ) case

The positive energy states (corresponding to Sconf(
−→r ) = +Vconf(

−→r ) in the nonrelativistic

limit (taking E −Mc2 ∼= E and E +Mc2 ∼= 2µc2, where |E| � Mc2) are solutions of
[
1

2µ

(−→p +
e

c

−→
A
)2

+ 2Vconf(
−→r )− E

]
ψ(−→r , φ) = 0. (62)

where ψ(−→r , φ) stands for either ψ(+)(−→r , φ) or ψ(KG)(−→r , φ). This is the Schrödinger equation
for the potential 2Vconf(

−→r ). Thus, the choice Sconf(
−→r ) = +Vconf(

−→r ) produces a nontrivial

14



nonrelativistic limit with a potential function 2Vconf(
−→r ), and not Vconf(

−→r ). Accordingly, it
would be natural to scale the potential term in Eq. (61) and Eq. (62) so that in the non-

relativistic limit the interaction potential becomes Vconf, not 2Vconf. thus, we need to recast

Eq. (61) and Eq. (62) as [41]
[
c2

(−→p +
e

c

−→
A
)2

+
(
E +Mc2

)
Vconf(

−→r ) +M2c4 − E2

]
ψ(−→r , φ) = 0. (63a)

[
1

2µ

(−→p +
e

c

−→
A
)2

+ Vconf(
−→r )− E

]
ψnm(

−→r , φ) = 0, (63b)

with Vconf(
−→r ) and

−→
A are given in Eq. (26) and Eq. (27), respectively. To avoid repeati-

tion in solving Eq. (63a), we follow the same steps of solution explained before by taking

ψnm(
−→r , φ) = g(r)eimφ/

√
2π to obtain an equation satisfying the radial part: of the wave

function:

g′′(s) +
2

(2s)
g′(s) +

(
−b21s2 + λ21s− a21

)
g(s) = 0, (64)

where we have used

λ21 =
1

~2c2
[
E2 + 2

(
E +Mc2

)
V0 −M2c4

]
− Mωc

~
(m+ ξ) , (65a)

a21 = (m+ ξ)2 +
r20
~2c2

(
E +Mc2

)
V0, (65b)

b21 =

(
Mωc

2~

)2

+
1

~2c2r20

(
E +Mc2

)
V0. (65c)

The solution of Eq. (64) can be easily constructed on making the changes: ν → λ1, β → a1,

and γ → b1. Thus, the equation for the KG positive energy states can be easily found from

Eq. (38) as

λ21 = 2 (2n+ 1 + a1) b1, (66)

and further inserting Eqs. (65a)-(65c), we finally obtain the transcendental energy formula

~

(
1 + 2n+

√
m′2 +

a′2

2M
γ1

)√
ω2
c +

2ω′2
D

M
γ1 =

1

M
(γ2 + 2V0) γ1 − ~ωcm

′,

γ1 =
(E +Mc2)

c2
, γ2 = E −Mc2, ω′

D =

√
2V0
Mr20

, a′2 =
2MV0r

2
0

~2
(67)

where m′ = m+ ξ is a new quantum number. We may find solution to the above transcen-

dental equation as E = E
(+)
KG. In the nonrelativistic limit (γ1 → 2M and γ2 → E), the above

equation can be easily reduced to the simple energy spectrum formula given in Eq. (39).
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Overmore, under the above parameters mapping, the 2D KG wave function can be found

directly from Eq. (44) as

ψ(+)
n,m(~r, φ) =

√
b
|a1|+1
1 n!

π (n + |a1|)!
r|a1|e−b1r2/2L(a1)

n (b1r
2)eimφ. (68)

B. The Sconf(
−→r ) = −Vconf(

−→r ) case

In this case, we follow the same steps of solution in the previous subsection:

g′′(s) +
2

(2s)
g′(s) +

(
−b22s2 + λ22s− a22

)
g(s) = 0, (69)

where we have used

λ21 → λ22 =
1

~2c2
[
E2 + 2

(
E −Mc2

)
V0 −M2c4

]
− Mωc

~
(m+ ξ) , (70a)

a21 → a22 = (m+ ξ)2 +
r20
~2c2

(
E −Mc2

)
V0, (70b)

b21 → b22 =

(
Mωc

2~

)2

+
1

~2c2r20

(
E −Mc2

)
V0. (70c)

Thus, the equation for the KG negative energy states can be readily found as

λ22 = 2 (2n+ 1 + a2) b2, (71)

which provides the transcendental energy spectrum formula

(
(2n + 1) ~c+

√
~2c2 (m+ ξ)2 + r20V0γ2

)√
M2ω2

c +
4V0
r20
γ2

=
(
c2γ1 + 2V0

)
γ2 − ~cMωc (m+ ξ) , (72)

and the corresponding 2D KG wave function is found as

ψ(−)
n,m(~r, φ) =

√
b
|a2|+1
2 n!

π (n + |a2|)!
r|a2|e−b2r2/2L(a2)

n (b2r
2)eimφ. (73)

It should be noted that the negative energy states (corresponding to Sconf(
−→r ) = −Vconf(−→r ))

are free fields since under these conditions Eq. (61) reduces to

[
− 1

2µ

(−→p +
e

c

−→
A
)2

+ E

]
ψn,m(

−→r , φ) = 0. (74)
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which is a simple free-interaction mode. For the free fields, Eq. (74), the set of parameters

in Eqs. (70a)-(70c) reads

λ2 =

√
2µE

~2
− µωc

~
(m+ ξ), a2 = m+ ξ, b2 =

µωc

2~
, (75)

which lead to the energy spectrum formula

E(−) =

(
n+m+ ξ +

1

2

)
~ωc, (76)

and and wave function

ψ(−)
nm(~r, φ) =

√ (
µωc

2~

)m+ξ+1
n!

π (n +m+ ξ)!
rm+ξe−

µωc

4~c
r2L(m+ξ)

n

(µωc

2~
r2
)
eimφ. (77)

V. RESULTS AND DISCUSSION

We solved exactly the Schrödinger and Klein-Gordon equations for an electron under the

pseudoharmonic interaction consisting of quantum dot potential and antidot potential in

the presence of a uniform strong magnetic field
−→
B along the z axis and AB flux field created

by an infinitely long selenoid inserted inside the pseudodot. We obtained bound state solu-

tions including the energy spectrum formula (39) and wave function (44) for a Schrödinger

electron. Overmore, for the Klein-Gordon electron, the positive energy equation (67) and

wave function (68) is found for Sconf(
−→r ) = +Vconf(

−→r ) case. However, the negative energy

equation (67) and wave function (68) are found for Sconf(
−→r ) = +Vconf(

−→r ) case. These two

cases are reduced to the Schrödinger equation with a potential interaction Vconf(
−→r ) and

free field interaction solutions, respectively. Now we study the effect of the pseudoharmonic

potential, the presence and absence of magnetic field B, the presence and absence of AB

flux density ξ and the antidot potential on the energy levels (39). To see the dependence

of the energy spectrum on the magnetic quantum number, m, we take the following val-

ues: magnetic field
−→
B = (6 T ) ẑ, AB flux field ξ = 8, chemical potential V0 = 0.68346

(meV ) and r0 = 8.958 × 10−6 cm [22]. Thus, we obtained a =
√

2µV0r
2
0/~

2 = 11.997702,

2ωD =
√

8V0/µr20 = 0.3280381 ωc and ~ω = 1.05243~ωc [34], the dependence of the energy

spectrum, (39) on the n and m is given by

En,m

~ωc
= 1.05243


n+

√
(m+ 8)2 + 122 + 1

2


+

1

2
(m+ 8)−1.9678584, for B = 6 T. (78)
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where m = 0,±1,±2, . . . and n = 0, 1, 2, . . . . For the lowest ground state (n = 0):

E0,m/~ωc = 1.05243

(√
(m+ 8)2 + 122 + 1

)
/2 + (m+ 8) /2 − 1.9678584, for B = 6 T.

Overmore, to show the effect of magnetic field B on the energy spectrum, we take val-

ues for parameters ξ = 8, V0 = 0.68459 meV and r0 = 8.958 × 10−6 cm [22], where

a =
√

2µV0r20/~
2 = 12.007617 and 4ω2

D = 8V0/µr
2
0 = 0.120039 × 1024 (rad/s)2, the de-

pendence of energy levels (39) on the magnetic field becomes

En,m (meV ) = 0.1157705
√
B2 + 3.8803305


n +

√
(m+ 8)2 + 122 + 1

2




+ 0.1157705B

(
m+ 8

2

)
− 1.36918. (79)

In Figure 1, we plot the pseudodot energy levels in the absence (presence) of pseudodot

potential (i.e., V0 = 0 → a = 0 (V0 6= 0 → a = 12)) and in the absence (presence) of AB flux

field ΦAB (i.e., ξ = 0 (ξ = 8)) as a function of magnetic quantum number m for B = 6 T .

As demonstrated in Figure 1, the Landau energy states [33] (i.e., V0 = 0 → a = 0, ξ = 0

and ξ = 8) are degenerate states (see, long dashed and dotted solid curves) for negative

values of m, however, the pseudodot potential removes this degeneracy (case when V0 6= 0

→ a = 12), (see, solid and dotted dashed curves). In the absence of pseudodot potential

(a = 0) and presence of AB flux field (ξ = 8), the degeneracy still exists (long dashed line).

It is found that the energy levels of PHQD potential are approximately equal the Landau

energy levels for large absolute m values. However, they are quite different for small absolute

m values (−12 � m � 13 when ξ = 0 and −20 � m � 5 when ξ = 8). It is also noted that

as the quantum number n increases (n > 0), the curves are quite similar to Figure 1 but

the energy levels are pushed up toward the positive energy for all values of m. In Figure

2 to Figure 7, we plot the magnetic field dependence of the ground state energy E0,m(ξ, a)

(in units of meV ) in the presence and absence of pseudodot potential and AB flux field for

several values of magnetic quantum numbers m = 27, 35, 1, 0,−24 and −16, respectively. It

is shown in Figure 2 to Figure 7 that pseudodot energy increases with increasing magnetic

field strength. Further, in the absence of pseudodot potential, magnetic field in the positive

z direction removes the degeneracy for positive m values. In these Figures, the behavior of

pseudodot energy as function of the magnetic field B is shown in the presence of pseudodot

potential and AB flux field (solid curves), in the absence of pseudodot potential and presence
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of AB flux field (dotted curves) and the absence of pseudodot potential and AB flux field

(dashed curves).

To investigate the dependence of the energy levels on temperature, we take the values of

parameters: B = 6 T, ξ = 8, V0 = 0.68346 (meV ) and r0 = 8.958×10−6 cm [22]. Hence, the

temperature dependence of the energy levels (in the units of ~ωc) at the Γ point are given

by

En,m(T )

~ωc

=
1

f(T )



√
1 + (0.32804)2 f(T )


n+

√
(m+ 8)2 + 144f(T ) + 1

2


+

m+ 8

2




− 1.9678584, (80)

where f(T ) is calculated in Table 1 at any temperature value. In GaAs, we have f(T ) = 0.067

[11]. Taking the special values of parameters ξ = 8, V0 = 0.68459 meV and r0 = 8.958×10−6

cm [22], two parameters (temperature and magnetic field) dependence of the energy levels

(in units of meV ) are calculated as

En,m (B, T ) =
1

f(T )


0.1157705

√
B2 + 3.8803305f(T )


n +

√
(m+ 8)2 + 144f(T ) + 1

2




+ 0.1157705B

(
m+ 8

2

)]
− 1.36918 (units meV ). (81)

which becomes

En,m(B) = 14.9254


0.1157705

√
B2 + 0.26


n+

√
(m+ 8)2 + 9.648 + 1

2




+ 0.1157705B

(
m+ 8

2

)]
− 1.36918 (units meV ). (82)

for GaAs. Figure 8 to Figure 12 show the variation of the pseudodot energy levels (in

meV ) as function of magnetic field B (in Tesla) (82) in the presence of pseudodot potential

and AB flux field (solid curves), in the absence of pseudodot potential and presence of AB

flux field (dotted curves) and the absence of pseudodot potential and AB flux field (dashed

curves).for various values of radial quantum numbers n and magnetic quantum numbers m.

For GaAs case, we consider the following cases (a) n = m = 0, (b) n = 5, m = 0, (c) n = 0,

m = 5, (d) n = 0, m = −5 and (e) n = 5, m = −5 in Figures 8 to 12, respectively.
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VI. CONCLUSIONS AND OUTLOOK

In this work, we have obtained bound state energies and wave functions of the KG particle

in the field of pseudoharmonic quantum dot and antidot structure in the presence of a uni-

form magnetic and AB flux fields. The positive (negative) KG energy states corresponding

to Sconf(
−→r ) = +Vconf(

−→r ) (Sconf(
−→r ) = −Vconf(−→r )) are studied. Overmore, the Schrödinger

bound state solutions are found. Under nonrelativistic limit, the KG equation with equal

mixture of scalar and vector potentials Sconf(
−→r ) = +Vconf(

−→r ) and Sconf(
−→r ) = −Vconf(−→r )

can be easily reduced into the well-known Schrödinger equation of a particle with an interac-

tion potential field and a free field, respectively. Overmore, the nonrelativistic electron and

hole energy spectra and the their corresponding wave functions are used to calculate the the

interband light absorption coefficient and the the threshold frequency of absorption. Also,

the energy spectrum of the electron (hole) may be used for a study of the thermodynamic

properties of quantum structures with dot (antidot) in a magnetic field. The temperature

dependence of the energy levels are calculated using the Table 1 at any temperature T

(Kelvin).
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20



[1] B. Shapiro, Physica A 200 (1993) 498.

[2] M. van Ruitenbeek and D.A. van Leeuwen, Mod. Phys. Lett. B7 (1993) 1053.

[3] R.B. Dingle, Proc. R. Soc. London Ser. A 219 (1953) 463.

[4] R. Khordad, Physica B 406 (2011) 620.

[5] R. Khordad, Physica E 41 (2009) 543.

[6] R. Khordad, A. Gharaati and M. Haghparast, Curr. Appl. Phys. 10 (2010) 199.

[7] J.-L. Zhu, J.-J. Xiong and B.-L. Gu, Phys. Rev. B 9 (1990) 6001.

[8] B. Chayanica, J. Appl. Phys. 6 (1998) 3089.

[9] A. Cetin, Phys. Lett. A 369 (2007) 506.

[10] K. Lisa, S. Bednareka, B. Szafrana and J. Adamowski, Physica E 17 (2003) 494.

[11] M.S. Atoyan, E.M. Kazaryan and H.A. Sarkisyan, Physica E 31 (2006) 83; M.S. Atoyan, E.M.

Kazaryan and H.A. Sarkisyan, Physica E 22 (2004) 860.

[12] N. Raigoza, A.L. Morales and C.A. Duque, Physica B 363 (2005) 262.

[13] R. Khordad and A.R. Bijanzadeh, Mod. Phys. Lett. B 23 (2009) 3677.

[14] D. Weiss et al, Phys. Rev. Lett. 70 (1993) 4118; F. Niley and K. Nakamura, Physica B 184

(1993) 398.

[15] F. Niley, S.W. Hwang and K. Nakamura, Phys. Rev. B 51 (1995) 4649; M. Ueki et al, Physica

E 22 (2003) 365.

[16] E.N. Bogachek and U. Landman, Phys. Rev. B 52 (19) (1995) 14 067.

[17] N. Aquino, E. Castanoand E. Ley-Koo, Chin. J. Phys. 41 (2003) 276.

[18] A.D. Chepelianskii and D.L. Shepelyanski, Phys. Rev. B 63 (2001) 165310.

[19] J. Reijniers, F.M. Peeters and A. Matilus, Phys. Rev. B 59 (1998) 2817.

[20] M. Sage and J. Goodisman, Am. J. Phys. 53 (1985) 350.

[21] S.M. Ikhdair and R. Sever, J. Mol. Struct. 806 (2007) 155.
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TABLE I: Calculated f(T ) with different values of temperature for GaAs.

T (K) µ(T )/µe T (K) µ(T )/µe

0 0.0669984 170 0.0653679

10 0.0669886 180 0.0652177

20 0.0669608 190 0.0650643

30 0.0669174 200 0.0649080

40 0.0668603 210 0.0647490

50 0.0667911 220 0.0645874

60 0.0667112 230 0.0644235

70 0.0666217 240 0.0642573

80 0.0665236 250 0.0640891a

90 0.0664178 260 0.0639188

100 0.0663051 270 0.0637468

110 0.0661861 280 0.0635730

120 0.0660614 290 0.0633976

130 0.0659315 300 0.0632206a

140 0.0657968 350 0.0623154

150 0.0656577a 400 0.0613818a

160 0.0655147 500 0.0594513a

aSee Ref. [28].

FIG. 1: Pseudodot n = 0 energy levels (in ~ωc unit) as a function of magnetic quantum number

m in the presence and absence of PHQD potential (a = 12 and a = 0) and in the presence and

absence of AB flux field (ξ = 8 and ξ = 0) for magnetic field B = 6 T.
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FIG. 2: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = 27.

FIG. 3: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = 35.

FIG. 4: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = 1.

FIG. 5: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = 0.
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FIG. 6: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = −24.

FIG. 7: Ground state pseudodot energy levels (in meV ) as a function of magnetic field B (in

Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB

flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence of

AB flux field, respectively for magnetic quantum number m = −16.

FIG. 8: Ground state GaAs pseudodot energy levels (in meV ) as a function of magnetic field B

(in Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of

AB flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence

of AB flux field, respectively for magnetic quantum number m = 0.

FIG. 9: GaAs pseudodot energy levels (in meV ) as a function of magnetic field B (in Tesla).

Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB flux field,

Landau energy levels in presence of AB flux field and Landau levels in the absence of AB flux field,

respectively for n = 5 and m = 0.
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FIG. 10: Ground state GaAs pseudodot energy levels (in meV ) as a function of magnetic field B

(in Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of

AB flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence

of AB flux field, respectively for magnetic quantum number m = 5.

FIG. 11: Ground state GaAs pseudodot energy levels (in meV ) as a function of magnetic field B

(in Tesla). Solid, dotted and dashed curves represent the pseudodot energy levels in presence of

AB flux field, Landau energy levels in presence of AB flux field and Landau levels in the absence

of AB flux field, respectively for magnetic quantum number m = −5.

FIG. 12: GaAs pseudodot energy levels (in meV ) as a function of magnetic field B (in Tesla).

Solid, dotted and dashed curves represent the pseudodot energy levels in presence of AB flux field,

Landau energy levels in presence of AB flux field and Landau levels in the absence of AB flux field,

respectively for n = 5 and m = −5.
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