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Abstract

The radiation of particles by charged black holes in (1+1) dimen-
sions is revisited. We consider the process of quantum tunnelling of
particles through two (event and Cauchy) horizons. It is shown that
the emission temperature for the ReissnerNordström background ge-
ometry is the same as the Hawking temperature for the Schwarzschild
black hole and does not depend on the charge of a black hole.

The black hole radiation of scalar particles for the Schwarzschild back-
ground was investigated by Hawking [1]. Black holes can be considered as a
quantum systems. The entropy and temperature of black holes may be eval-
uated within quantum mechanics. It was shown with the help of quantum
mechanical calculations that the thermal radiation is due to a horizon of the
Schwarzschild spacetime. This evaluation uses the classical curved space-
time without affecting the background. The radiation of scalar particles as a
quantum tunnelling effect near the horizon was considered also in [2], [3], [4],
[5]. That approach is based on the WKB approximation for the calculation
of the tunnelling probability via the horizon. The trajectory is classically
forbidden. Such method was also applied for studying the radiation of black
hole in different spacetime backgrounds. As a result, the quantum tunnelling
method allows us to learn thermodynamic properties of black holes and to
investigate the black hole radiation.

The popular point of view is that the temperature is associated with each
horizon of the black hole in the backgrounds possessing several horizons. We
consider the evaporation of the charged black hole with the ReissnerNord-
ström background to have the unique temperature. This fact is based on the
equilibrium thermodynamics. Thus, we imply the thermodynamic stability
of the charged black holes. As a result, the radiation temperature for two
horizons is the same and the spacetime is stable.
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We apply the tunnelling method for the calculation of the imaginary part
of the action for the emission processes through the horizons that are classi-
cally forbidden. The imaginary part of the action for the particle emission at
some temperature is similar to the Boltzmann factor. Thus, the tunnelling
probability within the WKB approximation for the classically forbidden path
from inside to outside the horizons is

P = exp
(
−2Im

S

h̄

)
, (1)

where S is the classical action of the trajectory at the leading order in h̄.
With the aid of Eq.(1) one may evaluate the quantum tunnelling probability.
We also note that a black hole emission spectrum is similar to a black body
radiation [6]. In this letter we explore the tunnelling method for the case of
the emission of particles from non-rotating charged black holes. The system
of units c = kB = 1 is used.

We consider the black hole in (1+1) dimension with the Reissner-Nordström
metric

ds2 = −A(r)dt2 + 1

A(r)
dr2, A(r) = 1− 2GM

r
+
G2Q2

r2
. (2)

where G is gravitational (Newton’s) constant, and M , Q are the mass and
charge of a black hole respectively. We study only a motion of particles in
the radial direction and, therefore, the spherically symmetric two dimensional
part is neglected here. The event horizon and an internal Cauchy horizon [7]
are in the points r = r+ and r = r−, correspondingly, where 1/A(r) diverges,
A(r±) = 0:

r± = GM ±G
√
M2 −Q2. (3)

Applying the WKB approximation, solutions to wave equations for particles
with different spins can be obtained in the form

ψ = ψ0 exp
(
i

h̄
S(t, r)

)
, (4)

where ψ0 is constant spinor for fermions or a vector for spin-1 bosons or a
scalar for spinless particles. The action is given by

S(t, r) = S0(t, r) + h̄S1(t, r) + h̄2S2(t, r) + .... (5)
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The solution to wave equations in the leading order to h̄ may be found in
the form

S0 = −Et+W (r) + C, (6)

where E is an energy, C is a complex constant and W (r) is as follows [8], [9],
[10]:

W±(r) = ±
∫ √

E2 −m2A(r)

A(r)
dr. (7)

For massless particles one has to putm = 0 in Eq.(7). For the outgoing (pr =
∂rS0 > 0) motion of particles we use W+, and for ingoing (pr = ∂rS0 < 0) -
W−. We study a trajectory of particles in the direction r from the inside to
the outside of the horizons, and therefore, the W+ will be used. From Eq.(2)
one finds

1

A(r)
=

r2

2G
√
M2 −Q2

(
1

r − r+
− 1

r − r−

)
. (8)

Thus, the expression (7) possesses a simple poles at the horizons. If r ̸=
r± the integral (7) is well defined and real, but for a path going through
the points r± the integral is not defined because A−1(r±) = ∞. We use a
replacement r± → r±− iε for outgoing particles [11] to calculate the integral
for crossing the horizons r±. As a result, we specify the complex contour that
may be used for the calculating the integral around r = r±. To normalize
the probability, one should use the relation ImC=-ImW−=ImW+ [12], so that
from Eq.(6) we have ImS0 = 2ImW+. In this case there is not a reflection. We
need the imaginary part of C for singular coordinates (that can be considered
as boundary conditions) which are not well-defined across the horizon. One
may evaluate the imaginary part of the integral (7) with the help of [13]

1

r − iε
= iπδ(r) + P

(
1

r

)
, (9)

and P
(
1
r

)
means the principal value of 1/r. Calculating the integral in Eq.(7)

using Eqs.(8),(9), we obtain

ImW+ = 2πGEM. (10)

From Eqs.(1), in leading order of h̄, one finds the tunnelling probability

P = exp
(
−4

h̄
ImW+

)
= exp

(
−8πGME

h̄

)
. (11)

3



From (11) and the Boltzmann expression one finds the emission temperature
of the charged black hole

T =
h̄

8πGM
(12)

which coincides with the Hawking’s temperature for the Schwarzschild black
hole and does not depend on the charge. This conclusion is in contrast with
commonly accepted expression T = k+h̄/(2π) = h̄(r+ − r−)/(4πr

2
+) for the

temperature of charged black holes. Our claim was based on the quantum
tunnelling method applied for two horizons and implying the equilibrium
temperature associated with the event and Cauchy horizons.

Thus, we have demonstrated with the aid of the quantum tunnelling
method that the Hawking temperature takes place for charged black holes
emission of particles because of two horizons. Here only eternal black holes
were considered, which forms gravitational background geometry and a ther-
mal spectrum obtained is inconsistent with the energy conservation as the
background is fixed. Taking into account energy conservation one may obtain
E2 corrections to the black hole radiation spectrum [5].
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