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Abstract. Let p be a multilinear polynomial in several non-commuting vari-
ables with coefficients in a quadratically closed field K of any characteristic.
It has been conjectured that for any n, the image of p evaluated on the set
Mn(K) of n by n matrices is either zero, or the set of scalar matrices, or the
set sln(K) of matrices of trace 0, or all of Mn(K). We prove the conjecture
for n = 2, and show that although the analogous assertion fails for completely
homogeneous polynomials, one can salvage the conjecture in this case by in-
cluding the set of all non-nilpotent matrices of trace zero and also permitting
dense subsets of Mn(K).

1. Introduction

Images of polynomials evaluated on algebras play an important role in non-
commutative algebra. In particular, various important problems related to the
theory of polynomial identities have been settled after the construction of central
polynomials by Formanek [F1] and Razmyslov [Ra1].

The parallel topic in group theory (the images of words in groups) also has been
studied extensively, particularly in recent years. Investigation of the image sets of
words in pro-p-groups is related to the investigation of Lie polynomials and helped
Zelmanov [Ze] to prove that the free pro-p-group cannot be embedded in the algebra
of n× n matrices when p ≫ n. (For p > 2, the impossibility of embedding the free
pro-p-group into the algebra of 2 × 2 matrices had been proved by Zubkov [Zu].)
The general problem of nonlinearity of the free pro-p-group is related on the one
hand with images of Lie polynomials and words in groups, and on the other hand
with problems of Specht type, which is of significant current interest.

Borel [B] (also cf. [La]) proved that for any simple (semisimple) algebraic groupG
and any word w of the free group on r variables, the word map w : Gr → G is
dominant. Larsen and Shalev [LaS] showed that any element of a simple group can
be written as a product of length two in the word map, and Shalev [S] proved Ore’s
conjecture, that the image of the commutator word in a simple group is all of the
group.

In this note we consider the question, reputedly raised by Kaplansky, of the
possible image set Im p of a polynomial p on matrices. When p = x1x2 − x2x1,
this is a theorem of Albert and Muckenhoupt [AlM]. For an arbitrary polynomial,
the question was settled for the case when K is a finite field by Chuang [Ch], who
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proved that a subset S ⊆ Mn(K) containing 0 is the image of a polynomial with
constant term zero, if and only if S is invariant under conjugation. Later Chuang’s
result was generalized by Kulyamin [Ku1], [Ku2] for graded algebras.

Chuang [Ch] also observed that for an infinite field K, if Im p consists only
of nilpotent matrices, then p is a polynomial identity (PI). This can be seen via
Amitsur’s Theorem [Row, Theorem 3.26, p. 176] that says that the relatively free
algebra of generic matrices is a domain. Indeed, pn must be a PI for Mn(K),
implying p is a PI.

Lee and Zhou proved [LeZh, Theorem 2.4] that when K is an infinite division
ring, for any non-identity p with coefficients in the center of K, Im p contains an
invertible matrix.

Over an infinite field, it is not difficult to ascertain the linear span of the values
of any polynomial. Indeed, standard multilinearization techniques enable one to
reduce to the case where the polynomial p is multilinear, in which case the linear
span of its values comprise a Lie ideal since, as is well-known,

[a, p(a1, . . . , an)] = p([a, a1], a2 . . . , an)+p(a1, [a, a2] . . . , an)+· · ·+p(a1, . . . , [a, an]),

and Herstein [Her] characterized Lie ideals of a simple ring R as either being con-
tained in the center or containing the commutator Lie ideal [R,R]. Another proof
is given in [BK]; also see Lemma 5 below. It is considerably more difficult to
determine the actual image set Im p, rather than its linear span.

Thus, in [Dn], Lvov formulated Kaplansky’s question as follows:

Question 1. (I. Lvov) Let p be a multilinear polynomial over a field K. Is the set
of values of p on the matrix algebra Mn(K) a vector space?

In view of the above discussion, Question 1 is equivalent to the following:

Conjecture 1. If p is a multilinear polynomial evaluated on the matrix ring Mn(K),
then Im p is either {0}, K, sln(K), or Mn(K). Here K is the set of scalar matrices
and sln(K) is the set of matrices of trace zero.

Example 1. Im p can indeed equal {0}, K, sln(K), or Mn(K). For example, if
our polynomial is in one variable and p(x) = x then Im p = Mn(K). The image
of the polynomial [x1, x2] is sln(K). If the polynomial p is central, then its image
is K and examples of such polynomials can be found in [Ra1] and in [F1]. Finally
if the polynomial p is a PI, then its image is {0}, and s2n is an example of such
polynomial.

As noted above, the conjecture fails for non-multilinear polynomials when K is a
finite field. The situation is considerably subtler for images of non-multilinear, com-
pletely homogeneous polynomials than for multilinear polynomials. Over any field
K, applying the structure theory of division rings to Amitsur’s theorem, it is not
difficult to get an example of a completely homogeneous polynomial f , noncentral
on M3(K), whose values all have third powers central; clearly its image does not
comprise a subspace of M3(K). Furthermore, in the (non-multilinear) completely
homogeneous case, the set of values could be dense without including all matri-
ces. (Analogously, although the finite basis problem for multilinear identities is
not yet settled in nonzero characteristic, there are counterexamples for completely
homogeneous polynomials, cf. [B].)
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Our main results in this note are for n = 2, for which we settle Conjecture 1,
proving the following results (see §2 for terminology). We call a fieldK quadratically
closed if every nonconstant polynomial of degree ≤ 2 deg p in K[x] has a root in K.

Theorem 1. Let p(x1, . . . , xm) be a semi-homogeneous polynomial (defined below)
evaluated on the algebra M2(K) of 2× 2 matrices over a quadratically closed field.
Then Im p is either {0}, K, the set of all non-nilpotent matrices having trace zero,
sl2(K), or a dense subset of M2(K) (with respect to Zariski topology).

(We also give examples to show how p can have these images.)

Theorem 2. If p is a multilinear polynomial evaluated on the matrix ring M2(K)
(where K is a quadratically closed field), then Im p is either {0}, K, sl2, or M2(K).

Whereas for 2 × 2 matrices one has a full positive answer for multilinear poly-
nomials, the situation is ambiguous for homogeneous polynomials, since, as we
shall see, certain invariant sets cannot occur as their images. For the general non-
homogeneous case, the image of a polynomial need not be dense, even if it is non-
central and takes on values of nonzero trace, as we see in Example 5. In this paper,
we start with the homogeneous case (which includes the completely homogeneous
case, then discuss the nonhomogeneous case, and finally give the complete picture
for the multilinear case.

The proofs of our theorems use some algebraic-geometric tools in conjunction
with ideas from graph theory. The final part of the proof of Theorem 2 uses the
First Fundamental Theorem of Invariant Theory (that in the case Char K = 0,
invariant functions evaluated on matrices are polynomials involving traces), proved
by Helling [Hel], Procesi [P], and Razmyslov [Ra3]. The formulation in positive
characteristic, due to Donkin [D], is somewhat more intricate. GLn(K) acts on
m−tuples of n× n-matrices by simultaneous conjugation.

Theorem (Donkin [D]). For any m,n ∈ N, the algebra of polynomial invariants
K[Mn(K)m]GLn(K) under GLn(K) is generated by the trace functions

Ti,j(x1, x2, . . . , xm) = Trace(xi1xi2 · · ·xir ,
∧j

Kn), (1)

where i = (i1, . . . , ir), all il ≤ m, r ∈ N, j > 0, and xi1xi2 · · ·xir acts as a linear

transformation on the exterior algebra
∧j Kn.

Remark. For n = 2 we have a polynomial function in expressions of the form

Trace(A,
∧2

K2) and trA where A is monomial. Note that Trace(A,
∧2

K2) =
detA.

(The Second Fundamental Theorem, dealing with relations between invariants,
was proved by Procesi [P] and Razmyslov [Ra3] in the case Char K = 0 and by
Zubkov [Zu] in the case Char K > 0.)

Other works on polynomial maps evaluated on matrix algebras include [W],
[GK], who investigated maps that preserve zeros of multilinear polynomials.

2. Definitions and basic preliminaries

By K〈x1, . . . , xm〉 we denote the free K-algebra generated by noncommuting
variables x1, . . . , xm, and refer to the elements of K〈x1, . . . , xm〉 as polynomials.
Consider any algebra R over a field K. A polynomial p ∈ K〈x1, . . . , xm〉 is called a
polynomial identity (PI) of the algebra R if p(a1, . . . , am) = 0 for all a1, . . . , am ∈ R;
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p ∈ K〈x1, . . . , xm〉 is a central polynomial of R, if for any a1, . . . , am ∈ R one has
p(a1, . . . , am) ∈ Cent(R) but p is not a PI of R. A polynomial p (written as a sum of
monomials) is called semi-homogeneous of weighted degree d with (integer) weights
(w1, . . . , wm) if for each monomial h of p, taking dj to be the degree of xj in p, we
have

d1w1 + · · ·+ dnwn = d.

A semi-homogeneous polynomial with weights (1, 1, . . . , 1) is called homogeneous of
degree d.

A polynomial p is completely homogeneous of multidegree (d1, . . . , dm) if each
variable xi appears the same number of times di in all monomials. A polynomial
p ∈ K〈x1, . . . , xm〉 is called multilinear of degree m if it is linear (i.e. homogeneous
of multidegree (1, 1, . . . , 1)). Thus, a polynomial is multilinear if it is a polynomial
of the form

p(x1, . . . , xm) =
∑

σ∈Sm

cσxσ(1) · · ·xσ(m),

where Sm is the symmetric group in m letters and the coefficients cσ are constants
in K.

We need a slight modification of Amitsur’s theorem, which is well known:

Proposition 1. The algebra of generic matrices with traces is a domain which can
be embedded in the division algebra UD of central fractions of Amitsur’s algebra
of generic matrices. Likewise, all of the functions in Donkin’s theorem can be
embedded in UD.

Proof. Any trace function can be expressed as the ratio of two central polynomials,
in view of [Row, Theorem 1.4.12]; also see [BR, Theorem J, p. 27] which says for any

characteristic coefficient αk of the characteristic polynomial λt+
∑t

k=1(−1)kαkλ
t−k

that

αkf(a1, . . . , at, r1, . . . , rm) =

t
∑

k=1

f(T k1a1, . . . , T
ktat, r1, . . . , rm), (2)

summed over all vectors (k1, . . . , kt) where each ki ∈ {0, 1} and
∑

ki = t, where f
is any t−alternating polynomial (and t = n2). In particular,

tr(T )f(a1, . . . , at, r1, . . . , rm) =

t
∑

k=1

f(a1, . . . , ak−1, T ak, ak+1, . . . , at, r1, . . . , rm),

(3)
so any trace of a polynomial belongs to UD. In general, the function (1) of Donkin’s
theorem can be written as a characteristic equation, so we can apply Equation (2).

�

Here is one of the main tools for our investigation.

Definition 1. A cone of Mn(K) is a subset closed under multiplication by nonzero
constants. An invariant cone is a cone invariant under conjugation. An invariant
cone is irreducible if it does not contain any nonempty invariant cone.

Example 2. Examples of invariant cones of Mn(K) include:

(i) The set of diagonalizable matrices.
(ii) The set of non-diagonalizable matrices.
(iii) The set K of scalar matrices.
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(iv) The set of nilpotent matrices.
(v) The set sln of matrices having trace zero.

3. Images of Polynomials

For any polynomial p ∈ K〈x1, . . . , xm〉, the image of p (in R) is defined as

Im p = {A ∈ R : there exist a1, . . . , am ∈ R such that p(a1, . . . , am) = A}.
Remark 1. Im p is invariant under conjugation, since

αp(x1, . . . , xm)α−1 = p(αx1α
−1, αx2α

−1, . . . , αxmα−1) ∈ Im p,

for any nonsingular α ∈ Mn(K).

Lemma 1. If Char K does not divide n, then any non-identity p(x1, . . . , xm) of
Mn(K) must either be a central polynomial or take on a value which is a matrix
whose eigenvalues are not all the same.

Proof. Otherwise p(x1, . . . , xm) − 1
n tr(p(x1, . . . , xm)) is a nilpotent element in the

algebra of generic matrices with traces, so by Proposition 1 is 0, implying p is
central. �

Let us continue with the following easy but crucial lemma.

Lemma 2. Suppose the field K is closed under d-roots. If the image of a semi-
homogeneous polynomial p of weighted degree d intersects an irreducible invariant
cone C nontrivially, then C ⊆ Im p.

Proof. If A ∈ Im p then A = p(x1, . . . , xm) for some xi ∈ Mn(K). Thus for any
c ∈ K, cA = p(cw1/dx1, c

w2/dx2, . . . , c
im/dxm) ∈ Im p, where (w1, . . . , wm) are the

weights. This shows that Im p is a cone. �

Remark 2. When the polynomial p is multilinear, we take the weights w1 = 1 and
wi = 0 for all i > 1, and thus do not need any assumption on K to show that the
image of any multilinear polynomial is an invariant cone.

Lemma 3. If Im p consists only of diagonal matrices, then the image Im p is
either {0} or the set K of scalar matrices.

Proof. Suppose that some nonscalar diagonal matrix A = Diag{λ1, . . . , λn} is in
the image. Therefore λi 6= λj for some i and j. The matrix A′ = A+eij (here eij is
the matrix unit) is conjugate to A so by Remark 1 also belongs to Im p. However
A′ is not diagonal, a contradiction. �

Lemma 4. Assume that the xi are matrix units. Then p(x1, . . . , xm) is either 0,
or c · eij for some i 6= j, or a diagonal matrix.

Proof. Suppose that the xi are matrix units eki,li . Then the product x1 · · ·xm is
nonzero if and only if li = ki+1 for each i, and in this case this product is equal to
ek1,lm . If xi are such that there is at least one σ ∈ Sn such that xσ(1) · · ·xσ(m) is
nonzero then we can consider a graph on n vertices whereby we connect vertex i
with vertex j by an oriented edge if there is a matrix eij in our set {x1, x2, . . . , xm}.
It can happen that we will have more than one edge that connects i to j and it is
also possible that we will have edges connecting a vertex to itself. The evaluation
p(x1, . . . , xm) 6= 0 only if there exists an Eulerian cycle or an Eulerian path in the
graph. This condition is necessary but is not sufficient. From graph theory we
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know that there exists an Eulerian path only if the degrees of all vertices but two
are even, and the degrees of these two vertices are odd. Also we know that there
exists an Eulerian cycle only if the degrees of all vertices are even. Thus when
p(x1, . . . , xm) 6= 0, there exists either an Eulerian path or cycle in the graph. In the
first case we have exactly two vertices of odd degree such that one of them (i) has
more output edges and another (j) has more input edges. Thus the only nonzero
terms in the sum of our polynomial can be of the type ceij and therefore the result
will also be of this type. In the second case all degrees are even. Thus there are
only cycles and the result must be a diagonal matrix. �

As mentioned earlier, the following result follows easily from [Her], with another
proof given in [BK], but a self-contained proof is included here for completeness.

Lemma 5. If the image of p is not {0} or the set of scalar matrices then for any
i 6= j the matrix unit eij belongs to Im p. The linear span of L = Im p must be
either {0}, K, sln, or Mn(K).

Proof. Assume that the image is neither {0} nor the set of scalar matrices. Then by
Lemma 3 the image contains a nondiagonal matrix p(x1, . . . , xm) = A. Any xi is a
linear combination of matrix units. After opening brackets on the left hand side we
will have a linear combination of evaluations of p on matrix units, and on the right
hand side a nondiagonal matrix. From Lemma 4 it follows that any evaluation of p
on matrix units is either diagonal or a matrix unit multiplied by some coefficient.
Thus there is a matrix eij for i 6= j in Im p. Since any nondiagonal ekl is conjugate
to eij , all nondiagonal matrix units belong to the image. Thus all matrices with
zeros on the diagonal belong to the linear span of the image. Taking matrices
conjugate to these, we obtain sln ⊆ L. Thus L must be either sln or Mn. �

3.1. The case M2(K). Now we consider the case n = 2. We start by introducing
the cones of main interest to us, drawing from Example 2.

Example 3.

(i) The set of nonzero nilpotent matrices comprise an irreducible invariant
cone, since these all have the same minimal and characteristic polyno-
mial x2.

(ii) The set of nonzero scalar matrices is an irreducible invariant cone.

(iii) Let K̃ denote the set of non-nilpotent, non-diagonalizable matrices inM2(K).

Note that A ∈ K̃ precisely when A is non-scalar, but with equal nonzero
eigenvalues, which is the case if and only if A is the sum of a nonzero scalar
matrix with a nonzero nilpotent matrix. These are all conjugate when the
scalar part is the identity, i.e., for matrices of the form

(

1 a
0 1

)

, a 6= 0

since these all have the same minimal and characteristic polynomials, namely
x2 − 2x+ 1. It follows that K̃ is an irreducible invariant cone.

(iv) Let K̂ denote the set of non-nilpotent matrices in M2(K) that have trace
zero.

When Char K 6= 2, K̂ is an irreducible invariant cone, since any such

matrix has distinct eigenvalues and thus is conjugate to

(

λ 0
0 −λ

)

.
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When Char K = 2, K̂ is an irreducible invariant cone, since any such

matrix is conjugate to

(

λ 1
0 λ

)

.

(v) sl2(K) \ {0} is the union of the two irreducible invariant cones of (i) and
(iv). (The cases Char K 6= 2 and Char K = 2 are treated separately.)

(vi) Let C denote the set of nonzero matrices which are the sum of a scalar and
a nilpotent matrix. Then C is the union of the following three irreducible
invariant cones: The nonzero scalar matrices, the nilpotent matrices, and
the nonzero scalar multiples of non-identity unipotent matrices. (All non-
identity unipotent matrices are conjugate.)

From now on, we assume that K is a quadratically closed field. In particular,
all of the eigenvalues of a matrix A ∈ M2(K) lie in K. One of our main ideas is
to consider some invariant of the matrices in Im (p), and study the corresponding
invariant cones. Here is the first such invariant that we consider.

Remark 3. Any non-nilpotent 2× 2 matrix A over a quadratically closed field has
two eigenvalues λ1 and λ2 such that at least one of them is nonzero. Therefore one
can define the ratio of eigenvalues, which is well-defined up to taking reciprocals:
λ1

λ2

and λ2

λ1

. Thus, we will say that two non-nilpotent matrices have different ratios
of eigenvalues if and only if their ratios of eigenvalues are not equal nor reciprocal.

We do have a well-defined mapping Π : M2(K) → K given by A 7→ λ1

λ2

+ λ2

λ1

.
This mapping is algebraic because

λ1

λ2
+

λ2

λ1
= −2 +

(trA)2

detA
.

Remark 4. The set of non-scalar diagonalizable matrices with a fixed nonzero
ratio r of eigenvalues (up to taking reciprocals) is an irreducible invariant cone.
Indeed, this is true since any such diagonalizable matrix is conjugate to

λ

(

1 0
0 r

)

.

3.2. Images of semi-homogeneous polynomials. We are ready to prove The-
orem 1.

Lemma 6. Suppose K is closed under d-roots, as well as being quadratically closed.
If the image Im p of a semi-homogeneous polynomial p of weighted degree d contains
an element of K̃, then Im p contains all of K̃.

Proof. This is clear from Lemma 2(iii) together with Example 3, since K̃ is an
irreducible invariant cone. �

Proof of Theorem 1. Assume that there are matrices p(x1, . . . , xm) and
p(y1, . . . , ym) with different ratios of eigenvalues in the image of p. Consider the
polynomial matrix f(t) = p(tx1 + (1 − t)y1, tx2 + (1 − t)y2, . . . , txm + (1 − t)ym),
and Π◦f where Π is defined in Remark 3. Write this nonconstant rational function
tr2f
det f in lowest terms as A(t)

B(t) , where A(t), B(t) are polynomials of degree ≤ 2 deg p

in the numerator and denominator.
An element c ∈ K is in Im (Π ◦ f) iff there exists t such that A− cB = 0 (If for

some t∗ A(t∗)−cB(t∗) = 0, then t∗ would be a common root of A and B). Let dc =
deg(A− cB). Then dc ≤ max(degA, degB) ≤ 2 deg p, and dc = max(degA, degB)
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for almost all c. Hence, the polynomial A− cB is not constant and thus there is a

root. Thus the image of A(t)
B(t) is Zariski dense, implying the image of tr2f

det f is Zariski

dense.
Hence, we may assume that Im p consists only of matrices having a fixed ratio

r of eigenvalues. If r 6= ±1, the eigenvalues λ1 and λ2 are linear functions of
tr p(x1 . . . , xm). Hence λ1 and λ2 are the elements of the algebra of generic matrices
with traces, which is a domain by Proposition 1. But the two nonzero elements
p− λ1I and p− λ2I have product zero, a contradiction.

We conclude that r = ±1. First assume r = 1. If Char K 6= 2, then p is a PI,
by Lemma 1. If Char K = 2 then the image is either sl2(K) or K̂, by Example 3(v).

Thus, we may assume r = −1 and Char K 6= 2. Hence, Im p consists only of
matrices with λ1 = −λ2. By Lemma 1, there is a non-nilpotent matrix in the image
of p. Hence, by Example 3(v), Im p is either K̂ or strictly contains it and is all of
sl2(K). �

We illuminate this result with some examples to show that certain cones may be
excluded.

Example 4.

(i) The polynomial g(x1, x2) = [x1, x2]
2 has the property that g(A,B) = 0

whenever A is scalar, but g can take on a nonzero value whenever A is non-
scalar. Thus, g(x1, x2)x1 takes on all values except scalars. This polynomial
is completely homogeneous, but not multilinear. (One can linearize in x2 to
make g linear in each variable except x1, and the same idea can be applied
to Formanek’s construction [F1] of a central polynomial for any n.)

(ii) Let S be any finite subset of K. There exists a completely homogeneous
polynomial p such that Im p is the set of all 2 × 2 matrices except the
matrices with ratio of eigenvalues from S. The construction is as follows.
Consider

f(x) = x ·
∏

δ∈S

(λ1 − λ2δ)(λ2 − λ1δ),

where λ1,2 are eigenvalues of x. For each δ the product (λ1 − λ2δ)(λ2 −
λ1δ) is a polynomial of tr x and tr x2. Thus f(x) is a polynomial with
traces, and, as noted above (by [Row, Theorem 1.4.12]), one can rewrite
each trace in f as a fraction of multilinear central polynomials (see (3) in
Proposition 1). After that we multiply the expression by the product of
all the denominators, which we can take to have value 1. We obtain a
completely homogeneous polynomial p which image is the cone under Im f
and thus equals Im f . The image of p is the set of all non-nilpotent matrices
with ratios of eigenvalues not belonging to S.

(iii) The image of a completely homogeneous polynomial evaluated on 2 × 2

matrices can also be K̂. Take f(x, y) = [x, y]3. This is the product of [x, y]2

and [x, y]. [x, y]2 is a central polynomial, and therefore tr f = 0. However,
there are no nilpotent matrices in Im p because if [A,B]3 is nilpotent then
[A,B] (which is a scalar multiple of [A,B]3) is nilpotent and therefore
[A,B]2 = 0 and [A,B]3 = 0.

(iv) Consider the polynomial

p(x1, x2, y1, y2) = [(x1x2)
2, (y1y2)

2]2 + [(x1x2)
2, (y1y2)

2][x1y1, x2y2]
2.
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Then p takes on all scalar values (since it becomes central by specializ-
ing x1 7→ x2 and y1 7→ y2), but also takes on all nilpotent values, since
specializing x1 7→ I + e12, x2 7→ e22, and y1 7→ e12, and y2 7→ e21 sends p to

[(e12 + e22)
2, e211]

2 + [(e12 + e22)
2, e211][e12, e21] = 0− e12(e11 − e22) = e12.

We claim that Im p does not contain any matrix a = p(x̄1, x̄2, ȳ1, ȳ2)

in K̃. Otherwise, the matrix [(x̄1x̄2)
2, (ȳ1ȳ2)

2][x̄1ȳ1, x̄2ȳ2]
2 would be the

difference of a matrix having equal eigenvalues and a scalar matrix, but
of trace 0, and so would have both eigenvalues 0 and thus be nilpotent.
Thus [(x̄1x̄2)

2, (ȳ1ȳ2)
2] would also be nilpotent, implying the scalar term

[(x̄1x̄2)
2, (ȳ1ȳ2)

2]2 equals zero, implying a is nilpotent, a contradiction.
Im p also contains all matrices having two distinct eigenvalues. We con-

clude that Im p = M2(K) \ K̃.

Remark 5. In Example 4(iv), The intersection S of Im p with the discriminant
surface is defined by the polynomial tr(p(x1, . . . , xm))2 − 4 det(p(x1, . . . , xm)) =
(λ1 − λ2)

2. S is the union of two irreducible varieties (its scalar matrices and the
nonzero nilpotent matrices), and thus S is a reducible variety. Thus, we see that
the discriminant surface of a polynomial p of the algebra of generic matrices can be
reducible, even if it is not divisible by any trace polynomial. Such an example could
not exist for p multilinear, since then, by the same sort of argument as given in
the proof of Theorem 1, the discriminant surface would give a generic zero divisor
in Amitsur’s universal division algebra UD of Proposition 1, a contradiction. In
fact, we will also see that the image of a multilinear polynomial cannot be as in
Example 4(iv).

3.3. Images of non-homogeneous polynomials. Now we consider briefly the
general case. One can write any polynomial p(x1, . . . , xm) as p = hk + · · · + hn,
where the hi are semi-homogeneous polynomial of weighted degree i.

Proposition 2. Notation as above, assume that there are weights (w1, . . . , wm)
that the polynomial hn has image dense in M2(K). Then Im p is dense in M2(K).

Proof. Consider

p(λw
1 x1, . . . , λ

w
mxm) =

n
∑

i=k

hiλ
i.

One can write P̃ = λ−np(λw
1 x1, . . . , λ

w
mxm) as a polynomial in x1, . . . , xm and

ε = 1
λ . The matrix polynomial is the set of four polynomials p1,1, p1,2, p2,1, p2,2,

which we claim are independent. If there is some polynomial h in four variables
such that h(p1,1, p1,2, p2,1, p2,2) = 0 then h should vanish on four polynomials of P̃
for each ε, in particular for ε = 0, a contradiction. �

Remark 6. The case remains open where p(x1, . . . , xm) is a polynomial for which
there are no weights (w1, . . . , wm) such that one can write p = hk + · · ·+hn, where
hi is semi-homogeneous of weighted degree i and hn has image dense in M2.

Example 5. For Char K 6= 2 we give an example of such a polynomial whose
middle term has image dense in M2(K). Take the polynomial f(x, y) = [x, y] +
[x, y]2. It is not hard to check that Im f is the set of all matrices with eigenvalues
c2+ c and c2− c. Consider p(α1, α2, β1, β2) = f(α1+β2

1 , α2+β2
2). The polynomials

f and p have the same images. Now let us open the brackets. The term of degree
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4 is h4 = [α1, α2]
2 + [β2

1 , β
2
2 ]. The image of h4 is all of M2(K), because [α1, α2]

2

can be any scalar matrix and [β2
1 , β

2
2 ] can be any trace zero matrix. However the

image of p is the set of all matrices with eigenvalues c2 + c and c2 − c.

3.4. Images of multilinear polynomials.

Lemma 7. If A,B ∈ Im p have different ratios of eigenvalues, then Im p contains
matrices having arbitrary ratios of eigenvalues λ1

λ2

∈ K.

Proof. If A = p(x1, . . . , xm), B = p(y1, . . . , ym) ∈ Im p have different ratios of
eigenvalues, then we can lift the x1, . . . , xm, y1, . . . , ym to generic matrices, and then
p(x1, . . . , xm) = Ã and p(y1, . . . , ym) = B̃ also have different ratios of eigenvalues.
Then take

f(T1, T2, . . . , Tm) = p(τ1x1 + t1y1, . . . , τmxm + tmym),

where Ti = (ti, τi) ∈ K2. The polynomial f is linear with respect to all Ti.

In view of Remark 3, it is enough to show that the ratio (trf)2

det f takes on all values.

Fix T1, . . . , Ti−1, Ti+1, . . . , Tm to be generic pairs where i is such that (trf)2

det f is not

constant with respect to Ti. Such i exist because otherwise all matrices in the image

(in particular, A and B) have the same ratio of eigenvalues. But (trf)2

det f is the ratio

of quadratic polynomials, and K is quadratically closed.
If there is a point Ti such that trf = det f = 0, then f evaluated at this Ti is

nilpotent. Since trf is a linear function, the equation trf = 0 has only one root,
which is a rational function on the other parameters. Thus f evaluated at this Ti

is 0, by Amitsur’s Theorem. We conclude that the ratio of eigenvalues does not

depend on Ti, contrary to our assumption on i. Hence, we can solve (trf)2

det f = c for

any c ∈ K. �

Lemma 8. If there exist λ1 6= ±λ2 with a collection of matrices (E1, E2, . . . , Em)
such that p(E1, E2, . . . , Em) has eigenvalues λ1 and λ2, then all diagonalizable ma-
trices lie in Im p.

Proof. Applying Lemma 4 to the hypothesis, there is a matrix
(

λ1 0
0 λ2

)

∈ Im p, λ1 6= ±λ2

which is an evaluation of p on matrix units eij . Consider the following mapping
χ acting on the indices of the matrix units: χ(eij) = e3−i,3−j . Now take the
polynomial

f(T1, T2, . . . , Tm) = p(τ1x1 + t1χ(x1), . . . , τmxm + tmχ(xm)),

where Ti = (ti, τi) ∈ K2, which is linear with respect to each Ti. Let us open
the brackets. We obtain 2m terms and for each of them the degrees of all ver-
tices stay even. (The edge 12 becomes 21 which does not change degrees, and
the edge 11 becomes 22, which decreases the degree of the vertex 1 by two and
increases the degree of the vertex 2 by two.) Thus all terms remain diagonal. Con-

sider generic pairs T1, . . . , Tm ∈ K2. For each i consider the polynomial f̃i(T
∗

i ) =
f(T1, . . . , Ti−1, Ti + T ∗

i , Ti+1, . . . , Tm). For at least one i the ratio of eigenvalues of

f̃i must be different from ±1. (Otherwise the ratio of eigenvalues of f̃i equal ±1 all
i, implying λ1 = ±λ2}, a contradiction.)
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Fix i such that the ratio of eigenvalues of f̃i is not ±1. By linearity, Im (f̃i) takes

on values with all possible ratios of eigenvalues; hence, the cone under Im (f̃i) is
the set of all diagonal matrices. Therefore by Lemma 2 all diagonalizable matrices
lie in the image of p. �

Lemma 9. If p is a multilinear polynomial evaluated on the matrix ring M2(K),

then Im p is either {0}, K, sl2, M2(K), or M2(K) \ K̃.

Proof. In view of Lemma 2, we are done unless Im p contains a non-scalar matrix.
By Lemma 5 the linear span of Im p is sl2 or M2(K). We treat the characteristic
2 and characteristic 6= 2 cases separately.

CASE I: Char K = 2. Consider the set

Θ = {p(E1, . . . , Em) where the Ej are matrix units}.

If the linear span of the image is not sl2, then Θ contains at least one non-scalar
diagonal matrix Diag{λ1, λ2}, so λ1 6= −λ2 (since +1 = −1). Hence by Lemma 8,

all diagonalizable matrices belong to Im p. Thus, Im p contains M2(K) \ K̃.
If the linear span of the image of p is sl2, then by Lemma 4 the identity matrix

(and thus all scalar matrices) and e12 (and thus all nilpotent matrices) belong to
the image. On the other hand, in characteristic 2, any matrix sl2 is conjugate to a
matrix of the form λ1I +λ2e1,2, and we consider the invariant λ2

λ1

. Take x1, . . . , xm

to be generic matrices. If p(x1, . . . , xm) were nilpotent then Im p would consist
only of nilpotent matrices, which is impossible. By Example 3(v), p(x1, . . . , xm)

is not scalar and not nilpotent, and thus is a matrix from K̃. Hence, K̃ ⊂ Im p,
by Lemma 6. Thus, all trace zero matrices belong to Im p.

CASE II: Char K 6= 2. Again assume that the image is not {0} or the set of
scalar matrices. Then by Lemma 5 we obtain that e12 ∈ Im p. Thus all nilpotent
matrices lie in Im p. If the image consists only of matrices of trace zero, then by
Lemma 5 there is at least one matrix in the image with a nonzero diagonal entry.
By Lemma 4 there is a set of matrix units that maps to a nonzero diagonal matrix

which, by assumption, is of trace zero and thus is

(

c 0
0 −c

)

. By Lemma 2 and

Example 3, Im p contains all trace zero 2× 2 matrices.
Assume that the image contains a matrix with nonzero trace. Then by Lemma 5

the linear span of the image is M2(K), and together with Lemma 4 we have at least
two diagonal linearly independent matrices in the image. Either these matrices have
ratios of eigenvalues (λ1 : λ2) and (λ2 : λ1) for λ1 6= ±λ2 or these matrices have
non-equivalent ratios. In the first case we can use Lemma 8 which says that all
diagonalizable matrices lie in the image. If at least one of these matrices have ratio
not equal to ±1, then in the second case we also use Lemma 8 and obtain that
all diagonalizable matrices lie in the image. If these matrices are such that the
ratios of their eigenvalues are respectively 1 and −1, then we use Lemma 7 and
obtain that all diagonalizable matrices with distinct eigenvalues lie in the image.
By assumption, in this case, scalar matrices also belong to the image. Therefore we
obtain that for any ratio (λ1 : λ2) there is a matrix A ∈ Im p having such a ratio
of eigenvalues. Using Lemmas 2 and 6, we obtain that the image of p can be either
{0}, K, sl2, M2(K), or M2(K) \ K̃. �



12 ALEXEY KANEL-BELOV, SERGEY MALEV, LOUIS ROWEN

Lemma 10. If p is a multilinear polynomial evaluated on the matrix ring M2(K),
where K is a quadratically closed field of characteristic 2, then Im p is either {0},
K, sl2, or M2(K).

Proof. In view of Lemma 9, it suffices to assume that the image of p is M2(K) \ K̃.
Let x1, . . . , xm, y1, . . . , ym be generic matrices. Consider the polynomials

bi = p(x1, . . . , xi−1, yi, xi+1, . . . , xm).

Let pi(x1, . . . , xm, yi) = ptr(bi) + tr(p)bi. Hence pi can be written as

pi = p(x1, . . . , xi−1, xitr(bi) + yitr(p), xi+1, . . . , xm).

Therefore Im pi ⊆ Im p. Also if a ∈ Im pi, then

tr(a) = tr(p tr(bi) + tr(p) bi) = 2 tr(p) tr(bi) = 0.

Thus, Im pi consists only of trace-zero matrices which belong to the image of p.
Excluding K̃, the only trace zero matrices are nilpotent or scalar. Thus, for each i,
pi(x1, . . . , xm, yi) is either scalar or nilpotent. However, the pi are the elements of
the algebra of free matrices with traces, which is a domain. Thus, pi(x1, . . . , xm, yi)
cannot be nilpotent. Hence for all i = 1, . . . ,m, pi(x1, . . . , xm, yi) is scalar. In this
case, changing variables leaves the plane 〈p, I〉 invariant. Therefore, dim(Im p) = 2,
a contradiction. �

Lemma 11. If p is a multilinear polynomial evaluated on the matrix ring M2(K)
(where K is a quadratically closed field of characteristic not 2), then Im p is either
{0}, K, sl2, or M2(K).

Remark. Since the details are rather technical, we start by sketching the proof.
We assume that Im p = M2(K) \ K̃. The linear change of the variable in posi-
tion i gives us the line A + tB in the image, where A = p(x1, . . . , xm) and B =
p(x1, . . . , xi−1, yi, xi+1, . . . , xm). Take the function that maps t to f(t) = (λ1−λ2)

2,
where λi are the eigenvalues of A+ tB. Evidently

f(t) = (λ1 − λ2)
2 = (λ1 + λ2)

2 − 4λ1λ2 = (tr(A+ tB))2 − 4 det(A+ tB),

so our function f is a polynomial of deg ≤ 2 evaluated on entries of A + tB, and
thus is a polynomial in t.

There are three possibilities: Either degt f ≤ 1, or f is the square of another
polynomial, or f vanishes at two different values of t (say, t1 and t2). (Note that
here we use that the field is quadratically closed). This polynomial f vanishes if
and only if the two eigenvalues of A+ tB are equal, and this happens in two cases
(according to Lemma 9): A + tB is scalar or A + tB is nilpotent. Thus either
both A + tiB are scalar, or A + t1B is scalar and A + t2B is nilpotent, or both
A + tiB are nilpotent. The first case implies that A and B are scalars, which is
impossible. The second case implies that the matrix A + t1+t2

2 B ∈ K̃, which is
also impossible. The third case implies that trA = trB = 0 which we claim is also
impossible. If degt f ≤ 1, then for large t the difference λ1 − λ2 of the eigenvalues
of A+ tB, is much less than t, so the difference between eigenvalues of B must be 0,
a contradiction.

It follows that f(t) = (λ1 − λ2)
2 is the square of a polynomial (with respect

to t). Thus λ1 − λ2 = a + tb, where a and b are some functions of the entries of
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the matrices x1, . . . , xm, yi. Note that a is the difference of eigenvalues of A and b
is the difference of eigenvalues of B, Thus

a(x1, . . . , xm, yi) = b(x1, . . . , xi−1, yi, xi+1, . . . , xm, xi). (4)

Note that (λ1 − λ2)
2 = a2 + 2abt + b2t2 which means that a2, b2 and ab are

polynomials (note that here we use Char K 6= 2). Thus, a
b = a2

ab is a rational
function. Therefore there are polynomials p1, p2 and q such that a = p1

√
q and

b = p2
√
q. Without loss of generality, q does not have square divisors. By (4)

we have that q does not depend on xi and yi. Now consider the change of other
variables. The function a is the difference of eigenvalues of A = p(x1, . . . , xm) so it
remains unchanged. Thus q does not depend on other variables also. That is why
λ1±λ2 are two polynomials and hence λi are polynomials. One concludes with the
last paragraph of the proof.

Proof. According to Lemma 9 it suffices to prove that the image of p cannot be
M2(K)\K̃. Assume that the image of p is M2(K)\K̃. Consider for each variable xi

the line xi + tyi, t ∈ K. Then p(x1, . . . , xi−1, xi + tyi, xi+1, . . . , xm) is the line
A + tB, where p(x1, . . . , xm) = A and p(x1, . . . , xi−1, yi, xi+1, . . . , xm) = B. Thus

A + tB /∈ K̃ for any t. Since B is diagonalizable, we can choose our matrix units
ei,j such that B is diagonal. Therefore

B = λBI +

(

c 0
0 −c

)

, A = λAI +

(

x y
z −x

)

.

Hence

A+ tB = (λA + tλB)I +

(

x+ tc y
z −x− tc

)

.

The matrix

(

x+ tc y
z −x− tc

)

is nilpotent if and only if (x + tc)2 + yz = 0,,

which has the solution t1,2 = 1
c (−x±√−yz). Thus, when yz 6= 0, π(A + tjB) will

be nilpotent for j = 1, 2, where π(X) = X− 1
2 trX . However tr(A+ tjB) is nonzero

for one of these values of tj , implying A+ tjB ∈ K̃, a contradiction.
Thus, we must have yz = 0. Without loss of generality we can assume that

z = 0. Any matrix M of the type qI +

(

w h
0 −w

)

satisfies detM = q2 −w2 and

q = 1
2 trM . Thus x =

√

1
4 (trA)

2 − detA and c =
√

1
4 (trB)2 − detB. Consider the

matrix

Pi = cA− xB = p(x1, . . . , xi−1, cxi − xyi, xi+1, . . . , xm),

which must be scalar or nilpotent. It can be written explicitly algebraically in terms
of the entries of xi and yi. Also, Pi = (cλB − xλA)I + (cy)e12, where e12 is the
matrix unit. There are two cases. If y = 0 then the line A + tB includes a scalar
matrix, and if y 6= 0 then (cλB −xλA) = 0 and all matrices on the line A+ tB have
the same ratio of eigenvalues.

Let S1 = {i : Pi ∈ K} and S2 = {i : Pi ∈ sl2(K)}. Without loss of generality we
can assume for some k ≤ m that S1 = {1, 2, . . . , k} and {k + 1, . . . ,m}. The four
entries of p(x1, . . . , xm) are

pij(x1,(1,1), x1,(1,2), x1,(2,1), x1,(2,2), . . . , xm,(2,2)),
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polynomials in the entries of xi. Consider the scalar function

f1(x1, . . . , xm) =
1
2 tr p(x1, . . . , xm)

R(x1, . . . , xm)
,

where R(x1, . . . , xm) =
√

1
4 tr

2p(x1, . . . , xm)− det p(x1, . . . , xm). This function is

defined everywhere except for those (x1, . . . , xm) for which p(x1, . . . , xm) is a matrix
with equal eigenvalues, because R is the half-difference of eigenvalues. The function
f1(x1, . . . , xm) does not depend on xk+1, . . . , xm because for any i ≥ k + 1, sub-
stituting yi instead of xi does not change the ratio of eigenvalues of p(x1, . . . , xm).
Consider the matrix function

f2(x1, . . . , xm) =
p(x1, . . . , xm)− 1

2 tr p(x1, . . . , xm)

R(x1, . . . , xm)
.

This function is also defined everywhere except for those (x1, . . . , xm) such that
the eigenvalues of p(x1, . . . , xm) are equal. The function f2(x1, . . . , xm) does not
depend on xi, i ≤ k, because for any i ≤ k substituting yi instead of xi does not
change the basis in which p(x1, . . . , xm) is diagonal. R2 is a polynomial:

R2 =
1

4
tr2p(x1, . . . , xm)− det p(x1, . . . , xm).

Write R2 = r1r2r3 where r1 is the product of all the irreducible factors in which
only x1, . . . , xk occur, r2 is the product of all the irreducible factors in which only
xk+1, . . . , xm occur, r3 is the product of the other irreducible factors. We have that

tr2p(x1, . . . , xm)

r1(x1, . . . , xm)r2(x1, . . . , xm)r3(x1, . . . , xm)
= f2

1 (x1, . . . , xm)

does not depend on xk+1, . . . , xm. Therefore if tr2p = q1q2q3 (again in q1 only
x1, . . . , xk occur, in q2 only xk+1, . . . , xm occur and q3 is all the rest) then r1r2r3

q1q2q3

does not depend on xk+1, . . . , xm. Hence r2 = q2 and r3 = q3(up to scalar factors).
As soon as q1q2q3 is a square of a polynomial all qi are squares therefore r2 and

r3 are squares. Now consider the function
p2

12

R2 . This is the square of the (1, 2)-
entry in the matrix function f2, so it does not depend on x1, . . . , xk. Writing
p212 = q1q2q3(where, again, only x1, . . . , xk occur in q1, only xk+1, . . . , xm occur in q2
and q3 is comprised of all the rest), then all the qi are squares and q1 = r1, implying
r1 is square. Thus the polynomial r1r2r3 = R2 is the square of a polynomial.
Therefore R is a polynomial. We conclude that λ1−λ2 = 2R is a polynomial (where
we recall that λ1 and λ2 are the eigenvalues of p(x1, . . . , xm)). λ1+λ2 = tr(p) is also
a polynomial and hence λi are polynomials, which obviously are invariant under
conjugation since any conjugation is the square of some other conjugation). Hence,
λi are the polynomials of traces, by Donkin’s Theorem quoted above. Now consider
the polynomials (p− λ1I) and (p− λ2I), which are elements of the algebra of free
matrices with traces, which we noted above is a domain. Both are not zero but
their product is zero, a contradiction. �

Finally, Theorem 2 follows from Lemmas 10 and 11.
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