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Abstract—A new object, called the velocity tensor, is introduced. It allows to formulate a generally
covariant mechanics. Some properties of the velocity tensor are derived.
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1. INTRODUCTION

In classical mechanics [1] the velocity v (t) of a
material point is defined as

v (t) =
dx (t)

dt
, (1)

where x (t) is the trajectory function of the moving
point and t is the time coordinate in the chosen inertial
reference frame. In special relativity [2] the notion of
the three-dimensional velocity v (t) is generalized to
the notion of the four-velocity defined as

uµ (τ) =
dxµ (τ)

dτ
, (2)

where the space–time position of the material point is
given by four functions xµ (τ) (µ = 0, 1, 2, 3;x0 = ct)
parametrized by the so-called proper time

dτ = dt

√
1 − v2 (t)

c2
. (3)

Due to its dependence on velocity of the moving
material point, the notion of the proper time τ is
different for each material point and for nonuniform
motions the proper time is not a uniformly chang-
ing function of the coordinate time t. Moreover, for
nonuniform motions the proper time coincides with
the coordinate time in continuously changing inertial
reference frames (the momentarily rest frames). Only
for uniformly moving material points the proper time
coincides with the coordinate time in one reference
frame (the rest frame of the moving material point).
In addition, for many particle systems the trajectories
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of particles are parametrized by different proper times
and it is almost impossible to describe the interaction
between particles without the notion of propagating
fields. Therefore relativistic mechanics cannot be so
well developed as the nonrelativistic mechanics is.

Fortunately, there exists another way of passing
from Galilean–Newton mechanics to the relativistic
one [3] which is not based on Eq. (2). Indeed, it is easy
to see that rewriting Eq. (1) in the form

dx (t) − v (t) dt = 0 (4)

we can immediately generalize it to a relativistic (as a
matter of fact, generally) covariant form

V µ
ν (x) dxν = 0, (5)

where a new mixed tensor field V µ
ν (x) is introduced.

We shall name this tensor as the velocity tensor.
It is clear that for nontrivial velocity tensors

(V µ
ν (x) �= δµ

ν ) Eq. (5) define some submanifolds of the
considered space–time. We shall require from the ve-
locity tensors that these submanifolds should always
be one-dimensional, what means that Eq. (5) must
determine some curves interpreted as trajectories of
the moving material points.

Form (5) has the obvious advantage over (1) and
(2), that it does not use any evolution parameter and
therefore it may be applied to systems with arbitrary
number of material points by generalizing (5) to the
set of relations

V µ
a,ν (xa) dxν

a = 0, (6)

where the index a labels different material points.
At each space–time event the velocity tensors

(different for different material points) fix the infinites-
imal directions in which any material point located at
that event may move. In addition, forms (5) and (6)
are invariant under arbitrary changes of space–
time coordinates. Therefore, they may be used to
formulate a generally covariant scheme for classical
mechanics.
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The aim of the present paper is to describe some
interesting properties of the velocity tensors. We shall
also provide the explicit construction of the general
form of such tensors.

It is clear that velocity tensors are related to the
kinematical part of mechanics. We shall also touch
the dynamical aspect of mechanics.

2. GENERAL PROPERTIES
OF THE VELOCITY TENSORS

Equation (5), in n-dimensional space–time, is an
eigen equation for the n × n-dimensional matrix V
(defined by the velocity tensor) for the eigenvalue
0, while the infinitesimal displacements dxµ in any
motion are the eigenvectors of the velocity tensors
belonging to this eigenvalue.

Writing the characteristic equation for the general
eigenvalue problem

V µ
ν (x) dxν = λdxµ (7)

we get the equation for the possible eigenvalues λ
n∑

j=0

(−λ)n−j TrjV (x) = 0, (8)

where TrjV (x) denotes the sums of diagonal minors
of order j of the matrix V (x). Obviously, Tr1V (x) co-
incides with the ordinary trace of V (x) and TrnV (x)
is the determinant of V (x). For shortness, we also use
the convention

Tr0V (x) = 1 (9)

for any matrix V (x).
Due to physical reason we must require that there

should be only one eigenvalue equal to 0. This means
that there should be a unique eigenvector for any
velocity tensor which fixes the infinitesimal displace-
ments in any motion. The characteristic equation (8)
must be therefore of the form

λn = 0, (10)

from which we get the following conditions for any
velocity tensor:

TrjV (x) = 0 (11)

for all j > 0.
Conditions (11) are generally covariant require-

ments because all the TrjV, being the coefficients in
characteristic equation (8), are invariant under arbi-
trary similarity matrix transformations, and it is well
known that for mixed tensors, treated as matrices, the
general coordinate transformations locally become
the similarity transformations

V (x) → V ′ (x′) = S (x)V (x)S−1 (x) , (12)

where the matrix elements of S (x) are given by

Sµ
ν (x) =

∂x′µ (x)
∂xν

(13)

for arbitrary changes of space–time coordinates
xµ → x′µ (x).

Conditions (11) impose n restrictions for the n2

matrix elements of the velocity tensors. Further re-
strictions come from the requirement that, in each
reference frame, from (5) it should follow that

dxk = vk (t) dt, (14)

where k = 1, . . . , (n − 1) and vk (t) are the compo-
nents of the standard velocity. This gives us addi-
tional n − 1 restrictions for the matrix elements of
the velocity tensor. Finally, we shall require that in
n-dimensional space–times the motions in all n − k
subspaces should be described exactly as they were
described in the n − k-dimensional space–times.
This means that restricting the motions to subspaces
the form of the velocity tensor should reduce to the
already established forms of the velocity tensors in
the corresponding lower-dimensional subspaces. We
shall refer to this requirement as to the reduction
principle. It is easy to count that such a require-
ment gives additional 2n−1 − 2 conditions for the
matrix elements of any velocity tensor. Altogether
we are left with n2 − n − (n − 1) −

(
2n−1 − 2

)
=

(n − 1)2 −
(
2n−1 − 2

)
free parameters of any velocity

tensor. These free parameters should represent com-
ponents of some (n − 1)-dimensional vector which
will guarantee the covariance of the velocity tensor
under space rotations because this is the only simple
geometrical interpretation of the remaining constants
in the velocity tensors. In this way, we arrive at the
equation

(n − 1)2 −
(
2n−1 − 2

)
= n − 1. (15)

It is surprising that this equation has solution only for
n = 2, 3, and 4. This means that our construction can
be performed only in two, three and four-dimensional
space–times, correspondingly.

3. GENERAL CONSTRUCTION
OF THE VELOCITY TENSORS

We shall now present a simple method of the con-
struction of all possible velocity tensors.

Let us consider space–times for which the pas-
sage between inertial reference frames is described by
the linear change of coordinates

xµ → x′µ = Lµ
ν (u)xν , (16)

where µ, ν = 0, 1, 2, 3 and u denotes the relative ve-
locity of the two inertial reference frames. From (16)
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and the tensor character of the velocity tensor we get
the transformation law for it (written in the matrix
form)

V → V ′ = L (u)V L−1 (u) = L (u) V L (−u) .
(17)

It is clear that we should look for velocity tensors
which are functions of the ordinary velocity of motion.
Our basic assumption consists in the requirement
that the functional forms of the velocity tensor are the
same in each reference frame. This means that

V ′ (v′) = V
(
v′) (18)

because only under such condition in each reference
frame we can fulfill conditions (14). In this way, the
transformation law (17) becomes to be a system of
functional equations for the matrix elements of the
matrix V of the following form

V
(
v′) = L (u)V (v) L (−u) , (19)

where

v
′k =

Lk
0 (u) +

∑
j Lk

j (u) vj

L0
0 (u) +

∑
j L0

j (u) vj
. (20)

Taking into account that the particle at rest in the
unprimed reference frame moves with the velocity −u
in the primed frame we can rewrite these functional
equations in the explicit form

V

(
−ukL0

0 (u) +
∑

j Lk
j (u) vj

L0
0 (u) +

∑
j L0

j (u) vj

)
(21)

= L (u) V (v) L (−u) .

The solutions of these equations are obtained
by the standard method. We first put vk = 0, then
change the signs of uk and, finally, rename u into v.
As a result, we get

V (v) = L (−v) V L (v) , (22)

where on the right-hand side the matrix V has con-
stant matrix elements equal to the elements of V (0).
The constant matrix elements of V should be de-
termined by the additional requirements the velocity
tensors have to satisfy.

For all dimensions the first column of the velocity
tensor V consists of null elements. This follows from
the fact that for particles at rest the eigenvector in (5)
is of the form ⎛

⎜⎜⎜⎜⎜⎜⎝

dt

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (23)

Such eigenvector will satisfy Eq. (5) only if
V µ

0 = 0.

4. EXAMPLES

4.1. Two-Dimensional Space–Time

For n = 2 from conditions (11) it follows that

V =

⎛
⎝0 V 0

1

0 0

⎞
⎠ , (24)

where V 0
1 is an arbitrary nonzero number. Since

Eq. (5) is homogeneous, this constant can be taken
as 1.

For Galilean space–time

L (u) =

⎛
⎝ 1 0

−u 1

⎞
⎠ (25)

and from (22) we get

V (v) =

⎛
⎝ −v 1

−v2 v

⎞
⎠ . (26)

For Lorentz space–time

L (u) =
1√

1 − v2

c2

⎛
⎝ 1 − u

c2

−u 1

⎞
⎠ (27)

and from (22) we get

V (v) =
1

1 − v2

c2

⎛
⎝ −v 1

−v2 v

⎞
⎠ . (28)

4.2. Higher Dimensional Space–Times

From the reduction principle and from the form
of the velocity tensor in the two-dimensional space–
time we immediately get that in all higher dimensional
space–times the only nonzero components are the
V 0

k . Therefore the final form of the velocity tensors is

V µ
ν (v (t)) = Lµ

0 (−v (t))
∑

k

V 0
k Lk

ν (v (t)) , (29)

where
(
V 0

1 , V 0
2 , . . . , V 0

n

)
are components of a (n − 1)-

dimensional vector under rotations in the subspace(
x1, x2, . . . , xn−1

)
. Using this form of V and the

explicit forms of the Galilean and Lorentz transforma-
tions we easily can get the velocity tensor both for the
Galilean and Lorentz space–times of any dimension.
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5. DYNAMICS

Since our kinematical part of classical mechanics
is generally covariant, it is necessary to determine
such form of dynamical equations which also will be
generally covariant. For this purpose we shall remind
that the only generally covariant differential relation
which may be reduced to the famous Newton relation

dp (t)
dt

= F (t) (30)

is of the form

∇µπµν (x) = F ν (x) , (31)

where πµν (x) is some tensorial density, and F ν (x)
is a vector density while ∇µ denotes a corresponding
covariant derivative.

Assuming that πµν (x) , like the velocity tensors,
is a function of the ordinary velocity we easily can
construct the explicit form of this quantity. This leads,
exactly as for the velocity tensors, to the following
form of the dynamical tensor

πµν (v (t)) = Lµ
α (−v (t))παβLν

β (−v (t)) , (32)

where all παβ are constants. Since, in contradiction
to the velocity tensor, the dynamical tensor πµν (v)
need not to satisfy any additional conditions, we have

here to do with n2 arbitrary constants which describe
the inertial properties of the considered particles. We
may, however, diminish the number of arbitrary con-
stants by requiring the symmetry of πµν (v) and then
only one parameter, the mass of the particle, de-
scribes its inertial property. In this case πµν simply is
the energy–momentum tensor of the material point.
Since the πµν (v (t)) depends only on the time coor-
dinate, it is clear that Eq. (32) reduces to Eq. (31).

6. CONCLUSIONS

We have introduced a new mechanical object
called the velocity tensor and explicitly constructed
the velocity tensors in space–times of any dimension.
We hope that the notion of the velocity tensor will
shed more light on the possible dynamics in general
relativity. It also may be useful for relativistic many-
body systems.
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