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Abstract

In this paper we show as the lightest Higgs boson, is directly linked to the existence of seven dimensions compacted

Kaluza-Klein type, and four extended. The model of a particle in a box allows us to calculate, using the extra dimensions

as entries in the well-known equations of this model, the mass of the lightest Higgs boson. This estimate coincides with

complete accuracy with that obtained in our previous work, "God and His Creation: The Universe", using the well known

quantum mechanical model of a particle in a spherically symmetric potential. Both load match and result in a mass for

the lightest Higgs boson of 126.23 Gev - 126.17 Gev

1 Introduction

The main feature that comes from getting the value of the mass of the lightest Higgs boson is the uniqueness of the solution.

We refer to the uniqueness, as interconnected mathematical properties of some well known groups in uni�cation theories,

unique and extraordinary. Ultimately, these are derived from mathematical properties of a single solution that only have

certain integers, also well known in the theories of uni�cation. These integers are mainly: 1, 2, 3, 4, 5, 8, 7, 24 and 71. It

includes a special way, the numbers of the Fibonacci series, especially those who are dividers of 240. In our previous work

these integers of the Fibonacci series are well explained and used.

The properties of octonions and quaternions, which allow the winding in seven dimensions, the toric states derived from

the three-dimensional extended

2 Unique and extraordinary properties

These properties, interdependent, one could classify as follows:

1. Properties of speci�c groups. These principal groups are as follows: E8 group, which allows breaking the vacuum by

groups E6 and SU(3). God and His Creation: the Universe
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2. The groups SU(11), SU(8), SU(7), SU(6), SU(5), SU(4), SU(3), SU(2) and U(1)

3. Groups of rotations: SO(2), SO(3), SO(4), SO(5), SO(6), SO(7), SO(8), SO(9), SO(13) and SO(26)

� a)

( 7∑
n=1

dim[SO(n)]

)/
2 = dim[SO(8)] = 2dim(G2)

� b)

( ∑
Fn/240

dim[SU(Fn)]

)
= dim[SU(10)] ; (8! + 2dim[F4])/248 = 163 = 240− dim[E6] + dim[U(1)]

� c) 5 spins. 5! = dim[SU(11)] =

9∑
n=1

dim[SO(n)] = 1/ζ(−3) = 1/2ζ(−7) dim[SU(4)] =
∑
s

2s+ 1

� d) dim[SO(6)] = dim[SU(4)]

� f) -7 And -3 are the sum of the squares of the imaginary values of octonions and quaternions. (−7)(−3) = 21 =

dim[SO(7)] = F8 ; F8 = eight Fibonacci number. 7 + 3 = 10D ; 8 + 3 = 11D , 8 × 3 = dim[SU(5)] =

dim[SU(3)]× dim[SU(2)]× dim[U(1)] = 4! ; 7 + 4 = 11D , 7× 4 = dim[SO(8)] 8 octonions, plus the 3 imaginary

values of the quaternions. 4 quaternions, plus the 7 imaginary values of the octonions. dim[SO(8)] + dim[SU(5)] =

dim[F4] = 52 =
( ∑
Fn/240

F 2
n

)/
2

� g) 6! = dim[SU(7)]× dim[SU(4)] ; dim[SU(7)] + dim[SU(4)] = dim[SU(8)]

� h) God and His Creation: the Universe (section, 3.1.1 �Maximum number of particles in the vacuum� ). 8! =

240× dim[SU(13)] ;

[
8! +

( ∑
Fn/240

F 2
n

)]
= dim[E8] · 163

�

6−n∑
n=0

∑
Fn/240

F 2
n = dim[SU(13)] = 240− dim[E6] + dim[SO(4)]

� {Fn/240} = {1∗, 1, 2, 3, 5, 8}
∑6−n
n=0

∑
Fn/240

F 2
n = dim[SU(13)] = 240−K(6D) ; K(nD) = Kissing Number n Dimensions

� I) Special factorials. It is known that the amount of factorials who meet the property: n! + 1 = x2 ⇐⇒ SU(x) = n!

has a �nite number of solutions, and probably only, the following: SU(5) = 4! , SU(11) = 5! ; SU(71) = 7! ;

(K(6D))2 = 7! + 5! + 4! , 7!/dim[SU(7)] = 1 +
∑
Fn/240

F 2
n = 1 · 3 · 5 · 7

� 7!/dim[SO(7)] = 240

� K(24D) = 7!(dim[SU(5)] + dim[SU(4)] = dim[E6]/2) = 196560

� j) Fundamental angles. Only the partition of the circle by the eight octonions allows a minimum probability of 1/2, fully

compatible with the Heisenberg uncertainty principle. Similarly, only with these eight octonions and four quaternions,

you can generate the toric states windings. These states are generated by toric multistate three dimensions, plus the

time dimension. Since, the equations resulting from the model of a particle in a box, are well known by all, will direct

these equations for the relevant calculations.
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3 Equations derived from the model of a particle in a box

1. For the particle in a box, the probability density for �nding the particle at a given position depends upon its state, and

is given by: (1) P (x) = |ψ(x)|2 ; (1) Pn(x) =

{
(2/L) sin2(nπx/L) ; 0 < x < L

0 ; otherwise

2. Where, L is the length of the box and n is the number of state. P(x) is the probability.

3. The variance in the position = measure of the uncertainty in position of the particle. (2) V ar(x) = L2

12

(
1 − 1/n2π2

)

4. Variance in the momentum. (3) V ar(p) =

(
~nπ/L

)2

5. The uncertainties in position and momentum. (4) 4x4p = ~
2

√
n2π2

3 − 2

For dimensionless numbers to the lengths of the box, the ratios of lengths used with respect to the Planck length.

lp =
√
~c/GN ; lp/lp = 1 (5) For the ground state of the vacuum, with n = 1, the only possible solution for 1/2

probability of equation (1) is:

(6) (2/4) sin2(2π/4) = 1/2 ; x = 2 ; n = 1 ; (2/4) sin2(2π/4) = sin2(2π/8). Where 2 = 2lp/lp = x , 2 is

derived from the zero point energy of vacuum: E0 = 1
2~ω ; ω = ωp = c/lp E0 = 1

2~ω → c
/

1
2ωp = 2c/ωp = 2lp

(7) 2lp/lp = 2 ; 22(lpx) + 22(lpy) + 22(lpz) + 22(lpt) = 16 ;
√

16 = 4lp/lp = 4. Really the result obtained by (6), represents

the dimensionless ratio of two lengths about planck length, with a trigonometric factor which gives the probability. This

probability of 1/2 is completely equivalent to the minimum possible value of uncertainty, on the principle of Heisenberg. With

the condition of knowing precisely the momentum of the particle

Proposition 1. (8) (2/4) sin2(2π/4) = sin2(2π/8) = 1/2 = min(4x4p/~)

3.1 Generation of the eight dimensions as di�erent states of three and four dimensions

The unique solution with probability 1/2, equivalent to the minimum possible uncertainty (Heisenberg principle) implies the

division of the circle into eight parts. The octonions are what allow this partition, as well as the generation of toric states,

using the multistate three and four dimensions, the winding two-dimensional (square of imaginary values of octonions and

quaternions). God and His Creation: the Universe ( section, 3.3 �The cosmological vacuum�, pag 34-39 )
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3.1.1 toric 2- dimensions states

xy yx

xz zx

yz zy

xx zz

;

xy yx

xz zx

yz zy

xx yy

;

xy yx

xz zx

yz zy

yy zz

→ 8 · 3 = 24 states = 8D · 3D

3.1.2 toric 3- dimensions states

xyz xzy

yzx yxz

zxy zyx

xxy xxz

;

xyz xzy

yzx yxz

zxy zyx

yyx yyz

;

xyz xzy

yzx yxz

zxy zyx

zzx zzy

→ 8 · 3 = 24 states = 8D · 3D

3.1.3 toric 4- dimensions states

P !(xyzt)→ 8 · 3 = 24 states = 8D · 3D

3.1.4 Quaternions and Octonions

Cuaternions Four and three dimensions ( two solutions ): a) i2 + j2 + k2 + 12 = −3→ torus→ factor 4π2 surface

� −3→ negative curvature, inner surface of the torus

� b) i4 + j4 + k4 + 14 = 4→ sphere 4D → factor π2/2 = (4π2)/8 volume

Octonions Eight and seven dimensions ( two solutions ):

� a) seven dimensions:

7∑
e0

e2n = −7→ negative curvature, inner surface of the torus

� b) eight dimensions:

7∑
e0

e4n = 8

�

(
−

7∑
e0

e2n

)( 7∑
e0

e4n

)/
2 = dim[SO(8)]

� 2 · dim[SU(5)] = 2 · 24 = 2 · 4! = dim[SU(7)]

�

24∑
n=1

(−n)2 +
∑24
n=1 n

2 = 702 + 702

�
(
8D
4D

)
= 70

�
(
8D
3D

)
=

( 7∑
n=1

dim[SO(n)]

)
�
(
10D
7D

)
= 5! = dim[SU(11)]
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� 702 + 2 · 70 = 7!

�
(
dim[SU(5)]

)2
+ dim[SU(10)] = dim[SU(26)]

� dim[SU(26)] = dim[SO(9)]× dim[SO(6)] ; dim[SO(9)] + dim[SO(6)] = dim[SU(11)]/2

�

∑
d/24

d = dim[SU(11)]/2

� {d/24} = {1, 2, 3, 4, 8, 6, 12, 24} ; {d1/24 , d1 = 2n , n 5 3} = {1, 2, 4, 8}

� {d2/24} = {d/24} − {d1/24} = {3, 6, 12, 24} ;
∑
d2/24

d2 = dim[SO(9)]

�

∑
d1/24

d1 = dim[SO(6)]

4 Introduction to the seven dimensions Kaluza Klein compacted

Compacti�cation in circles, for the ratios of the seven dimensions with respect to the Planck length, was based on the well

known results. These calculations are presented in our previous work ( God and His Creation: the Universe , section 4

�Calculation of dimensions 7D-spherical torus and its possible implications�, pag 41), based on �Black holes and the existence

of extra dimensions�, Rosemarie Aben, Milenna van Dijk, Nanne Louw.

Proposition 2. The model of the torus of seven dimensions, assume that the smaller dimension of the torus corresponds to

a black hole.

With this assumption, the lengths of these seven toric dimensions, with respect to the Planck length, are:

lP (D)/lP =

(
~Gd+4

/
c3

)1/(d+2)

(
~GN

/
c3

)1/2 =
(

2(2π)d
/[

2πd/2/Γ(d/2)
]) 1

d+2

� lP (7D) = 3.0579009561024

� The ratio of the length of a black hole d dimensional respect to the Planck length would be:

� RH(D) = RH(d)/lp =
(

4(2π)d
/[

2πd/2/Γ(d/2)
]
· (d+ 1)

) 1
d+1

� RH(7D) = 2.956949058224

Proposition 3. Will be added the third length, depending on the �ne structure constant:

lγ =
√

α−1

4π = 3.30226866228015

Proposition 4. Using equation (7), we have: 2 + 4 5 lp(7D) +RH(7D)

6 < lp(7D) +RH(7D) = 6.014850014

Applying the minimum value of uncertainty, 1/2, according to the Heisenberg uncertainty principle, according to equation

(8), the minimum value for the Higgs vacuum, its wavelength would be:

6

http://vixra.org/abs/1202.0064


λV H/min(λH) = 1/2 ; where λV H Is the wavelength of the Higgs vacuum. λH Is the wavelength of Higgs boson lower

mass

� mH = m(V H)(1/2)→ mH = 123 Gev

5 Calculating mass of less massive Higgs boson

Proposition 5. Since, at higher wavelength corresponds to a mass smaller, then, applying equation (1), a model of particle

in a box, using the major length of seven-dimensional torus as a measure of the box with a value for x, the minimum possible,

to the vacuum zero point (x = 2), we have:

(1) P (x) = |ψ(x)|2 ; (1) Pn(x) =

{
(2/L) sin2(nπx/L) ; 0 < x < L

0 ; otherwise

P (2, lP (7D)) = (2/lP (7D)) sin2(2π/lP (7D)) = λV H/λH

� (9) λV H/λH = (2/3.0579009561024) sin2(2π/3.0579009561024) = 0.51245749179704

� mH(Gev) = (246.22 Gev)0.51245749179704 = 126.177 Gev

Remark. 1/(−2 sin[2π/(4/π)]) u P (2, lP (7D))

mH/me u 7!(dim[SO(7)] + dim[SO(8)] = 72) = m(V H)(2/3.0579009561024) sin2(2π/3.0579009561024)
me

(7!5!4!/60)/ cos4(2π/60) u [dim real(E8)]2 + 322 = 247040 u mH/me

God and His Creation: the Universe ( section 4.5, �Particle in a spherically symmetric potential, the Higgs vacuum, the spins

and the change of scale according to equation (11)� )

Conjecture. sin2 2θ13 = (lγ −RH(7D))/lγ ; θ13 = angle vacuum neutrino oscillation

θ13 = 9.4335312º

� sin2 2θ13 = 0.1045704145

�Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment�, arXiv:1204.0626v1

[hep-ex] 3 Apr 2012

�The RENO experiment has observed the disappearance of reactor electron antineutrinos, consis- tent with

neutrino oscillations, with a signi�cance of 6.3 standard deviations. Antineutrinos from six 2.8 GWth reactors

at Yonggwang Nuclear Power Plant in Korea, are detected by two identical detec- tors located at 294 m and

1383 m, respectively, from the reactor array center. In the 229 day data- taking period of 11 August 2011 to

26 March 2012, the far (near) detector observed 17102 (154088) electron antineutrino candidate events with a

background fraction of 4.9% (2.7%). A ratio of ob- served to expected number of antineutrinos in the far detector

is 0.922±0.010(stat.)±0.008(syst.). From the de�cit, we �nd sin2 2θ13 = 0.103±0.013(stat.)±0.011(syst.) based

on a rate-only analysis.�
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Proposition 6. P (2, lγ) = (2/lγ) sin2(2π/lγ) = 0.54134528

� P (2, lγ)m(V H) cos 2θ13 u mH

Remark. (2) V ar(x) = L2

12

(
1 − 1/n2π2

)

� n = 1 ; V ar(lγ , θW (GUT )) =
l2γ sin θW (GUT )

12

(
1 − 1/n2π2

)
u 1/2

Remark. l2p(7D)/ cos4 θ13 u π2/[1 + 1/{(ln[mH/me]− 11) ln2[mp/mH ])}]

Proposition 7. The uncertainties in position and momentum. (4) 4x4p = ~
2

√
n2π2

3 − 2

God and His Creation: the Universe ( section 4.5, �Particle in a spherically symmetric potential, the Higgs vacuum, the spins

and the change of scale according to equation (11)� )

� n = 1 ; (4x4p/~)2 = (π2 − 6)/12

� Veff (r) = V (r) + ~2s(s+1)
2m0r2

V(r) = 0, or solving the vacuum in the basis of spherical harmonics.

Veff (r) = ~2s(s+1)
2m0r2

Energy values by the angular momentum: Veff (r) = ~2s(s+1)
2m0r2

= Es = ~2s(s+1)
2m0r2

Isolating the spins:

s(s+ 1) = Es2m0r
2

~2 : Es2m0r
2 = (E · t)2 ; s(s+ 1) = E2t2

~2

The Heisenberg uncertainty principle states that: 4x4p ≥ ~
2 ; whereby the above equation can be written as:

s(s+ 1) = (4x4p)2
~2

Performing the sum for all spins, we have:
∑
s

s(s+ 1) =

x5,p5∑
x1,p1

(4x4p)2
~2

The states corresponding to antimatter, or the second solution of Dirac:∑
s

s(s+ 1)(−) =

x5,p5∑
x1,p1

(4x4p)2
~2 (−) ; And the total sum: 2

∑
s s(s+ 1) =

x5,p5∑
x1,p1

(4x4p)2
~2 +

x5,p5∑
x1,p1

(4x4p)2
~2 (−)

Since the Higgs vacuum decays to its minimum energy state with nonzero mass (and stable) and electric charge: the

electron. It must meet the equation (11) by changing the scale, so you can see the following equation:

dx2

x2
=

x5,p5∑
x1,p1

(4x4p)2
~2 +

x5,p5∑
x1,p1

(4x4p)2
~2 (−) = 2

∑
s s(s+ 1)

dx2

x2
= 2

∑
s

s(s+ 1) = ln(m2
X0
/m2

X1
) ;

ˆ
dx2

x2 + C = ln(m2
X0
/m2

X1
) = ln(m2

H/m
2
e) = 2

∑
s s(s+ 1)

ln(mH/me) =
∑
s s(s+ 1) −C/2 ; Using Tables VI and VII, the number of symmetry between fermions and bosons of

the standard model, 12 = 4!/ 2, the constant C / 2: C/2 = 1/ ln(mZ/me)

So they �nally holds: ln(mH/me) =
∑
s s(s+ 1) − 1/ ln(mZ/me) = 12.41730112

mH = me exp[
∑
s s(s+ 1) − 1/ ln(mZ/me)]→ mH(Gev) = 126.2366059 Gev
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�
∑
s s(s+ 1)/[(π2 − 6)/12] = ln[mp/(mH/ sin(2π/8))] ; mp = Planck mass

� ψ(2, lp(7D), RH(7D)) =
√

22/lp(7D) ·RH(7D) sin[2π/lp(7D)] sin[2π/RH(7D)] = 1
2 + (cos[2π/60]/ ln2[mp/mH ])

Remark. (dim[SU(5)]/2) + [sin2(2π/lP (7D)) sin2(2π/RH(7D)) sin2(2π/lγ) sin2(2π/π)] u ln(mH/me)

(24/lP (7D) ·RH(7D) · lγ · π)[sin2(2π/lP (7D)) sin2(2π/RH(7D)) sin2(2π/lγ) sin2(2π/π)] u 1/dim[G2]

� 2 · V ar(lγ , n = 1) =
2l2γ
12

(
1− 1

π2

)
;

[
2 · V ar(lγ , n = 1) + 7!

]
72 = 247040 u mH/me

6 Several observations

Remark.
(

1 + 1
2

√
π2

3 − 2
)/

lp(7D) u [2/lp(7D)] sin2[2π/lp(7D)]→
(

1 + 1
2

√
π2

3 − 2
)/

lp(7D) u mH/m(V H)

� 4x4p/~ = 1
2

√
π2

3 − 2 ; n = 1

� (7! + 1! + sin θW (GUT ))72 u 247040 u mH/me

�

(
27/R7

H(7D)

)
sin7[2π/RH(7D)] u 1/dim[SU(7)]

�

[(
2 + 4−

√
π2

3 − 2

)/
1
2

√
π2

3 − 2

]
+ 1 u sin−2 2θ13 u sin−1(2π/60)

� 137 + 2/[55 + (1− π−2)− tan 2θ13] u α−1 ; 55 = F10 =

( 7∑
n=1

dim[SO(n)]

)
−dim[U(1)]

� 1/(10 · sin2 2θ13) u sin(4/π)

�

[
(2/lγ) sin2(2π/lγ)

]2
u cos(4/π) ; sin(π/4) = cos(π/4)

�

√
2 u [sin2(4/π) + sin2(π/4)] +R−8H (7D)

� Muon mass: mµ/me = exp

(
2 · V ar[RH(7D), n = 1] + 1

)2

−
√

cos(2π/5)

� V ar(lp(7D), n = 1) =
l2p(7D)

12

(
1− 1

π2

)
; V ar(lp(7D), n = 1)/7 u lp(7D)−RH(7D)

� 2 · exp

[
dim[SU(5)]

(
2

lp(7D) sin2[2π/lp(7D)]

)]/(
1 + cos2 θW

)
= mH/me

� (l2p(7D)/12)2 u l2p(7D)−R2
H(7D)
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7 conclusion

We think that the results leave little doubt of the existence of compactied dimensions, and

its natural connection with the minimum value of the Higgs vacuum: the Higgs boson of mass

less.

1
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