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Abstract

We derive the power spectrum of photons generated by the plane wave in
dielectric medium. The experimental observation of such radiation in such
medium can be considered as the integral part of the aurora borealis and australis.
The consequence of the dielectric plane wave form of vacuum generated by the
gravitational waves is mentioned.
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1 Introduction

The plane wave in the dielectric medium is the specific case of the non-stationary dielectric
medium which is defined as a medium where some parameters such as index of refraction,
magnetic permeability, electric permitivity are changed by external influences, in the form of
electric field, magnetic field, acoustical and ultrasound field, thermal fluctuations, thermal
waves, mechanical pressure, phase transitions of medium and so on (Bass et al. 1965).

The radiation of the non-stationary dielectric medium follows from the Maxwell equations
and it is produced also in the case where the velocities of charges are subluminal in
contradiction to the case of the Vavilov-Čerenkov radiation, where the fast moving charged
particle radiates only if its speed is faster than the speed of light in this medium.
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While the discovery idea of the Vavilov-Čerenkov radiation was originated by Heaviside
(1889), who calculated radiation of the charged object moving in a medium faster than
electromagnetic waves in the same medium, the non-stationary dielectric origin of radiation
was established long after the discovery of the transition radiation by Ginzburg in 1940
(Ginzburg, 1986).

Kelvin (1901), presented also an idea that the light emission of particles is possible at
the speed of them greater than that of the velocity of light. However, he never considered
the no-stationary medium. Sommerfeld (1904), proposed the hypothetical radiation with a
sharp angular distribution, but not the radiation by the non-stationary medium.

While the electromagnetic Vavilov-Čerenkov radiation was first observed in the early
1900’s by experiments developed by Marie and Pierre Curie when studying radioactivity
emission via observation of the emission of a bluish-white light from transparent substances
in the neighborhood of strong radioactive source, there is no information on so called non-
stationary medium radiation. The first attempt to understand the origin of the so called
Vavilov-Čerenkov effect was made by Mallet (1926, 1929a, 1929b), who observed that the
light emitted by a variety of transparent bodies placed close to a radioactive source always
had the same bluish-white quality, and that the spectrum was continuous, with no line
or band structure characteristic of fluorescence. However, the transition radiation and the
radiation by the non-stationary medium was observed after long time when investigations
were forgotten for many years and when Čerenkov experiments (Čerenkov, 1934) was
performed at the suggestion of Vavilov who opened a door to the true physical nature of the
this effect (Bolotovskii, 2009).

The Vavilov-Čerenkov radiation was first theoretically interpreted by Tamm and Frank
(1937) in the framework of the classical electrodynamics. The source theoretical description
of this effect was given by Schwinger et al. (1976) at the zero temperature regime and the
classical spectral formula was generalized to the finite temperature situation and for the
massive photons by author (Pardy, 1989; 2002). The Vavilov-Čerenkov effect was also used
by author (Pardy, 1997) to possible measurement of the Lorentz length contraction. It was
supposed in all cases that the dielectric medium was stationary. The novelty of this article
is to consider effect with the non-stationary medium.

2 The Schwinger formulation of the Vavilov-Čerenkov radiation
in the stationary dielectric medium

Let us first remember the Vailov-Čerenkov radiation in the stationary medium calculated by
means of the Schwinger source theory methods. The Schwinger source theory (Schwinger et
al., 1976) is the theoretical construction which uses quantum mechanical particle language.
Initially it was constructed for description of the particle physics situations occurring in
the high-energy physics experiments. However, it was found that the original formulation
simplifies the calculations in the electrodynamics and gravity where the interactions are
mediated by photon or graviton respectively. In case that the index of refraction is some
constant, then it is possible to use the Schwinger source theory formulation of the problem.

The basic formula in the source theory is the vacuum to vacuum amplitude (Schwinger
et al., 1976):
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< 0+|0− >= e
i
h̄
W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any
time before and after space-time region where sources are manipulated. The exponential
form is introduced with regard to the existence of the physically independent experimental
arrangements which has a simple consequence that the associated probability amplitudes
multiply and corresponding W expressions add (Schwinger, 1970; Schwinger et al., 1976).

The electromagnetic field is described by the amplitude (1) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (2)

where the dimensionality of W (J) is the same as the dimensionality of the Planck constant
h̄. Jµ is the charge and current densities. The symbol D+µν(x−x′) is the photon propagator
and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by the
following formula (Schwinger et al., 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp

{
−
∫
dtdω

P (ω, t)

h̄ω

}
, (3)

where we have introduced the so called power spectral function (Schwinger et al., 1976)
P (ω, t). In order to extract this spectral function from ImW , it is necessary to know the
explicit form of the photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is generated
by the four-current Jµ(c%,J) according to the differential equation (Schwinger et al., 1976):(

∆− µε

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν (4)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
D+(x− x′), (5)

where ηµ ≡ (1,0), µ is the magnetic permeability of the dielectric medium with the dielectric
constant ε, c is the velocity of light in vacuum, n is the index of refraction of this medium,
and D+(x− x′) was derived by Schwinger et al. (1976) in the following form:

D+(x− x′) =
i

4π2c

∫ ∞
0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t

′|. (6)

Using formulas (2), (3), (5) and (6), we get for the power spectral formula the following
expression (Schwinger et al., 1976):

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]

×
{
%(x, t)%(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (7)
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However, in case that the index of refraction is some function of space and time, the
above method cannot be used it means that there is no such formula as the formula (7) and
it is necessary to use appropriate methods for he calculating of radiation of charges in the
non-stationary dielectric medium.

3 The radiation of charges by the plane wave index of refraction

Let us consider the non-stationary dielectric medium with the plane wave index of refraction
as the analogue of the Volkov plane wave potential potential, (Volkov 1935), where the
Volkov potential is a plane wave with Aµ = Aµ(kx), where kx = k · x− ωt = χ in the Dirac
equation. In this case, the so called the Volkov solution of the Dirac equation for an electron
moving in a field of a such plane wave was derived and used also by author in the form
(Berestetzkii et al., 1989; Pardy, 2003; Pardy, 2004; Pardy, 2007):

ψp =
u(p)√

2p0

[
1 + e

(γk)(γA(χ))

2kp

]
exp [(i/h̄)S] (8)

and S is an classical action of an electron moving in the potential A(χ):

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
(A)2

]
dχ. (9)

So, in our case we define the specification of non-stationary dielectric medium by relations

ε(x, t) = ε(kx); µ(x, t) = µ(kx); n(x, t) = n(kx); kx = k · x− ωt = χ. (10)

The charge and current density of electron moving with the velocity v and charge e is as
it is well known:

% = eδ(x− vt) (11)

j = evδ(x− vt). (12)

The equations for the four potential Aµ are given by equations:

∆A− εµ

c2
∂2A

∂t2
= −µ

c
vδ(x− vt) (13)

and

∆ϕ− εµ

c2
∂2ϕ

∂t2
= −1

ε
δ(x− vt) (14)

with the additional Lorentz calibration condition: ∂µA
µ − (µε− 1)(η∂)(ηA) = 0, or,

divA +
µε

c

∂ϕ

∂t
= 0, (15)

where ηµ = (1,0) is the unit time-like vector in the rest frame of medium and

Jµ = (c%,J), xµ = (ct, r), kµ = (k0,k). (16)
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Our goal is to solve modified equation (4), where parameters of dielectric medium are
given by eq. (10). Or,(

∆− n2

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν ; n = n(χ); µ = µ(χ). (17)

With regard to the fact that it is not possible to use the mentioned Schwinger method
in order to get the solution in the Volkov form, we suppose

Aµ = Aµ(χ). (18)

Then it is suitable to suppose that current is dependent on the wave symbol χ, or,
Jµ = Jµ(χ), which means that he left side of eq. (17) is compatible with its right side.
Then, we can look for the solution in the form Aµ = Aµ(χ).

After insertion of Aµ(χ) into eq. (17), we get the differential equation for Aµ(χ), with
Jν = Jν(χ).

d2

dχ2
Aµ(χ) =

µ
c

(
gµν + n2−1

n2 ηµην
)

k2 − n2

c2
ω2

Jν(χ); n = n(χ); µ = µ(χ). (19)

After insertion of Jν = const = aν into eq. (19), we get:

Aµ(χ) =
∫
dχ
∫
dχ

µ
c

(
gµν + n2−1

n2 ηµην
)

k2 − n2

c2
ω2

aν ; χ = k · x− ωt. (20)

In case, we take Jν = aνδ(χ), we get solution :

Aµ(χ) =

µ(0)
c

(
gµν + n(0)2−1

n(0)2
ηµην

)
k2 − n(0)2

c2
ω2

aνχ+ const = Cµνaν + const; χ = k · x− ωt. (21)

Let us remark that δ(χ) in the current is not zero at point k · x− ωt = 0, which can be
transcribed as ax+by+cz+d = 0, which is the equation of a plane in the coordinate system
xyz, where parameter d depends on time and it means that the plane, or the sheet moves
in space. So, we solve the radiation problem of the charged sheet moving in the plane wave
in dielectric medium, supposing that such charged sheet can be realized in experiment. The
moving charged thread, or string is an analogue of our situation.

4 The power spectral formula for plane wave in dielectric medium

Let us define the permitivity, magnetic permeability and consequently dielectric constant
and current in the form

ε = ε(kx); µ = µ(kx); n = n(kx); Jν = aνδ(pχ); aν = const; p = const. (22)

Then, with regard to eq. (21) we write the solution in the form:

Aµ = Cµν aν
p
χ+ const, (23)
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where Cµν are the corresponding constants in eq. (21) and constant p defines the difference
between potential Aµ phase and the source phase.

It follows from eqs.

B = rotA; E = −1

c

∂A

∂t
− gradϕ (24)

and eq. (23) that

ϕ = A0 = C0ν aν
p
χ+ const; El =

ω

c
C lν aν

p
χ− C0ν aν

p
kl; l = 1, 2, 3. (25)

The energy loss is defined by the formula (Sokolov et al., 1974):

Wloss = Q
∫

J · Edx = Q
∫ aν

p
δ(χ)

{
ω

c
C lν aν

p
χ− C0ν aν

p
kl
}
dx; l = 1, 2, 3 (26)

where Q corresponds to a moving charges.
The power spectrum P (ω) follows from the energy loss formula as its Fourier mapping

P (ω′) = const
∫ ∞
−∞

dtWloss(t)e
iω′t = const

al

p

1

ω′

{
ω

c
C lν aν

p
− C0ν aν

p
kl
}
δ(k). (27)

The corresponding electrical and magnetic intensities are given by the obligate formulas
from eq. (24). The corresponding Poynting vector which expresses the amount of radiation
energy is as follows:

S =
c

4π
E×B. (28)

After performing the necessary operation for the electric intensity and magnetic induction
and after inserting the results into the formula for the Poynting vector, we get

(S)l =
c

4π
εlmnεnuvEm∂uAv, (29)

where symbols εlmn, εnuv are the Levi-Civita anti-symmetrical tensors with ε123 = 1. Using
εlmnεnuv = δluδmv − δlvδmu, we get final formula for the l-component of the Poynting vector:

(S)l =
c

4π

(
Ev
∂Av
∂xl
− Ev

∂Al
∂xv

)
(30)

The formula (27) is the original one and it is not excluded that in will play the similar
role in physics as the older Vavilov-Čerenkov formula.

5 Discussion

It is interesting to compare the physical features of the stationary Vavilov-Čerenkov effect
with the radiation of the non-stationary dielectric medium.
1) While the V-Č radiation arises only for particle velocity greater than the velocity of light
in the dielectric medium, the radiation by the non-stationary medium is generated also by
particles with subluminal velocities.
2) The V-Č radiation depends only on the charge and not on mass of the moving particles.

6



The same statement is valid for radiation generated in the non-stationary medium.
3) The V-Č radiation is produced in the visible interval of the light frequencies and partly in
the ultraviolet part of the frequency spectrum. The radiation does not exist for very short
waves because from the dispersion theory of the index of refraction n it follows that n < 1
in a such situation. The radiation of the non-stationary medium is generated over the all
spectrum and for every index of refraction
4) The spectral frequency formula is linear function of the frequency for the 3D homogeneous
medium. In case of the space-time variable medium, the corresponding spectrum depends
on the specification of the variability of medium.
5) The radiation generated in the given point of the trajectory spreads on the surface of cone
with the vertex in this point and with the axis identical with the direction of motion of the
particle. The vertex angle of the cone is given by the relation cos θ = c/nv.
6) There is no Mach cone in the 2D dielectric medium. There is only the Mach angle. It
follows from the fact that Vavilov-Čerenkov effect is the result of the collective motion of
the 2D dielectric medium and it also follows from the quantum definition of the Vavilov-
Čerenkov effect in the 2D structures (Pardy, 2012). The same statement is valid for 2D
non-stationary dielectric medium.
7) The energy loss of a particle caused by the Vavilov-Čerenkov radiation are approximately
equal to 1% of all energy losses in the condensed matter such as the bremsstrahlung and so
on. The energy loss of particle depends on the specification of the non-stationary medium.
8) The fundamental importance of the Čerenkov radiation is in its use for the modern
detectors of very speed charged particles in the high energy physics (Kleinknecht, 1986). It
is not excluded that the radiation generated by the non-stationary medium is of the same
importance as the V-Č radiation .
9) The detection of the Vavilov-Čerenkov radiation enables to detect not only the existence
of the particle, however also the direction of motion and its velocity and according to eq.
cos θ = c/nv and also its charge. The same statement is not valid for the non-stationary
medium.
10) While the V-Č effect is considered as the special representation of the laboratory
condition, the radiation of the non-stationary dielectric medium with pane wave can be
considered as the integral part of the astronomical and sky effect. We mean that the
description of aurora borealis (nothern lights), or, aurora australis (southern lights), is
incomplete without consideration the radiation of the non-stationary sky.

Let us remark in conclusion that the deflection of light by gravitational field can be
described as the trajectory of light in vacuum presented as the optical medium with the
index of refraction ng. This index of refraction is ng(kx) in the presence of the gravitational
waves. Then, charged cosmical rays in such space-time periodic index of refraction form the
cosmical aurora and this is the easy way how to detect the gravitational waves in cosmical
space.
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Čerenkov, P. A. (1934). The visible radiation of pure liquids caused by γ-rays, Comptes
Rendus Hebdomadaires des Scances de l’ Academic des Sciences USSR 2, 451.
Ginzburg, V. L. (1986). Radiation by uniformly moving sources, in: The lessons of Quantum
Theory, ed. by J. DeBoer, E. Dal and O. Ulfbeck (Elsevier Science Publishers) and references
therein.
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