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Abstract

The bound state energies and wave functions for a particle exposed to the Hulthén potential field

in the D-dimensional space are obtained within the improved quantization rule for any arbitrary

l state. The present approximation scheme used to deal with the centrifugal term in the effective

Hulthén potential is systematic and accurate. The solutions for the three-dimensional (D = 3)

case and the s-wave (l = 0) case are briefly discussed.
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I. INTRODUCTION

It is well-known that the exact analytical solution of the hyperradial Schrödinger equation,

in any arbitrary spatial dimension (D ≥ 2), for its bound state energy levels, is fundamental

in understanding the bound energy spectrum of nonrelativistic and relativistic quantum me-

chanics, since the resulting wave function contains all the necessary information to describe

fully any quantum system. There are only a few potentials for which the radial Schrödinger

equation can be solved explicitly for all n and l quantum numbers. One of these exactly

solvable potentials is the Hulthén potential [1,2] which can be solved in a closed form for s

wave (l = 0). However, the three-dimensional radial Schrödinger equation for the spherically

symmetric Hulthén potential cannot be solved analytically for l 6= 0 states because of the

centrifugal term ∼ r−2 [3-5]. The Hulthén potential is one of the important molecular poten-

tials used in different areas of physics to describe the interaction between two atoms and has

attracted a great of interest for some decades in the history of quantum chemistry. Until now,

it has also been used extensively to describe the molecular structure and a possible form of

atomic and nuclear interactions [6-10]. Further, the study of this potential is only a special

example of those exponential type potentials [11] such as the modified hyperbolic-type po-

tentials (Scarf, modified Rosen-Morse, modified second type Pöschl-Teller) [12], Eckart [13],

Rosen-Morse [14], Manning-Rosen [15] potentials and so forth. So far, numerous attempts

have been developed to calculate the bound-state energies such as variational [10], supersym-

metry quantum mechanics [16,17], Nikiforov-Uvarov method (NU) [5,14,18,19], asymptotic

iteration method (AIM) [20], hypervirial perturbation [21], shifted 1/N expansion (SE) and

modified shifted 1/N expansion (MSE) [22], exact (improved) quantization rule (EQR or

IQR) [23,24], perturbative formalism [25-29], polynomial solution [30], wave function ansatz

method [31], factorization method [32] and tridiagonal J–matrix representation (TJM) [33]

which split original Hamiltonian into two parts as H = H0 + V where H0 is the part of the

Hamiltonian that could be treated analytically while the remaining part, V, has to be treated

numerically.to solve the radial Schrödinger, Klein-Gordon and Dirac equations exactly or

quasi-exactly for l 6= 0 within a given potential.

Recently, Ma and Xu have proposed an exact (improved) quantization rule (EQR or

IQR) and shown its power in calculating the energy levels of all bound states for some

solvable quantum systems [23,24]. The method has been shown to be effective for calculating
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the bound state solutions of the Schrödinger and Dirac wave equations with a spherically

symmetric potential [34-39]. So far, it has been applied, with great success, to study a great

number of potentials like the rotating Morse [34,35], the Kratzer-type [36], the trigonometric

Rosen-Morse [37], the hyperbolic and the second Pöschl-Teller-like potentialas [38], the

Hulthén potential [39] and the Woods-Saxon potential [40] and so forth. Very recently, Gu

and Sun [39] have extended the application of the IQR to the solution of the D-dimensional

Schrödinger equation with the Hulthén potential for l 6= 0 using the usual approximation to

deal with the centrifugal term [41-43].

Very recently, Dong [12] has introduced a more beautiful exact quantization rule to

simplify the calculation of the energy levels for exactly solvable quantum systems. The

energy spectra of the modified hyperbolic-type potentials have been carried out by this

rule. Qiang and Dong [44] have found a proper quantization rule (PQR) and showed that

the previous complicated and tedious calculations for the energy spectra can be greatly

simplified. This new quantization rule can be applied to any exactly solvable potential.

Qiang-Dong PQR has been further applied to exactly solvable shape invariant potentials

[45]. Very recently, Yin et al. [46] have shown that the SWKB is exact for all shape

invariant potentials (SIPs).

In this paper, we aim to extend the study of Ref. [39] by using a new improved ap-

proximate scheme to deal with the centrifugal term. Further, we solve the present potential

model on the assumption that the space may posses an arbitrary number of spatial dimen-

sions D. This arbitrary dimensional study enables one to give analytical tests using energy

calculations for interdimensional degeneracy, i.e., (n, l, D) → (n, l± 1, D∓ 2) corresponding

to the confined D = 2− 4 dimensional Hulthén potential.

It is worth noting that this alternative approximating approach has shown its accuracy

in calculating the analytic and numerical energy spectrum of the Hulthén potential for l 6= 0

[3-5]. Further, it has also been applied to the spin and pseudospin symmetries, e.g., Wei and

Dong have studied the approximation of the Dirac equation with scalar and vector modified

and deformed generalized Pöschl-Teller and Manning-Rosen potentials within the improved

approximation formula to the centrifugal term [47-50].

This paper is organized as follows. In Sec. 2, the EQR (IQR) method is reviewed and

extended to any arbitrary dimension (D ≥ 2). In Sec. 3, the D-dimensional (D ≥ 2)

Schrödinger equation is solved by this method with l 6= 0 quantum numbers to obtain the
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energy eigenvalues. In Sec. 4, we calculate the corresponding hyperradial wave functions of

the Hulthén potential. Finally, some conclusions are given in Sec. 5.

II. EXACT (IMPROVED) QUANTIZATION RULE

A brief outline to the improved quantization rule is presented with an extension to the

D-dimensional space (D ≥ 2). The details can be found in Refs. [23,24]. The IQR has

recently been proposed to solve exactly the one-dimensional (1D) Schrödinger equation:

ψ′′(x) + k(x)2ψ(x) = 0, k(x) =

√
2µ [E − V (x)]

h̄
, (1)

where the prime denotes the derivative with respect to the variable x. Here µ is the reduced

mass of the two interacting particles, k(x) is the momentum and V (x) is a piecewise con-

tinuous real potential function of x. The Schrödinger equation is equivalent to the Riccati

equation

φ′(x) + φ(x)2 + k(x)2 = 0, (2)

where φ(x) = ψ′(x)/ψ(x) is the logarithmic derivative of wave function ψ(x). Due to the

Sturm-Liouville theorem, the φ(x) decreases monotonically with respect to x between two

turning points, where E ≥ V (x). Specifically, as x increases across a node of the wave

function ψ(x), φ(x) decreases to −∞, jumps to +∞, and then decreases again.

Moreover, Ma and Xu [23,24] have generalized this exact quantization rule to the three-

dimensional (3D) radial Schrödinger equation with spherically symmetric potential by sim-

ply making the replacements x→ r and V (x) → Veff(r):

rB∫

rA

k(r)dr = Nπ +

rB∫

rA

k′(r)
φ(r)

φ′(r)
dr, k(r) =

√
2µ [En,l − Veff(r)]

h̄
, (3)

where rA and rB are two turning points determined from the relation En,l = Veff(r), N = n+1

is the number of nodes of φ(r) in the region En,l ≥ Veff(r) and it is larger by one than the

number of nodes of wave function ψ(r). The first term Nπ is the contribution from the

nodes of the logarithmic derivative of wave function, and the second term in (3) is called

the quantum correction. It is found that, for all well-known exactly solvable quantum

systems, this quantum correction is independent of the number of nodes of wave function
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of the system. This means that it is enough to consider the ground state in calculating the

quantum correction, i.e.,

Qc =

rB∫

rA

k0
′(r)

φ0(r)

φ0
′(r)

dr = πq, (4)

The quantization rule still holds for Schrödinger equation with spherically symmetric po-

tential in D dimensions. In what follows, we shall employ this method to extend the work

of Ref. [39] by using an improved approximation to the centrifugal term.

III. EIGENVALUES OF THE HULTHÉN POTENTIAL

The Schrödinger equation with spherically symmetric potential V (r) for l 6= 0 takes the

simple form (
− h̄2

2µ
∇2

D + V (r)−En,l

)
ψn,l,m(r,ΩD) = 0, (5)

where the representation of the Laplacian operator ∇2
D, in spherical coordinates, is

∇2
D =

∂2

∂r2
+

(D − 1)

r

∂

∂r
− l (l +D − 2)

r2
, (6)

and

ψn,l,m(r,ΩD) = ψn,l(r)Y
m
l (ΩD), ψn,l(r) = r−(D−1)/2R(r), (7)

where Y m
l (ΩD) is the hyperspherical harmonics. The wave functions ψn,l,m(r,ΩD) belong to

the energy eigenvalues En,l and V (r) stands for the Hulthén potential in the configuration

space and r represents the D-dimensional intermolecular distance

(
D∑

i=1

x2i

)1/2

.

Further, substituting Eqs. (6) and (7) into Eq. (5) yields the wave equation satisfying

the radial wave function R(r) in a simple analogy to the 2D and 3D radial Schrödinger

equation

R′′(r) +
2µ

h̄2
[En,l − Veff(r)]R(r) = 0, (8)

where Veff(r) is the Hulthén effective potential in D dimensions defined by

Veff (r) = −Ze2α e−αr

1− e−αr
+

(Λ2 − 1) h̄2

8µr2
, (9)

with the parameter

Λ = 2l +D − 2. (10)
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The radial wave function R(r) satisfying Eq. (8) should be normalizable and finite near r = 0

and r → ∞ for the bound-state solutions. The wave equation (8) with the Hulthén potential

is an exactly solvable problem for l = 0 (s-wave) [2,51-53], however, it cannot be solved

analytically when l 6= 0 because of the centrifugal barrier term, i.e., (Λ2 − 1) h̄2r−2/(8µ).

Therefore, to solve Eq. (8) analytically, we must use a new approximation scheme of the

exponential-type proposed recently by Jia et al (cf. e.g., [54-59]) to deal with the centrifugal

term:
1

r2
≈ α2

(
c0 +

e−αr

(1− e−αr)2

)
, (11)

where the dimensionless constant c0 = 1/12 is exact as reported by other authors (cf. e.g., [3-

5]). Very recently, we have applied the above approximation scheme (11) to obtain improved

bound state solutions to the Schrödinger equation with the Manning-Rosen potential for

arbitrary l-waves [15]. Obviously, the above approximation to the centrifugal term turns to

r−2 when the parameter α goes to zero (small screening parameter α) as

lim
α→0

[
α2

(
c0 +

1

eαr − 1
+

1

(eαr − 1)2

)]
=

1

r2
, (11a)

which shows that the usual approximation is the limit of our approximation (cf. e.g., [4]

and the references therein). Further, by defining

a = Ze2α, b = α2L2, L2 =
h̄2

2µ

(
l +

D − 1

2

)(
l +

D − 3

2

)
, (12)

then we have from Eq. (8):

R′′(r) +
2µ

h̄2

[
En,l + a

e−αr

1− e−αr
− b

(
c0 +

e−αr

(1− e−αr)2

)]
R(r) = 0, (13)

where En,l is the bound state energy of the system and n and l signify the radial and angular

quantum numbers, respectively.

We now study this system through the improved exact quantization rule. At first, we

introduce a new variable

z(r) =
e−αr

1− e−αr
, z′(r) = −αz(1 + z), (14)

where r ∈ (0,∞) and z ∈ (0,∞). Overmore, the turning points zA and zB are determined

by solving Veff(z) = bz2 + (b− a) z + bc0 = En,l as follows:

zA =
a

2b
− 1

2
− 1

2b

√
(a− b)2 + 4b (Enl − bc0), zB =

a

2b
− 1

2
+

1

2b

√
(a− b)2 + 4b (En,l − bc0),

(15)
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with the properties

zA + zB =
a

b
− 1, zA zB = −Enl

b
+ c0. (16)

The momentum k(z) between two turning points is expressed as

k(z) =

√
2µb

h̄

√
−z2 + (a− b)

b
z − (bc0 − En,l)

b
=

√
2µb

h̄

√
(zB − z) (z − zA ), (17a)

dk(z)

dz
=

√
2µb

2h̄

(√
zB − z

z − zA
−
√
z − zA
zB − z

)
, (17b)

The Riccati equation (2) now becomes

− αz (z + 1)
dφ0(z)

dz
= −2µ

h̄2
[
E0 − bz2 + (a− b) z − bc0

]
− φ0(z)

2, (18)

having the only possible solution satisfying

φ0(r) = c1z + c2, φ0
′(r) = −αc1z(1 + z), c1 > 0. (19)

where we have used φ0(r) ≡ φ0(z). Substituting φ0(z) into Eq. (18), one has the ground

state energy eigenvalue and wave function solutions






φ0(z) = ναz + α
(

µZe2

h̄2
1
να

− ν
2

)
,

ν = 1
2
+ 1

2

√
1 + 8µ

h̄2L2 = l + D−1
2
, ν ≥ 1,

Ẽn=0 = E0 − bc0 = − h̄2α2

2µ

(
µZe2

h̄2
1
να

− ν
2

)2
.

(20)

After a lengthy algebra but straightforward, we can calculate the integral of the quantum

correction (4) based on the ground state as

Qc = πq = π

(√
2µ

h̄
L+ ν − 1

)
. (21)

The integral of the momentum k(r) in the quantization rule (3) is calculated as

rB∫

rA

k(r)dr = −
√
2µb

αh̄

zB∫

zA

(√
(z − zA ) (zB − z)

z
−
√
(z − zA ) (zB − z)

1 + z

)
dz

=
2µ

h̄2
L

(
1 +

√
c0 −

En,l

b
−
√
c0 +

(a− En,l)

b

)
π. (22)

Using the relations (21) and (22), the improved quantization rule (3) turn out to be

π

√
2µ

h̄
L

(
1 +

√
c0 −

En,l

b
−
√
c0 +

(a− En,l)

b

)
= π

(√
2µ

h̄
Λ + n + ν

)
. (23)
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Thus, one can finally find the approximation to the bound state energy levels Enl for the

D-dimensional Hulthén potential,

E
(D)
n,l =

h̄2α2

2µ






(
l +

D − 1

2

)(
l +

D − 3

2

)
c0 −

[
µZe2

h̄2
(
n+ l + D−1

2

)
α
−
(
n+ l + D−1

2

)

2

]2

 ,

(24)

where n, l = 0, 1, 2, · · · . Therefore, the energy spectrum in 3D space can be obtained as

En,l =
h̄2α2

2µ

{
l (l + 1)

12
−
[

µZe2

h̄2 (n+ l + 1)α
− (n+ l + 1)

2

]2}
, n, l = 0, 1, 2, · · · , (25)

which is identical to Eq. (34) of Ref. [4]. In the case of the s-wave (l = 0), the previous

relation turns out to become

En = − h̄
2α2

2µ

[
µZe2

h̄2 (n + 1)α
− (n + 1)

2

]2
, n = 0, 1, 2, · · · , (26)

which is identical to the ones obtained before using the AIM [20], SUSYQM approach

[60-64], quasi-linearization method [65] and NU method [42,66]. Overmore, if we take the

dimensionless constant c0 = 0 in the present approximation, Eq. (24) reduces to

En,l = − h̄
2α2

2µ

[
µZe2

h̄2
(
n+ l + D−1

2

)
α
−
(
n + l + D−1

2

)

2

]2
, (27)

which is consistent with the energy eigenvalues formula given in Eq. (32) of Ref. [20], Eq.

(24) of Ref. [67] and Eq. (28) of Ref. [42] when D = 3. By taking the chosen parameters

h̄ = 2µ = e = 1 and for Z = 1, the above result is consistent with Eq. (24) of Ref. [39].

The critical screening parameter can be found as αc =
2µZe2

h̄2(n+l+1)2
when Enl = 0 and c0 = 0.

IV. EIGENFUNCTIONS

We are now in the position to study the corresponding eigenfunction of this quantum

system for completeness. The Riccati equation of the relation (8) is [68]

φ′(r) = −2µ

h̄2
[Enl − Veff(r)]− φ(r)2, (28)

where

φ(r) =
R′(r)

R(r)
. (29)
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Based on

R(r) = e
∫ r φ(r)dr = e−

1
α

∫ r 1
z(z+1)

φ(z)dz , (30)

and using Eq. (19), we can easily calculate the eigenfunction of the ground state as

R0(r) = N0

(
e−αr

)ε̃0 (
1− e−αr

)ν
, ε̃0 > 0, ν ≥ 1, (31)

where

ε̃n=0 =

√
2µ

h̄2α2
(bc0 −E0) =

µZe2

h̄2
1

να
− ν

2
, (32)

with ν is defined in Eq. (20) and N0 is the normalization constant.

Let us find the eigenfunction for any quantum number n. At first, considering the bound-

ary conditions

y =





0 when r → ∞,

1 when r → 0,
(33)

with R(y) → 0, based on Eq. (31), we may define a more general radial eigenfunctions, valid

for any quantum number n, of the form:

R(y) = yε̃n,l (1− y)ν F (y), y = e−αr, ε̃n,l > 0, ν ≥ 1, (34)

satisfying the boundary conditions in Eq. (33), where

ε̃n,l =
µZe2

h̄2
1

(n+ ν)α
− n+ ν

2
> 0. (35)

Substituting Eq. (34) into Eq. (8) leads to the following hypergeometric equation

y (1− y)F ′′(y) + [1 + 2ε̃n,l − (1 + 2ε̃n,l + 2ν) y]F ′(y)−
[
ν (ν + 2ε̃n,l)−

2µZe2

h̄2α

]
F (y) = 0,

(36)

whose solutions are the hypergeometric functions

F (y) = 2F1 (A,B;C; y) =
Γ(C)

Γ(A)Γ(B)

∞∑

k=0

Γ(A+ k)Γ(B + k)

Γ(C + k)

yk

k!
, (37)

where

A = ε̃n,l + ν −
√
ε̃2n,l +

2µZe2

h̄2α
= −n,

B = ε̃n,l + ν +

√
ε̃2n,l +

2µZe2

h̄2α
, (38)

C = 1 + 2ε̃n,l.
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By considering the finiteness of the solutions, the quantum condition is given by

ε̃n,l + ν −
√
ε̃2n,l +

2µZe2

h̄2α
= −n, n = 0, 1, 2, · · · , (39)

from which we obtain Eq. (25). Now, we may write down the radial wave functions (34) as

R(r) = Nnl

(
e−αr

)ε̃n,l
(
1− e−αr

)ν
2F1

(
−n, n + 2 (̃εn,l + ν) ; 1 + 2ε̃n,l; e

−αr
)
. (40)

If we set n = 0 in Eq. (40), then we can easily obtain Eq. (31). Finally, the unnormalized

total wave functions are obtained as

ψn,l,m(r,ΩD) = Nnlr
−(D−1)/2

(
e−αr

)ε̃n,l
(
1− e−αr

)ν
2F1 (−n, n+2 (ε̃n,l + ν) ; 1+2ε̃n,l; e

−αr)Y m
l (ΩD).

(41)

which is identical to Eq. (42) of Ref. [4] when D = 3. Thus, the Jacobi polynomials can be

expressed in terms of the hypergeometric functions [69]

P (A,B)
n (1− 2x) =

Γ (n+ 1 + A)

n!Γ (1 + A) 2F1 (−n, n + A+B + 1;A+ 1; x). (42)

The hypergeometric function 2F1(A,B;C; x) is a special case of the generalized hypergeo-

metric function [69,70]

pFq(α1, α2, · · · , αp; β1, β1, · · · , βq; x) =

∞∑

k=0

(α1)k (α2)k · · · (αp)

(β1)k (β2)k · · ·
(
βq

) x
k

k!
, (43)

where the Pochhammer symbol is defined by (y)k = Γ(y + k)/Γ(y).

Let us find the normalization constant. Introducing the change of parameters y(r) =

e−αr and making use of Eq. (41), with the help of Eq. (42), we are able to express the

normalization condition
∫
∞

0
R(r)2dr = 1 as

N 2
nl

α

∫ 1

0

y2ε̃n,l−1(1− y)2l+D−1
[
P (2εnl,2l+D−2)
n (1− 2y)

]2
dy = 1. (44)

Unfortunately, there is no formula available to calculate this key integration. Neveretheless,

we can find the explicit normalization constant Nnl. For this purpose, it is not difficult to

obtain the results of the above integral by using the following formulas [69-71],

P (α,β)
n (x) = (n+ α)! (n + β)!

n∑

p=0

1

p!(n + α− p)! (β + p)! (n+ p)!

(
x− 1

2

)n−p(
x+ 1

2

)p

,

(45)
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and

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
, Re(x),Re(y) > 0. (46)

Thus, the normalization constant Nnl is now obtained as

Nnl =
1

(n+ 2l +D − 2)!Γ(2ε̃n,l + n + 1)

√√√√√
αΓ(2ε̃n,l + 2n+ 2l +D + 1)

Γ(2ε̃n,l + 2n + 1)
n∑

p,q=0

(fpfqfp,q)
−1
, (47)

where

fp = (−1)pp!Γ(2ε̃n,l + n− p+ 1)(2l + p+D − 2)! (n+ p)!, (48a)

fq = (−1)qq!Γ(2εnl + n− q + 1) (2l +D + q − 2)! (n+ q)!, (48b)

fp,q = (2l + p+ q +D − 1)!. (48c)

It is worth noting that one of the disadvantages of the EQR (IQR) approach is that it

cannot get the eigenfunctions of studied potential models. The estimation shown in this

section is only the reverse of logarithmic derivative to the original Schrödinger equation,

i.e., φ0(r) =
d
dr
ln(R0(r)) [see Eq. (30)] [72]. The traditional method is thus used again.

V. CONCLUSIONS

In this work, we have applied an alternative method to obtain approximate energy eigen-

values and eigenfunctions of the D-dimensional Schrödinger equation for the Hulthén po-

tential with l 6= 0 within the improved approximation scheme for the centrifugal term. The

advantage of this method is that it gives the eigenvalues through the calculation of two

integrations (21) and (22) and solving the resulting algebraic equation. First, we can eas-

ily obtain the quantum correction by only considering the solution of the ground state of

quantum system since it is independent of the number of nodes of wave function for exactly

solvable quantum system. Second, the wave functions have also been obtained by solving

the Riccati equation. The general expressions obtained for the energy eigenvalues and wave

functions can be easily reduced to the three-dimensional space (D = 3), s-wave (l = 0), the

c0 = 0 (usual approximation) cases. The method presented here is a systematic one, simple,

practical.and powerful than the other known methods. It is worth to extend this method

to the solutions of other nonrelativistic [23,24,34,36-39] and relativistic [35] wave equations

with different potential fields. Finally, it can be also used to deal with many exactly solvable

quantum systems with wide range of potentials as stated by many authors [23,24,34-39].
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Appendix A: Integral Formulas

The following integral formulas are useful during the calculation of the momentum integral

and the quantum correction terms [34,36,68]:

rB∫

rA

r√
(r − rA)(rB − r)

dr =
π

2
(rA + rB), (49)

rB∫

rA

1

r
√
(r − rA)(rB − r)

dr =
π√
rArB

, (50)

rB∫

rA

1√
(r − rA)(rB − r)

dr = π, (51)

rB∫

rA

1

r

√
(r − rA)(rB − r)dr = π

[
1

2
(rA + rB)−

√
rArB

]
, . (52)

rB∫

rA

1

(a+ br)
√

(r − rA)(rB − r)
dr =

π√
(a + brA)(a+ brB)

, rB > rA > 0. (53)
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