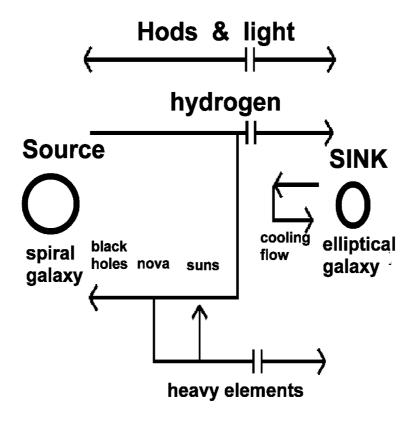
STOE replaces relativity and quantum mechanics

J.C. Hodge^{1*} ¹Retired, 477 Mincey Rd., Franklin, NC, 28734

jchodge@frontier.com

Abstract

BOOk Summary: Available amazon.com, morebooks.de Paperback, 416 pages ISBN-10: 6139914655 ISBN-13: 978-5139914654


The need for a paradigm shift is growing. Many ad hoc models and outlandish speculations abound to model many unexplained observations. The Scalar Theory Of Everything (STOE) audacious claim of a new paradigm is supported by corresponding to relativity and quantum mechanics; by explaining many problematical observations; and by making and fulfilling several predictions. It posits 2 components of the universe emerge to form everything. It models the universe as composed of cells with Sources (spiral galaxies) and Sinks (elliptical galaxies and matter). It forms the Universal Equations, one equation to define the potential at all points and one equation that uses the potential to exert forces on matter. These equations are applied the microwave background temperature, rotation curves, asymmetric rotation curves, galaxy redshift and discrete redshift, the pioneer anomaly, light interference, etc. The wave model of light is rejected by 2 experiments predicted by the STOE. Maxwell's Equations are modified. Life and society application of the STOE principles is suggested.

keywords: diffraction, interference, light, Afshar Experiment, STOE, TOE.

^{*}E-mail: jchodge@frontier.com

STOE REPLACES

relativity and quantum mechanics

by John C. Hodge

UNIVERSAL EQUATIONS

$$\rho_{\rm p} = K_{\epsilon} \sum_{i=1}^{N_{\rm source}} \frac{\epsilon_i}{r_i} - K_{\eta} \sum_{j=1}^{N_{\rm sink}} \frac{\eta_j}{r_j} - K_{\rm hods} \sum_{k=1}^{N_{\rm hods}} \frac{K_r}{r_k} \cos\left(\frac{2\pi r_k}{\lambda_{\rm T}} - \pi\right) \exp^{-j(\omega t_k)}$$

$$ec{F_{\mathrm{s}}} = K_{\mathrm{G}} \sum_{l=1}^{N_{\mathrm{hods}l}} m_{\mathrm{hod}} (ec{n_l} \bullet ec{
abla}
ho_{\mathrm{p}l}) ec{n_l},$$

Contents STOE replaces relativityand quantum mechanics Acknowledgments xxv

pr	preface xxvi					
1		ulates 1				
	1.1	Introduction				
	1.2	The Principles				
2	The	Universe 17				
	2.1	The STOE galaxy data 54				
3	GR	& QM replacement 59				
	3.1	STOE				
		3.1.1 Energy continuity equation				
		3.1.2 Forces				
		3.1.3 Particles				
		3.1.4 Chirality of matter				
		3.1.5 Source characteristics				
		3.1.6 Sink characteristics				
		3.1.7 Equivalence Principle				
	3.2	Sink and Source galaxies				
	3.3	Hod model				
		3.3.1 Hod action on ρ -field				
		3.3.2 <i>p</i> -field action on a hod				
	3.4	Particles				
	3.5	The analogy				
	3.6	Structure				
	3.7	spin				
	3.8	Universal Equations				

4	Mo	dify Maxwell's Equations	107
	4.1	The model	. 107
	4.2	Experiments reject the Biot-Savart Law	. 109
	4.3	Experiment 1	. 110
	4.4	Experiment 2	. 114
	4.5	Experiment 3	. 117
	4.6	Interpretation	. 117
5	Ten	perature of the universe	119
	5.1	Model	-
	5.2	Conclusion	
_			
0		discrete z	127
	6.1	Universal Equations application	
	6.2	Redshift model	
	6.3	Results	
	6.4	X factors	-
	6.5	Discrete variations in redshift	-
	6.6	Discussion	. 149
7	Pio	neer anomaly	155
	7.1	Universal Equations	. 155
	7.2	Introduction	. 155
	7.3	Model	. 157
	7.4	Results	. 158
		7.4.1 Sample	. 158
		7.4.2 Annual periodicity	. 160
		7.4.3 Difference of a_p between the spacecraft	. 161
		7.4.4 Slow decline in a_P	. 163
		7.4.5 Saturn encounter	. 163
		7.4.6 Large uncertainty of P11 80/66	. 164
		7.4.7 Cosmological connection	. 164
	7.5	Discussion	. 165
8	Bot	ation Velocity vs Inner Radius	169
*	8.1	Universal Equations	. 169
	8.2	Introduction	
	8.3	Sample	
	8.4	Analysis	
		8.4.1 Using DSS Data	

		8.4.2 Using HST Data	182
	8.5	Discussion	187
9		tance calculation	191
	9.1	Model	
	9.2	Data and Analysis	
	9.3	Discussion	202
10	RC	s & asymmetric RCs	205
		Universal Equations	
		Introduction	
	_	Spiral galaxy model	
		Results	
	10.7	10.4.1 Sample	
		10.4.2 First approximation	
		10.4.3 Second approximation	
	105	Discussion	
	10.0		44 1
11			231
	11.1	Universal Equations	231
	11.2	Introduction	231
	11.3	Sample	235
	11.4	Results	237
	11.5	Discussion	238
12			241
		Universal Equations	
		INTRODUCTION	
	12.3	Model	
		12.3.1 Photon action on ρ -field	
		12.3.2 ρ -field action on a photon $\ldots \ldots \ldots \ldots \ldots$	250
	12.4	Simulation	250
	12.5	Photons traveling a long distance	251
	12.6	Young's experiment	258
		Laser	
	12.8	Afshar experiment	265
	12.9	Discussion	266
		Single Photon diffraction and interference	
		12.10.1 INTRODUCTION	
		12.10.2 Model	270

12.10.3 Simulation	271
12.10.4 Screen	271
12.10.5 Maek	271
12.10.6 Correspondence with the Fraunhofer model	275
12.10.7 Discussion	275
12.11Diffraction experiment rejects wave models of light	276
12.11.1 INTRODUCTION	276
12.11.2 The experiment	276
12.11.3Edge experiments	279
12.11.4 Discussion	281
12.11.5 Conclusion	28 4
12.12opaque strips	
12.12.1 INTRODUCTION	28 4
12.12.2 Experiment	
12.12.3 Discussion and Conclusion	
12.13 with a transparent mask rejects wave models of light	
12.13.1 INTRODUCTION	
12.13.2 The Description of the experiment	
12.13.3 The Toy Simulation of the experiment	
12.13.4 Discussion and Conclusion	294
13 Replacement of Special Relativity	299
13.1 Universal Equations	
13.2 INTRODUCTION	
13.3 Null experiments	
13.4 Length contraction	
13.5 Doppler shift	
13.6 Clocks	
13.7 Time dilation	
13.8 Discussion and Conclusion	304
14 Life and survival	305
14.1 The purpose of life is life	
14.2 The nature of nature	
14.3 Biological to Social Mechanisms	
14.4 The Vital Way to life	
	~~~
15 STOE comparison to current models	347
16 Speculations	351