
KLEISLI DATABASE INSTANCES

DAVID I. SPIVAK

Abstract. We use monads to relax the atomicity requirement for data in a
database. Depending on the choice of monad, the database fields may contain
generalized values such as lists or sets of values, or they may contain excep-
tions such as various types of nulls. The return operation for monads ensures
that any ordinary database instance will count as one of these generalized in-
stances, and the bind operation ensures that generalized values behave well
under joins of foreign key sequences. Different monads allow for vastly differ-
ent types of information to be stored in the database. For example, we show
that classical concepts like Markov chains, graphs, and finite state automata
are each perfectly captured by a different monad on the same schema.
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1. Introduction

Monads are category-theoretic constructs with wide-ranging applications in both
mathematics and computer science. In [Mog], Moggi showed how to exploit their
expressive capacity to incorporate fundamental programming concepts into purely
functional languages, thus considerably extending the potency of the functional
paradigm. Using monads, concepts that had been elusive to functional program-
ming, such as state, input/output, and concurrency, were suddenly made available
in that context.

In the present paper we describe a parallel use of monads in databases. This
approach stems from a similarity between categories and database schemas, as
presented in [Sp1]. The rough idea is as follows. A database schema can be modeled
as a category C, and an ordinary database instance is a functor δ : C Ñ Set. Given
a monad T : Set Ñ Set, a Kleisli T -instance is a functor

δ : C Ñ KlspT q,

where KlspT q is the Kleisli category of T , as will be explained in Section 2.2.

This project was supported by ONR grant N000141010841.
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Values in a Kleisli T -instance are less restricted than ordinary values; we call
these generalized values T -values. In particular, within a Kleisli instance we are
permitted to relax the atomicity requirement for data (a requirement found in
Codd’s notion of first normal form, see [Cod]), while still maintaining referential
integrity. For example, if T is the List monad then T -values are lists, so a single
entry in a foreign key or data column could contain a list of entries of the target type.
Similarly, T -values might include assurance information (i.e. a number between 0%
and 100%), in which case each datum would come equipped with a probability of
correctness. Importantly, the monadicity of T ensures that the extra information
in T -values will naturally and predictably synthesize along any path obtained by
joining a sequence of foreign keys. One can think of flattening lists of lists, of
multiplying probabilities, or of propagating exceptions.

Kleisli instances offer additional functionality in a database, and such function-
alities vary widely as the category of monads on Set is quite rich. Having a variety
of available possibilities, the database architect can choose those that best fit the
current needs. Moreover, a morphism between monads T Ñ T 1 induces a functor
from the category of T -instances to the category of T 1-instances on the schema. In
future work we will show that one can vary the choice of monad throughout the
database schema, thus greatly increasing the expressive power of database schemas.
By incorporating these features within the design specification of the database, as
opposed to applying them from without, we reduce the barrier between database
and program. Whereas normally such functionality is distributed throughout the
technology stack, the monadic approach leads to a centralization of features, in-
creasing our ability to manage the system with certainty.

The monad formalism also enables more economical schema design. For example,
typically one encodes a set-membership relation with three tables, e.g.

element
‚ ÐÝ

membership
‚ ÝÑ

set
‚ ,

and to encode that A has as an attribute a list of B’s requires requires even more
overhead. However, the same information can be captured with a single column
when one employs the Multiset or List monad.

As an aside, the monad formalism also yields a surprising coincidence. We show
that there is a database schema Loop such that, for different choices of monads
T , the set of Kleisli T -instances on Loop can be interpreted in terms of classical
mathematical subjects.

Classical mathematical subject monad T Internal reference

Discrete dynamical systems Atomic Example 2.1.3
Graphs Multiset Example 4.2.7
Markov chains Dist Example 4.2.9

Finite state automata InpU Example 4.3.8

Turing machines Tur
t0,1u
tL,R,W0,W1u Example 4.3.13

“Jordan Canonical Form”
(vector spaces with endo-
morphism)

Vect Example 4.4.2

Multigraphs Free rig Example 4.4.4

(1)
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Monads have been applied to databases in previous work (e.g. [BNT], [Gru],
[LT], and [Maj])), but the sense in which they are applied is totally different than
that which is presented in this paper. In each of these papers, monads were ap-
plied to make sense of queries and, in particular, aggregate functions on collections
(e.g. counts and sums). The present paper, on the other hand, deals with the em-
ployment of monads within the database schema to provide additional expressivity
in each field, e.g. allowing non-atomic data or annotating data with probability
of correctness. While previous work may simplify aggregation in our context, it
should be seen as orthogonal to the ideas presented here.

In this paper we assume the reader has encountered categories before, but it is
not totally necessary. Readers with either very much or very little category theory
may benefit by reading Section 2.1 and Example 2.2.2 and then skipping directly
to Section 4. Readers with some background but who wish to review monads or
their Kleisli categories will hopefully be satisfied with the brief overview in the
intermediate sections. For a good reference on category theory, and monads in
particular, one should consult [Awo] or [BW].

We begin this paper in Section 2 with a brief review of the categorical model of
databases, as well as some background on monads and their Kleisli categories. We
discuss a new application of monads to databases in Section 3. In section 4 we offer
several examples that may be of interest, such as the List-instances. In Section 5 we
discuss morphisms of monads, which for example allow one to transform ordinary
atomic instances into List-instances. Finally in Section 6 we briefly discuss our
plans for future work in this area.

1.1. Acknowledgements. I’d like to thank Steve Lack and Tom Leinster for their
excellent answers to a question I posted on mathoverflow.net, and I’d like to thank
Allen Brown, Peter Gates, and Ka Yu Tam for many useful conversations.

2. Background

In this section we recount a simple category-theoretic model of databases, and
then review basic material on monads.

Notation 2.0.1. Let Set denote the category whose objects are sets and whose
morphisms are functions. Throughout the paper we will be careful to reserve the
word function to refer to mappings between sets. In a general category K we use
words like arrow or map, but never function, to refer to morphisms in K.

2.1. Categorical databases. We begin with some background on so-called cate-
gorical databases. Much more can be found in [Sp1].

Roughly, a database schema is a category presentation: it is given by a set of
objects (which will be drawn as nodes), a set of generating arrows, and an equiv-
alence relation on paths. We denote a path by writing its source object followed
by a sequence of arrows. We denote an equivalence of paths using the »-sign. For

http://mathoverflow.net/questions/55182/what-is-known-about-the-category-of-monads-on-set
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example, consider the following schema:

C:“

Employee manager worksIn » Employee worksIn
Department secretary worksIn » Department

Employee
‚

worksIn //

manager

��

first

~~⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦⑦
⑦

last

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

Department
‚

secretary
oo

name

��
FirstNameString

‚
LastNameString

‚
DepartmentNameString

‚

(2)

Here we see a graph with five vertices and six arrows, and underlined at the top we
see two path equivalence (PE) statements.1 This information generates a category:
the free category on the graph, modulo the path equivalence relation. In fact, in
[Sp1, 3.4.1] the author defines a category Sch, whose objects are schemas (presented
categories) as above, and proves that Sch is equivalent to Cat. From here on, we
elide the difference between a schema (category presentation) and a category.

A schema C is supposed to describe the wiring of a database. We think of each
object c P ObpCq as representing a table and each arrow f : c Ñ c1 emanating from
c as representing a column of c that takes values in table c1. Roughly, an instance

on C is the actual data: more precisely, an instance assigns to each table a set of
rows of data that conform to the specifications given by C. For example, the schema
represented in Diagram (2) describes the wiring of the following database instance:

Employee

ID first last manager worksIn

101 Alan Turing 103 q10

102 Camille Jordan 102 x02

103 Andrey Markov 103 q10

Department

ID name secretary

q10 Applied math 101

x02 Pure math 102

(3)

FirstNameString

ID

Alan

Alice

Andrey

Camille

David

.

.

.

LastNameString

ID

Arden

Hoover

Jordan

Markov

Turing

.

.

.

DepartmentNameString

ID

Applied math

Biology

Pure math

.

.

.

Every table has an ID column and perhaps other columns. Counting tables in (3)
we find five, the number of nodes in (2); and counting the non-ID columns in (3)
we find six, the number of arrows in (2).

1The first PE statement, “Employee manager worksIn » Employee worksIn”, identifies a path of
length 2 with a path of length 1. The second PE statement, “Department secretary worksIn »
Department”, identifies a path of length 2 with a path of length 0.
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In fact, we can see that Diagram (3) constitutes an assignment of a set (of rows)
to each node in C and a function to each arrow in C. For example the node Employee

is assigned the set t101, 102, 103u and the arrow manager : Employee Ñ Employee

is assigned the function sending 101 ÞÑ 103 and 102 ÞÑ 102 and 103 ÞÑ 103. Thus
an instance on schema C is precisely a functor I : C Ñ Set. The path equivalence
relation on C ensures that the values behave in specified ways. For example, Alan
Turing’s manager is Andrey Markov, and these two men (are required to) work
in the same department, Applied math. Similarly, the Secretary of Pure math is
Camille Jordan, and he (by necessity) works in the Pure math department.

We summarize all this in a formal, if hasty, definition. A careful description is
given in [Sp1].

Definition 2.1.1. A schema C is a small category presentation. An instance on C
is a functor δ : C Ñ Set.

Throughout this paper we will continually return to a couple examples.

Example 2.1.2. One of the most basic categories is the so-called free-arrow category.
We simply add names to make it more reminiscent of databases.

W :“ Employee
‚

worksIn // Department
‚

A instance δ : W Ñ Set consists of a set of employees, a set of departments, and
a function mapping each employee to a department. For example

δ :“

$
’’’’’’’’’’’&
’’’’’’’’’’’%

Employee

ID WorksIn

Alice Math
Bob EECS
Carl Ling
Deb EECS
Fred Math
Jen Bio

Department

ID

Bio
EECS
Ling
Math
Music

,
///////////.
///////////-

Example 2.1.3. The schema represented here

Loop :“
s
‚

f
��

has one object s and one generating arrow f , but a countably infinite set tfn | n P
Nu of paths. An instance δ : Loop Ñ Set is often called a discrete dynamical

system. It consists of a set, which we might think of as the set of states of the
system, and a function from that set to itself, which we might think of as the “next
state” function. As with any database instance we can apply the Grothendieck
construction (see [Sp2]) and get a nice picture of the system. For example one
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might have

δ :“

s

ID f

A B

B C

C C

D B

E C

F G

G H

H G

pictured
ÞÝÝÝÝÝÝÝÝÝÑ

ż
δ “

A
‚

// B
‚

// C
‚
qq

D
‚

::✈✈✈✈✈ E
‚

::✉✉✉✉✉

F
‚

// G
‚

(( H
‚gg

Discrete dynamical systems are commonly used in modeling [San]. In fact, we
will see throughout this paper that Kleisli instances on Loop are equivalent to
structures of classical mathematical interest. A list of such examples is provided in
the Introduction, Table (1).

2.2. Monads and Kleisli categories. In this section we define monads on the
category Set and their Kleisli categories. Monads can be defined on any category,
but the discussion will be a bit simpler if we are content with specializing to Set.
One can replace Set with Type, the category of types for any typed λ-calculus, in
what follows.

Definition 2.2.1. A monad J on Set consists of a triple J :“ pT, η, µq, where
T : Set Ñ Set is a functor and η : idSet Ñ T and µ : T ˝ T Ñ T are natural
transformations, such that the following diagrams commute:

T ˝ idSet

idT ˝η //

❑❑❑
❑❑❑

❑❑❑
❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑

T ˝ T

µ

��
T

(4)

idSet ˝ T
η˝idT //

❑❑❑
❑❑❑

❑❑❑
❑❑

❑❑❑
❑❑❑

❑❑❑
❑❑

T ˝ T

µ

��
T

(5)

T ˝ T ˝ T
µ˝idT //

idT ˝µ

��

T ˝ T

µ

��
T ˝ T

µ
// T

(6)

We call T the functor part of J and we refer to η and µ as the unit map and the
multiplication map of J, respectively. We sometimes abuse notation and refer to
the functor part T as though it were the whole monad.

Example 2.2.2. We now go through Definition 2.2.1 using the List monad. The
first step is to give a functor List : Set Ñ Set. For every set X we must pro-
vide a set ListpXq and for every function f : X Ñ Y we must provide a function
Listpfq : ListpXq Ñ ListpY q. To clarify the situation, let us lay out two sets X, Y

and a function between them.

X “ tp, q, ru Y “ t1, 2, 3, 4u
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X
f // Y

p
✤ // 1

q ✘

,,❳❳❳❳❳
❳❳❳❳❳

❳❳❳❳❳
❳❳❳❳❳

❳❳❳ 2

r
✫

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢ 3

4

Then ListpXq is the set of all lists in elements of X . Thus the set ListpXq includes
the empty list rs, one element lists such as rps, and all other lists in X (of finite
length) such as rp, q, r, r, ps. Given our function f as above, we can apply it term-
by-term to a list in X and return a list of the same length in Y .

ListpXq
Listpfq // ListpY q

rq, p, p, r, q, q, r, qs
✤ // r4, 1, 1, 1, 4, 4, 1, 4s

Thus we have described the functor List. As a monad, it comes with two natural
transformations, a unit map η and a multiplication map µ. Given a set X , the unit
map ηX : X Ñ ListpXq returns singleton lists as follows

X
ηX // ListpXq

p
✤ // rps

q
✤ // rqs

r
✤ // rrs

Given a set X , the multiplication map µX : ListpListpXqq Ñ ListpXq flattens lists
of lists as follows.

ListpListpXqq
µX // ListpXq

“
rq, p, rs, rs, rq, r, p, rs, rrs

‰ ✤ // rq, p, r, q, r, p, r, rs

The naturality of η and µ just mean that these maps work appropriately well under
term-by-term replacement by a function f : X Ñ Y . Finally the three monad
axioms (4), (5), and (6) can be exemplified as follows:

rp, q, qs
idList˝η //

▲▲
▲▲▲

▲▲
▲▲

▲▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

“
rps, rqs, rqs

‰

µ

��
rp, q, qs

rp, q, qs
η˝idList //

❏❏
❏❏❏

❏❏
❏❏

❏❏❏

❏❏
❏❏❏

❏❏❏
❏❏

❏❏

“
rp, q, qs

‰

µ

��
rp, q, qs
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”“
rp, qs, rrs

‰
,
“
rs, rr, q, qs

‰ı
✤µ˝idList //

❴

idList˝µ

��

“
rp, qs, rrs, rs, rr, q, qs

‰
❴

µ

��“
rp, q, rs, rr, q, qs

‰ ✤
µ

// rp, q, r, r, q, qs

The List monad is but one example of a huge variety of monads on Set. Many
more examples will be given in Section 4. We now go on to define the Kleisli
category associated to a monad. The definition may be a bit opaque. We give an
example in 2.2.4, but the real motivation comes in Section 3. Readers who learn
best by example might skip directly to Section 4.

Definition 2.2.3. Let J “ pT, η, µq be a monad on Set. The Kleisli category

associated to J, denoted KlspJq, is defined as follows. The objects are sets, i.e.

ObpKlspJqq “ ObpSetq.

For any sets X, Y P ObpKlspJqq we put

HomKlspJqpX, Y q “ HomSetpX, T pY qq.

Given morphisms f : X Ñ Y and g : Y Ñ Z in KlspJq, we must define their
composite g ˝ f . Unwinding definitions, we are given functions

X
f

ÝÝÝÑ T pY q(7)

Y
g

ÝÝÝÑ T pZq(8)

in Set, and we need a function X Ñ T pZq. Let g : T pY q Ñ T pZq denote the
composite function

T pY q
T pgq

ÝÝÝÑ T pT pZqq
µ
ÝÑ T pZq.(9)

We define the map g ˝ f : X Ñ Z in KlspJq to be the composition of f and g

in Set. Monad axiom (6) ensures that this composition law is associative, and
axioms (4) and (5) ensure that the identity, which on X P ObpKlspJqq is given by
ηX : X Ñ T X , is a left and right unit.

For any set X we refer to elements of T pXq as T -values in X .

Example 2.2.4. We continue working with the List monad from Example 2.2.2. The
objects of the Kleisli category KlspListq are, as always, simply sets. Given sets X

and Y (say X “ tp, q, ru and Y “ ts, tu), a morphism f : X Ñ Y in KlspListq is a
function X Ñ ListpY q. In other words it consists of three lists in letters s, t. For
example let us say

fppq “ rs, ss fpqq “ rs fprq “ rt, s, ts.

To explain the composition law, let us define a new set Z “ tu, vu and a function
g : Y Ñ ListpZq given by

gpsq “ ru, v, vs gptq “ rv, us.

Then the composition g ˝ f : X Ñ Z in KlspListq corresponds to the obvious sub-
stitution:

g ˝ fppq “ ru, v, v, u, v, vs g ˝ fpqq “ rs g ˝ fprq “ rv, u, u, v, v, v, us.
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Remark 2.2.5. Given a monad J, its Kleisli category KlspJq is equivalent to the
category of free J-algebras ([BW]). However the database representation of maps
that seems to be suggested by the Kleisli category is much more compact than that
suggested by the category of free algebras. For example, consider the List monad.
If X is a set with three elements and Y is any set, then a function X Ñ ListpY q
can be represented by a table with three rows. On the other hand, one might
imagine that a map f : ListpXq Ñ ListpY q should be represented by a table with
infinitely many rows, one for each element of ListpXq. Our point is that the Kleisli
representation is valuable because it is as succinct as possible.

3. Kleisli instances

Now that we have a categorical viewpoint of databases (Section 2.1) and an
understanding of the Kleisli category, we can combine them.

Definition 3.1.6. Let C denote a schema and let J :“ pT, η, µq denote a monad
on Set having Kleisli category KlspJq. A Kleisli J-instance on C (or simply a
J-instance on C) is a functor δ : C Ñ KlspJq.

3.2. Representing Kleisli instances. Let us examine Definition 3.1.6 in detail.
For the remainder of Section 3.2, C will denote a schema, J “ pT, η, µq will denote
a monad on Set, and δ : C Ñ KlspJq will denote a Kleisli J-instance on C. We will
first investigate what information is provided by our instance δ and then explain
how to display it in an extension of the typical database format.

Our schema C consists of objects, arrows, and a path equivalence relation. For
each object c P ObpCq, our instance provides a set δpcq P ObpKlspJqq “ ObpSetq.
For each morphism f : c Ñ c1 in C, our instance provides a morphism δpfq : δpcq Ñ
δpc1q in KlspJq; this is the same as a function

δpfq : δpcq Ñ T δpc1q.

A path c0
f1ÝÑ c1

f2ÝÑ c2
f3ÝÑ ¨ ¨ ¨

fnÝÑ cn in C is sent to a composition of functions

δpc0q
δpf1q
ÝÝÝÑ T δpc1q

δpf2q
ÝÝÝÑ T 2δpc2q

δpf3q
ÝÝÝÑ ¨ ¨ ¨

δpfnq
ÝÝÝÑ T nδpcnq

µn´1

ÝÝÝÑ T δpcnq,

and the path equivalence relation must be satisfied with respect to such composi-
tions.

To represent an atomic database instance ǫ : C Ñ Set, as in Section 2.1, we used
(and will continue to use) a tabular format in which every object c P ObpCq was
displayed as a table including one ID column and an additional column for every
arrow emanating from c. In the ID column of table c were elements of the set ǫpcq
and in the column assigned to some arrow f : c Ñ c1 the cells were elements of the
set ǫpc1q.

To represent a Kleisli database instance δ : C Ñ KlspJq is similar; we again use
a tabular format in which every object c P ObpCq is displayed as a table including
one ID column and an additional column for every arrow emanating from c. In
the ID column of table c are again elements of the set δpcq; however in the column
assigned to some arrow f : c Ñ c1 are not elements of δpc1q but T -values in δpc1q,
i.e. elements of T δpc1q.

Example 3.2.1 (Lists). Let J “ pList, η, µq be the list monad as described in Ex-
amples 2.2.2 and 2.2.4. Here we show how a List-instance could be represented in
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a tabular fashion. Our imagined scenario is as follows. We have a set K of tasks.
Each task k P K is composed of an ordered sequence of other tasks in the set,

k
✤ is composed of // rk1, . . . , kns .

Here a task k might be irreducible (k ÞÑ rks) or empty of requirements (k ÞÑ rs).
Our situation is modeled by a List-instance on the schema

Loop – Task
‚

isComposedOf
��

The following is an example of such:

Task

ID IsComposedOf

a [b, a, b]
b [e, c]
c [d]
d []
e [d]

a

2nd

�� 1st
''

3rd

77 b
2nd //

1st

��

c
1st // d

e

1st

77♦♦♦♦♦♦♦♦♦♦♦♦♦♦

A List-instance on Loop can be thought of as a directed graph such that every
vertex has finitely many outgoing edges, which are linearly ordered.

3.3. The categories C–KlspJq and C–ĄKlspJq. Kleisli instances are interesting
objects in their own right, as we will see in Section 4; however, any category theorist
will be interested in the morphisms between them. It seems that different notions
of morphisms are appropriate in different circumstances. Below we define two
categories for any schema C and monad J; both have the same set of objects, namely
the set of Kleisli J-instances on C, but one has more morphisms. In Remark 3.3.4,
we will offer still another possibility. Perhaps the point is that there several viable
notions of morphisms between Kleisli states and the choice of which to use should
be dictated by ones purpose.

Definition 3.3.1. Let C be a schema, let J “ pT, η, µq be a monad on Set, and let
δ, ǫ : C Ñ KlspJq be J-instances on C. A general morphism of J-instances on C is
a natural transformation a : δ Ñ ǫ of functors. We define the category J-instances

on C, denoted C–KlspJq, to be the category having objects and general morphisms
as above.

Let C be a category and J “ pT, η, µq a monad on Set. Given two J-instances
δ, ǫ : C Ñ KlspJq, a general morphism a : δ Ñ ǫ is simply a natural transformation
of functors. Unpacking that definition, we have for every object c P ObpCq a
component morphism ac : δpcq Ñ ǫpcq in KlspJq, which is a function ac : δpcq Ñ
T ǫpcq. These components have to fit into naturality squares: given any f : c Ñ c1
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in C we need the following diagram to commute:

δpcq
δpfq //

ac

��

T δpc1q

µ˝T ac1

��
T ǫpcq

µ˝T ǫpfq
// T ǫpc1q.

(10)

We will see in Example 4.4.2 that for the classical mathematical subject area of
representation theory [EGH], these so-called general morphisms are precisely what
one wants. In other words for the vector-space monad Vect, and a category G

(generally either a group or a quiver), the category of general Vect-instances is the
category of G-representations, G–KlspVectq – ReppGq.

However for classical computer science, these general morphisms seem to be too
general. For example, we will show that there is a monad TurU

M for which the Loop-
instances are almost precisely the same thing as Turing machines.2 In this setting,
general morphisms seem strange and unmotivated whereas the basic morphisms
(Definition 3.3.2) make much more sense. Indeed, given a basic morphism p : δ Ñ δ1

of unpointed Turing machines and any choice of start state S P δpsq, the Turing
machine pδ, Sq computes the same function as pδ1, ppSqq computes.

Definition 3.3.2. Let C be a schema, let J “ pT, η, µq be a monad on Set, and
let δ, ǫ : C Ñ KlspJq be J-instances on C. A basic morphism b : δ Ñ ǫ consists of a
component function bc : δpcq Ñ ǫpcq for each object c P ObpCq, such that for each
morphism f : c Ñ c1 in C the induced diagram of sets commutes:

δpcq

bc

��

δpfq // T δpc1q

T bc1

��
ǫpcq

ǫpfq
// T ǫpc1q.

(11)

We denote by C–ĄKlspJq Ď C–KlspJq the basic subcategory of J-instances on C
which has as objects all J-instances and which has as morphisms the basic mor-
phisms, as defined above.

Remark 3.3.3. Given δ, ǫ : C Ñ KlspJq, there is another definition of basicness
that is equivalent and perhaps more categorical. Namely a natural transformation
a : δ Ñ ǫ is basic if and only if, for each object c P ObpCq the component ac : δpcq Ñ
T ǫpcq factors through the unit component ηǫpcq : ǫpcq Ñ T ǫpcq.

For any monad J “ pT, η, µq on Set and any category C, there is a functor
from the category of ordinary (atomic) database instances into the basic category
of J-instances,

EC

J : C–Set Ñ C–ĄKlspJq.

For an object δ : C Ñ Set we have EC

Jpδq “ δ, and for a morphism a : δ Ñ ǫ, we
have EC

Jpaq “ ηǫ ˝ a : δ Ñ T ǫ. This functor is a faithful if and only if there exists a
set X such that JpXq has cardinality at least 2.

2To be explicit, an object in Loop– ĄKlspTurU
M q is equivalent to a Turing machine for which the start

state has not been specified. We call objects in Loop– ĄKlspTurU
M q unpointed Turing Machines.
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Remark 3.3.4. Another notion of morphisms between J-instances on C is often
appropriate. If J is the extension of a monad J1 “ pT 1, η1, µ1q on Cat via the

adjunction Set
Disc //

Cat
Ob

oo , then for any X P ObpSetq one may say that “T pXq

naturally has the structure of a category” because T 1pDiscpXqq is a category and
T pXq “ ObpT 1pXqq. The monads P , Multiset, List, and ExcE (from Sections
4.2.6,4.2.5, and 4.3.1) are instances of this phenomenon. Consider, for example,
the monad P where one recognizes that the power set of any set X does naturally
come with a partial order. In this case, the monad P on Set is induced by a monad

on Cat whose functor part is X ÞÑ FunpX , r1sq, where r1s “ ‚ÝÑ‚ is the walking
arrow category.

When J extends to a monad on Cat, there seems to be another natural notion of
morphisms between J-instances on a schema C. Namely, a lax morphism a : δ Ñ ǫ

between δ, ǫ : C Ñ KlspJq consists of a component function ac : δpcq Ñ ǫpcq for each
c P ObpCq and, for each f : c Ñ c1 in C, a natural transformation diagram

δpcq
δpfq //

ac

��
w

T pδpc1qq

ac1

��
ǫpcq

ǫpfq
// T pǫpc1qq

in other words, a morphism ac1 ˝ δpfq ÝÑ ǫpfq ˝ ac.
When it is defined, this notion of morphism seems to have some advantages.

For example when T “Multiset, we will see in Example 4.2.7 that the objects

of Loop–ĄKlspMultisetq are graphs, but the morphisms are more restrictive than
graph morphisms. On the other hand, the category with the same objects and lax
morphisms is equivalent to the category of graphs.

4. Examples

In this section we provide a survey of available monads that may be useful in
databases. We divide them into five roughly sensible groups. In Section 4.1 we
discuss two monads, one of which is initial in the category of monads (and gives
rise to ordinary (atomic) database instances) and one of which is terminal in the
category of monads (and gives rise to so-called unlinked instances). In Section
4.2 we give examples of monads that represent various kinds of collection such
as subsets, multisets, lists, and probability distributions. In Section 4.3 we discuss
monads which we describe as “tunable,” because one can adjust the choice of monad
in a controlled way; for example, for each choice of set E one obtains a different
monad ExcE of E-exceptions. In Section 4.4 we consider various classical algebraic
monads, e.g. of vector spaces. Finally in Section 4.5 we consider process-oriented
monads that include computations and experiments.

4.1. Universal monads.

4.1.1. Atomic instances. There is an identity monad on Set, which we denote

Atomic “ pidSet, id, idq.

Its instances are here called atomic (or ordinary, or ordinary atomic) instances. See
Examples 2.1.2 and 2.1.3.
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4.1.2. Unlinked entities. Consider the monad

Unlinked “ pt˚u
´

, !, !q,

where for any set X P Set, the set t˚u
X

:“ t˚u is the terminal object in Set.
The unit and multiplication maps are completely determined by their domain and
codomain. An Unlinked-instance on C includes a set of records for each object
c P ObpCq, but the foreign keys offer no connection between them.

Example 4.1.3. Let W be as in Example 2.1.2. An instance δ : W Ñ KlspUnlinkedq
might look like

δ :“

$
’’’’&
’’’’%

Employee

ID WorksIn

Alice *

Bob *

Carl *

Deb *

Fred *

Jen *

Department

ID

Bio

EECS

Math

Music

,
////.
////-

4.2. Collection monads.

4.2.1. Subsets. The monad
P “ pP, t´u, Yq

sends a set to its power set; the unit t´u : X Ñ PpXq is given by singleton subsets,
x ÞÑ txu, and the multiplication is given by union Y : PpPpXqq Ñ PpXq. Note that
there is an isomorphism of categories KlspPq – Rel, where Rel is the category of
sets and binary relations [FS].

Example 4.2.2.

δ :“

$
’’’’’’’’’&
’’’’’’’’’%

Employee

ID WorksIn

Alice {Math, EECS}

Bob {EECS}

Carl {}

Deb {EECS}

Fred {Math, Bio}

Jen {Bio}

Department

ID

Bio

EECS

Math

Music

,
/////////.
/////////-

Example 4.2.3 (Nonempty subsets). It is easy to see that the nonempty subsets
functor P` given by P`pXq “ tY Ď X | Y ‰ Hu is the functor part of a monad.
Note that KlspP`q is the set of correspondences in the sense of theoretical econom-
ics, e.g. for “best response” strategies in game theory [Car, Section 2.1.5].

Example 4.2.4 (Turning a database inside out). Given a category C and an ordinary
database instance δ : C Ñ Set we can, in a sense, invert δ by producing an instance
on Cop:

Ð

δ : Cop Ñ KlspPq.

For c P ObpCq we have
Ð

δ pcq “ δpcq. For f : c1 Ñ c in C and x P δpcq, we define
Ð

δ pfq : δpcq Ñ Ppδpc1qq by
Ð

δ pfqpxq “ δpfq´1pxq Ď δpc1q.
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4.2.5. Lists. This was the running example in Section 2.2 and Section 3; see in
particular Example 3.2.1.

One can also define a non-empty lists monad List`, similarly to the nonempty
subsets monad P` of Example 4.2.3.

4.2.6. Finite multisets. The monad Multiset “ pT, η, µq is given as follows. The
functor part T : Set Ñ Set is given by

T pXq :“
ž

nPN

pXn{Σnq

where Σn is the symmetric group on n letters, which acts on elements x P Xn

by permuting the order of entries in x; the quotient of this action is the set of
un-ordered n-tuples in X . The unit and multiplication in the Multiset monad are
analogous to the unit and multiplication in the List monad.

The category KlspMultisetq is equivalent to the category of sets and correspon-
dences. Recall [Lur, Section 2.3.1] that for sets X and Y , a correspondence between

X and Y is a diagram of the form X
f

ÐÝ C
g

ÝÑ Y , where C is a set and f, g are
functions.

Example 4.2.7. Given a set X , a correspondence from X to itself is a graph with
vertex set X . In other words, a graph is precisely a Multiset-instances on the cat-
egory Loop. We denote a multiset using usual set notation, but in which duplicate
entries with the same name correspond to distinct elements of the multiset.

δ :“

s

ID f

a {b,d}
b {c,c}
c {}
d {}
e {e}

a
‚ //

��

b
‚

  
??
c
‚

d
‚

e
‚ qq

(12)

The usual notion of graph morphism is captured by the lax notion given in
Remark 3.3.4.

4.2.8. Distributions. Let r0, 1s Ď R denote the set of real numbers between 0 and 1.
Let X be a set and p : X Ñ r0, 1s a function. We say that p is a finitary probability

distribution on X if there exists a finite subset W Ď X such thatÿ

wPW

ppwq “ 1,(13)

and such that for all x1 P X ´ W in the complement of W we have ppx1q “ 0. Note
that W is unique if it exists; we call it the support of p and denote it Suppppq.
Note also that if X is a finite set then every function p satisfying (13) is a finitary
probability distribution on X .

For any set X , let DistpXq denote the set of finitary probability distributions
on X . It is easy to check that given a function f : X Ñ Y one obtains a function
Distpfq : DistpXq Ñ DistpY q by Distpfqpyq “

ř
fpxq“y ppxq. Thus we can consider

Dist : Set Ñ Set as a functor, and in fact the functor part of a monad. Its unit
η : X Ñ DistpXq is given by the Kronecker delta function x ÞÑ δx where δxpxq “ 1
and δxpx1q “ 0 for x1 ‰ x. Its multiplication µ : DistpDistpXqq Ñ DistpXq is given
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by weighted sum: given a finitary probability distribution w : DistpXq Ñ r0, 1s and
x P X , put µpwqpxq “

ř
pPSupppwq wppqppxq.

Example 4.2.9 (Markov chains). Let Loop be as in Example 2.1.3. A Dist-instance
on Loop is equivalent to a time-homogeneous Markov chain. To be explicit, a
functor δ : Loop Ñ KlspDistq assigns to the unique object s P ObpLoopq a set S “
δpsq, which we call the state space, and to f : s Ñ s a function δpfq : S Ñ DistpSq,
which sends each element x P S to some probability distribution on elements of S.
For example, the table δ on the left corresponds to the Markov matrix M on the
right below:

δ :“

s

ID f

1 .5(1)+.5(2)
2 1(2)
3 .7(1)+.3(3)
4 .4(1)+.3(2)+.3(4)

M :“

¨
˚̊
˝

0.5 0.5 0 0
0 1 0 0

0.7 0 0.3 0
0.4 0.3 0 0.3

˛
‹‹‚(14)

As one might hope, for any natural number n P N the map fn : S Ñ DistpSq
corresponds to the matrix Mn, which sends an element in S to its probable location
after n iterations of the transition map.

One could also at least encode the information necessary to describe time-
inhomogeneous Markov chains by using similar schemas, such as

Loop _ Loop :“ s
‚

f2

��

f1

MM

or Loop_t1,2,...u “ Loop _ Loop _ ¨ ¨ ¨ , and the same monad Dist.

4.3. Tunable monads. Some monads on Set come in families. To make this
precise, we will say that a tunable monad is a pair (I, P q where I is a small category
and P : I Ñ MonadSet is a functor (see Definition 5.1.3). Of course then any
monad can be trivially considered tunable by taking the indexing category to be
I “ ‚ (the discrete category on one object). It is clear that the degree to which
a monad is tunable is measured by the complexity of pI, P q. In the present section
we will only mention three such monads; the first is indexed by Fin, the category of
finite sets, the second is indexed by Finop, and the third is indexed by the category
of monoids. See Section 5 for more on the value of tunable monads.

4.3.1. Exceptions. Let E P Fin be a finite set. The monad ExcE “ p´ > E, η, µq is
given as follows. The unit ηX : X Ñ X > E is given simply by the inclusion. The
multiplication µX : X > E > E Ñ X > E is given in the obvious way, by identity on
each copy of X and E.

Example 4.3.2. If E “ H the exception monad reduces to the identity monad, i.e.
ExcH-instances are ordinary atomic instances. If E “ t˚u is the one-element set,
then Exct˚u-instances correspond to databases in which a field can have null values;
we call Exct˚u the Maybe monad.
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Example 4.3.3. Let Loop :“
s
‚

f
�� . Then for any set E, the ExcE-instances on

Loop can encode recursive functions with output values in E. For example, with
E “ N we obtain the factorial function n ÞÑ n! as an ExcE-instance, δ : Loop Ñ
KlspExcNq. Namely, we put δpsq :“ N ˆ N and we put δpfq : δpsq Ñ δpsq > E on
pm, nq P δpsq by

δpm, nq :“

#
pmn, n ´ 1q P δpsq if n ě 1

m P E if n “ 0.

Then for any n P N, the factorial of n is obtained by starting with p1, nq and
repeatedly applying δpfq until an output (in E “ N) is returned.

Example 4.3.4 (Database schemas). In Section 2.1 we gave a definition of database
schemas, but we did not mention data types. One model for typed database schemas
can be found in [Sp1, Section 5.1], but here we present another model based on
monads.

Let E be a set, the elements of which are names of datatypes, e.g. E “
tString, Int, Floatu. Let ListE “ pTE , η, µq be the monad with functor part TEpXq “
ListpX > Eq, sending a set X to the set of lists for which each entry is an element
either of X or of E. Then we construe any instance δ P Loop–KlspListEq as a
database schema in the following way. The set δpsq serves as the set of tables, and
for each table x P δpsq the list δpfqpxq serves as the set of columns of x, each of
which is either another table (indicating a foreign key) or a datatype.

4.3.5. Inputs. Let U P Fin be a finite set. The monad InpU “ pX ÞÑ XU , η, µq is
given as follows. The unit ηX : X Ñ XU sends x to the constant function at x.
If ∆U : U Ñ U ˆ U is the diagonal map, then we can describe the multiplication
µX : pXU qU Ñ XU by

pXU qU – XUˆU ∆UÝÝÑ XU .

Example 4.3.6 (Tailored user experience). If U is a set of users then the database

instance δ : C Ñ KlspInpU q would provide possibly different values for different
u P U .

Similarly, if U is the set of dates, then the values in a database instance δ could
be made to depend on the date.

Example 4.3.7 (Each universal monad as a special case). With U “ H the input

monad InpH reduces to the Unlinked monad of Section 4.1.2. If U “ t˚u, the input

monad Inpt˚u reduces to the identity monad, whose Kleisli instances are ordinary
atomic instances as in Section 4.1.1.

Example 4.3.8 (Finite state automata). A finite state automaton consists of a set
S of states, a set T of transitions, and a function T ˆ S Ñ S. By currying, this
can be rewritten as a function S Ñ ST . The category of finite state automata

with transitions T is precisely the category Loop–ĄKlspInpT q of T -Input instances
on Loop.

4.3.9. Monoid annotation. Let pM, 1, ‹q be a monoid. We define the monad

M -annotated :“ pX ÞÑ M ˆ X, p1, ´q, p‹, ´qq.
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One way to think about this is that M is a language of instructions, multiplication
corresponding to carrying out a sequence of instructions and unit corresponding to
doing nothing, and M -annotated instances keep track of such instructions as one
follows foreign keys through the database. However, there are other ways to think
about M -annotated instances as well, as we show in two examples.

Example 4.3.10 (Assurance). Consider the monoid M “ pr0, 1s, 1, ˚q, where r0, 1s Ď
R is the unit interval, and ˚ : r0, 1s ˆ r0, 1s Ñ r0, 1s is given by multiplication of real
numbers. Think of a r0, 1s-annotated values as assurances. In other words if a data
entry clerk or a scientist is less than 100% sure that a certain datum is correct, they
can annotate it with their assurance level. To keep things uncluttered we simply
do not write our assurance value if it is unit (100%).

δ :“

Person

ID LivesAt

Alice 15 Ashville Rd.

Bob 34 Vine St. (80%)

Carl 21 Post St. (90%)

Deb 110 W. 5th Ave.

The monad multiplication assures that probability values will propagate through
the database (with an independence assumption) as we compose foreign keys.

Example 4.3.11 (Time-delay). Consider the monoid M “ pRě0, 0, `q, where Rě0 Ď
R is the set of non-negative real numbers. Think of Rě0-annotated values as time-
delays. In other words, each foreign key f : c Ñ d in a database may correspond to
a process that converts things of type c into things of type d, and the time delay
monad allows us to also encode how long that process is expected to take. Monad
multiplication assures that these values will be added together as we string together
longer processes by composing foreign keys. Note that we could use Rě0 Y t8u
instead of Rě0 if we wanted to allow for never-ending processes.

4.3.12. Turing Machines. Let M be a monoid and U a finite set. We have seen
that on Loop, the monad InpU encodes finite state automata (Example 4.3.8), the
monad M -annotated encodes finite lists of instructions (Section 4.3.9), and the
monad ExcE encodes exceptions (Section 4.3.1). Let us set E “ ttHaltuu. We can
combine these three monads into a new monad:

TurU
M “

´
X ÞÑ

`
M ˆ pX > tHaltuq

˘U
, µ, η

¯

We do not describe the unit and multiplication here, but they are easy enough
to reconstruct in analogy with the descriptions in Sections 4.3.1, 4.3.5, and 4.3.9,
assuming M acts trivially on {Halt}.

Example 4.3.13. Consider the case where U “ t0, 1u and where M is the free
monoid on the set tL, R, W0, W1u, which we think of as the set of all sequences of
instructions to move left, move right, write a 0, and write a 1. Then if X is thought
of as the set of states of a Turing machine, a function U Ñ M ˆ pX > tHaltuq reads
the input and produces an instruction and a new state (possibly the Halt state).



18 DAVID I. SPIVAK

Start
0:W1 //
1:W1

// q0

1:L
		

0:W1

// q1

0:W0

;;
1:L // q2

1:W0

		

0:R
// Halt

1:W1

��

0:W0

SS

Loop :“
s
‚

f
�� δ :“

s

ID f

Start 0: (W1, q0), 1: (W1, q0)

q0 0: (W1, q1), 1: (L, q0)

q1 0: (W0, Halt), 1: (L, q2)

q2 0: (R, Halt), 1: (W0, q2)

A functor δ : Loop Ñ KlspTurU
M q consists of a set X “ δpsq of states and a

function δpfq : X Ñ pM ˆ pX > tHaltuqU , which can be curried to X ˆ U Ñ
M ˆ pX > tHaltuq. After we choose a start state, we find ourselves with precisely
the specification of Turing machines given in [BJ].

Tangentially, one may wonder how to evaluate such a Turing machine. Let Tape

denote the set of positioned tapes, i.e. pairs pT, pq where T : ZÑ t0, 1u is a function
and p P Z. There is an evaluation function e : Tape Ñ U given by epT, pq :“ T ppq.
By construction we have an action α : M ˆ Tape Ñ Tape. We have a natural
transformation E : TurU

M p´q Ñ pTape ˆ p´ > tHaltuqqTape, given on X by

pM ˆ pX > tHaltuqqU e
ÝÝÝÑ pM ˆ pX > tHaltuqqTape

idTape
ÝÝÝÝÑ pM ˆ Tape ˆ pX > tHaltuqqTape(15)

α
ÝÝÝÑ pTape ˆ pX > tHaltuqqTape.

Choose a turing machine δ : Loop Ñ KlspTurU
M q with start state S P X and let

I P Tape be the initialized tape. Then for each n P N we have
`
E ˝ δpfnq

˘
pSqpIq P

Tape ˆ pX > tHaltuq, and we proceed with increasing values of n until the function
returns the halt state, at which point we output the tape.

In Section 5.1 we will discuss morphisms of monads. We caution the reader that
while TurU

M and X ÞÑ pTape ˆ pX > tHaltuqqTape are both monads, the mapping E

in (15) is not a morphism of monads. It is a natural transformation of functors that
preserves the unit but not the multiplication. This failure is somehow expected:
if there were a morphism of monads from a Turing machine’s specification to its
implementation, the behavior of programs would be more easily analyzed than it
turns out to be.

4.4. Algebraic monads.

4.4.1. Vector spaces. Let k be a field. There is a k-vector-space monad sending a
set X to the free k-vector space with basis X . The unit map corresponds to the
inclusion of basis vectors and the multiplication map corresponds to the ability to
convert a linear combination of vectors into a single vector.
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Example 4.4.2 (Representation theory). If G is a group (considered as a cate-
gory with one object) then G–KlspVectkq is equivalent to RepkpGq, the cate-
gory of G-representations. If Q is a free category then Q–KlspVectkq is equiv-
alent to RepkpQq, the category of quiver representations on Q (see [Kac]). In
particular, Jordan Canonical Form is the classification of isomorphism classes in
Loop–KlspVectCq.

4.4.3. Others. There are many algebraic theories—monoids, commutative monoids,
groups, abelian groups, rings, commutative rings, etc., to name a few. In fact, some
authors [Le2] define algebraic theories simply as monads on Set. Each monad on
Set has an associated Kleisli category. In fact, two such monads have already been
mentioned above under different names. The List-monad from Example 3.2.1 is
another name for the monoid monad, and the Multiset monad from Section 4.2.6
is another name for the commutative monoid monad.

Example 4.4.4 (Multigraphs). A multigraph (see [HMP]) consists of a set of nodes
and a set of multi-arrows, each of which points from one node to a finite list of
nodes. A symmetric multigraph is almost the same except each multi-arrow points
from one node to a finite set of nodes.

Let Nr´s : Set Ñ Set denote the (functor part of the) free commutative rig
monad [Gol] (respectively let Nx´y : Set Ñ Set denote the free rig monad). For
example Nrx, ys is the set of polynomials in x, y with natural number coefficients,
containing elements like 3 and xy2 ` 2x3 ` y. (Similarly Nxx, yy would contain ele-
ments like xyy `yxy.) The set of KlspNr´sq-instances (resp. the set of KlspNx´yq-
instances) on Loop is precisely the set of symmetric multigraphs (resp. multi-
graphs). With morphisms as in Remark 3.3.4, the category of Nx´y-instances on
Loop is equivalent to the category of multigraphs.

4.5. Process monads. The examples in this section are a bit more far-flung, but
still may be useful to give an idea of what is possible.

Example 4.5.1 (Computation). Fix a programming language L. For any set X , let
T pXq denote the set of programs that are written in L and such that, taking no
input, will either halt and return a value in X or not halt. This is the functor part
of a monad. By currying, a Kleisli map X Ñ T pY q is equivalent to a (possibly
non-halting) computation taking input in X and returning values in Y .

Example 4.5.2 (Experiment). For any set X , let T pXq denote the set of specifica-
tions for experiments that could be carried out from a fixed initial condition and
that will result in a value in X . For example, if X “ Z is the set of integers,
then T pXq might include as an element the phrase “survey 100 customers at the
McDonalds on 32nd street, asking their favorite real number. Take their average as
a real number and then apply the floor function to obtain an integer”. Then T can
be construed as the functor part of a monad. A Kleisli map X Ñ T Y is equivalent
to the specification of an experiment that takes parameters in X and outputs a
value in Y . The point is that the database does not hold the results of these exper-
iments, but instead the experiment specifications which, if performed, will result in
values later. Any value counts as a (trivial) experiment, so this generalizes ordinary
databases.
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5. Transformations

Monads, like everything in category theory, are not stand-alone objects but exist
in a category, in which the morphisms are an integral part of the picture. In
section 5.1 we will define morphisms of monads. These include operations like
transforming a list into a multiset (by forgetting order) or transforming a probability
distribution into a subset (by taking all elements that have nonzero probability).
A morphism f : J Ñ J1 of monads results in a functor between the corresponding
Kleisli categories. For any schema C we have a commutative square

C–ĄKlspJq
f //

� _

��

C–ĄKlspJ1q
� _

��
C–KlspJq

f
// C–KlspJ1q

that converts J-instances into J1-instances in either sense given below (see Defini-
tions 3.3.1 and 3.3.2). In Section 5.2 we will sketch some examples.

5.1. Morphisms of monads.

Definition 5.1.1. Let J “ pT, η, µq and J1 “ pT 1, η1, µ1q be monads on S. A
morphism of monads from J to J1 is a natural transformation α : T Ñ U such that
the following diagrams commute:

idS

η //

η1
!!❇

❇❇
❇❇

❇❇
❇ T

F

��
T 1

and

T 2
µ //

F 2

��

T

F

��
pT 1q2

µ1
// T 1.

Remark 5.1.2. An important upshot of Proposition 5.1.4 is the following. For any
category C and morphism of monads f : J Ñ J1 we have a functor C–Klspfq : C–KlspJq Ñ
C–KlspJ1q. Thus any J-instance on C can be transformed via f into a J1-instance
on C.

Definition 5.1.3. A monad J “ pT, η, µq is called finitary if the functor T is
determined by its values on finite sets, in the following sense. Let X P ObpSetq be
a set and let Fin{X denote the category whose objects are finite subsets of X and
whose morphisms are functions over X . Note that for each object f : Y Ñ X in

Fin{X there is an induced map T Y
f

ÝÑ T X , so we obtain a map

MX : colim
f : Y Ñ X

P Fin{X

pT Y q ÝÝÝÝÑ T X

Then J is finitary if the map denoted MX is a bijection for every X P ObpSetq.
The category of finitary monads on Set, denoted MonadSet, has finitary monads

as objects and morphisms of monads (as in Definition 5.1.1) as morphisms.

Proposition 5.1.4. A morphism of finitary monads induces a functor between

their Kleisli categories. In other words there a functor Klsp´q : MonadSet Ñ Cat.

Proof. This is straightforward.
�
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5.2. Examples of transformations. In this section we write down several simple
examples of morphisms of monads. In a few of these we are explicit, but we quickly
move to a more colloquial style, assuming that any reader with sufficient interest
and background can fill in the details for him or herself.

5.2.1. Universals.

Example 5.2.2. The initial object in MonadSet is idSet, whose instances are ordi-
nary atomic database instances. Given any monad J, there is a unique morphism
of monads idSet Ñ J. As in Remark 5.1.2, there is a unique formula to convert
any atomic instance into a J-instance.

Example 5.2.3. The terminal object in MonadSet is the Unlinked monad from
Section 4.1.2. Given any monad J, there is a unique morphism J Ñ Unlinked. As
in Remark 5.1.2, given any database instance on C, be it atomic or not, one can
forget all the foreign key information and be left with an unlinked instance.

5.2.4. Forgetting structure.

Example 5.2.5 (Distributions to subsets). Recall the Subset monad P and the Dis-
tribution monad Dist from Sections 4.2.1 and 4.2.8, and let X be a set. Recall that
the support of a distribution p : X Ñ r0, 1s is the subset Suppppq “ tx P X | ppxq ‰
0u Ď X . This notion of support induces a morphism of monads Dist Ñ P .

Example 5.2.6 (Multisets to subsets). Recall the Subset monad P and Multiset
monad from Sections 4.2.1 and 4.2.6, and let X be a set. A multiset in X can be
conceived as a function Y Ñ X , and its image is a subset of X . By this process
one obtains a morphism of monads Multiset Ñ P .

Example 5.2.7 (Lists to multisets). Recall the List and Multiset monads from Sec-
tions 4.2.5 and 4.2.6, and let X be a set. For each natural number n P N we have
a function Xn Ñ Xn{ „ that forgets the order of n-element lists. This induces a
morphism of monads List Ñ Multiset.

Example 5.2.8. Recall the Atomic monad idSet, the List monad, the non-empty list
monad List`, and the Maybe monad Exct˚u from Sections 4.2.5 and 4.3.2. There is
a morphism which could be called the “first element, if it exists” map List Ñ Exct˚u.
Similarly, there is a “first element” map List` Ñ idSet.

5.2.9. Tunable monads. As explained in Section 4.3, a tunable monad is a pair
pI, P q where P : I Ñ MonadSet. For every object i P ObpIq we have a monad
P piq and for every arrow in I we have a morphism of monads. By Proposition 5.1.4,
we can compose with the functor Klsp´q : MonadSet Ñ Cat. So for any morphism
f : i Ñ i1 in I and any schema C we have a functor C–KlspP piqq Ñ C–KlspP pi1qq
that functorially converts P piq-instances into P pi1q-instances.

In Section 4.3 we discussed the monads ExcE and InpU , for E, U P Fin, and M -
annotated for monoids M . The value in these is found in the fact that as time goes
on and the model evolves, the database architect may need to change parameters
of the schema with minimal disturbance to users. For example, if at some point the
architect wants to add a new sort of exception, or collapse two kinds of exception
into one, he or she can do that by finding a function Eold Ñ Enew from the old
exception set to the new, and it will induce a functor that transforms databases
instances with the old set of exceptions into instances with the new set.
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5.2.10. Others.

Example 5.2.11 (Simulation). Recall the Computation monad and the Experiments
monad from Examples 4.5.1 and 4.5.2. We could imagine that simulation is a
morphism of monads from the latter to the former, converting a description of an
experiment into a computation.

Example 5.2.12 (Programs take time). Recall the Time-delay monad and the Com-
putation monad from Examples 4.3.11 and 4.5.1. Counting the number of clock
cycles induces a morphism of monads from the latter to the former.

6. Future work

The above work can be made far more flexible if we allow the choice of monad
to vary over the schema. This way, some columns can be nullable and others not,
or we could allow for lists in some areas of the schema and not in others. We will
tackle this in an upcoming paper. It would also be interesting to consider how
these variable monads and their associated instances would behave under change
of schema functors F : C Ñ D. We also plan to investigate whether our work here
can be nicely integrated with the ideas of [BNT], [Gru], [LT], and [Maj], in which
one uses monads to handle collections. Finally, it seems fruitful to explore how the
coincidence of (1) relates to Leinster’s definitions of J-multi-categories and operads
in [Le1, Chapter 4].
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