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With the imminent confirmation or disproof of the existence of Higgs boson by

LHC experiments it is time to analyze in a non-dogmatic way the proposals to un-

derstand the origin of the mass. Here we analyze a new version of Mach’s principle

according to which gravity is what is really responsible for the generation of mass

of all bodies. The condition for this is the existence of an energy distribution repre-

sented by the vacuum or the cosmological constant term Λ gµν . The great novelty of

this mechanism is that the gravitational field acts merely as a catalyst, once the final

expression of the mass depends neither on the intensity and particular properties of

the gravitational field nor on the value of Newton’s constant. It was precisely the

wrong belief that the value of the mass obtained through any gravitational scheme

must depend on Newton’s constant which was responsible for not considering gravity

as an important actor in the mechanism of generating mass. We review briefly the

alternative Higgs mechanism in order to compare both processes.
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I. INTRODUCTION

In order to become a reliable candidate as a mechanism to generate mass, there are three

indispensable conditions that such mechanism has to fulfil, to wit:

• There must exist a universal field that interacts with all kinds of particles;

• This field must be such that its interaction with matter breaks explicitly some sym-

metry that only massless particles exhibit, e.g. the gauge freedom for vector fields or

the chirality for fermions.

• There must exist a free dimensionless parameter such that different bodies can acquire

distinct values for their corresponding mass (the spectrum of mass);

There are only two fashionable candidates[21] that fulfill the first condition:

• The gravitational field.

• A scalar field ϕ;

The Higgs boson ϕ was postulated by Higgs, Brout and Englert to couple universally

with all kinds of matter. However, still to this day there is no evidence of its existence. The

other candidate, gravity, is known to couple with all forms of matter and energy and its

universality is recognized as a scientific truth. We note that after accepting either one of

these two fields as a good candidate that fulfills the first requirement, it is not a hard job

to elaborate scenarios such that the other two conditions are satisfied too.

The purpose of these notes is to compare these two mechanisms.

In order to simplify our analysis we will present the generation of mass for the elementary

constituents of matter, identified as the basic bricks of all matter. They will be taken as

representations of the Lorentz-Poincaré group and we will analyze them as scalar, spinor,

vector and tensor fields. We shall see that in both cases the origin of the mass of any

body A depends on its interaction with its surroundings yielding an overall effect (described

either as a scalar field – in the case of the Higgs mechanism – or as the metric tensor of the

geometry of space-time - in the case of the gravitational origin) on A which is represented

by a distribution of energy given by the form

Tµν = λ gµν (1)
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In the literature concerning General Relativity this form of energy-momentum tensor

is attributed to the cosmological constant introduced by Einstein in order to be able to

construct a model for the geometry of the universe. In the realm of quantum field theory,

such distribution is identified as the vacuum. It is true that if one considers the Machian

point of view that the inertia of a body A depends on the energy distribution of all others

bodies in the universe, then λ is to be interpreted as the cosmological constant [12].

The idea of using a scalar field to be at the origin of the mass appeared in the domain of

high energy physics and it received the name ”Higgs mechanism”. For the time being there

is no evidence of the existence of such scalar in Nature and huge experiments - the LHC

experiment – are at this very moment on the verge of being realized in order to prove that

such scalar field exists [1], [17].

On the other hand, the relationship of mass with gravity is a very old one and its deep

connection has been emphasized in a qualitative way many times. We will concentrate our

analysis only on a particular process that admits a systematic realization and allows for a

quantification.

Although the theory of General Relativity may be understood as completely independent

from the Machian idea that inertia of a body A is related to the global distribution of energy

of all particles existing in the universe, we must recognize its historical value in the devel-

opment of the ideology that enabled Einstein to start his journey toward the construction

of a theory of gravitation [2].

During the 20th century, the idea of associating the dependence of local characteristics of

matter with the global state of the universe came up now and then but without producing

any reliable mechanism that could support this proposal [3]. Even the concept of mass – that

pervades all gravitational processes – did not find a realization of such dependence on global

structure of the universe. On the contrary, the most efficient mechanism and one that has

performed an important role in the field of microphysics came from elsewhere, namely the

attempt to unify forces of a non-gravitational character, such as long-range electrodynamics

with decaying phenomena described by weak interaction. Indeed, the Higgs model produced

an efficient scenario for generating mass to the vector bosons [4] that goes in the opposite

direction of the proposal of Mach. This mechanism starts with the transformation of a global

symmetry into a local one and the corresponding presence of vector gauge fields. Then, a

particular form of the dynamics represented by Lint(ϕ) of self-interaction of an associated
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scalar field in its fundamental state represented by an energy-momentum tensor given by

Tµν = Lint(ϕ0) gµν appears as the vehicle which provides mass to the gauge fields.

Recently a new mechanism for generation of mass that is a realization of Mach’s idea

was proposed [5]. The strategy used is to couple non-minimally the field (scalar, spinor

[6], vector [7] and tensor) to gravity through the presence of terms involving explicitly the

curvature of space-time. The distribution of the vacuum energy of the rest-of-the-universe is

represented by a cosmological term Λ. The effect of Λ by the intermediary of the dynamics

of the metric of space-time in the realm of General Relativity is precisely to give mass to

the field. Although this mass depends on the cosmological constant, its value cannot be

obtained a priori [8].

II. THE HIGGS PROPOSAL

Consider a theory of a real scalar field ϕ described by the Lagrangian

L =
1

2
∂µϕ ∂µϕ− V (ϕ) (2)

where the potential has the form

V =
1

2
µ2 ϕ2 +

λ

4
ϕ4

In the homogeneous case, in order to satisfy the equation of motion, the field must be in an

extremum of the potential, which is true for two classes of solution: either

ϕ = 0

or

ϕ2
0 = − µ2

λ
.

In order to be a minimum the constant µ2 must be negative. This is a problem, since it

should imply that the mass of the scalar field is imaginary! However, one can avoid this

difficulty in the following manner. Let us redefine the field by introducing a new real variable

χ :

ϕ = ϕ0 + χ,

where ϕ0 is a constant. Substituting this definition on Lagrangian (2) it follows

L =
1

2
∂µχ ∂µχ + µ2 χ2 − λ

4
χ4 − λ ϕ0 χ3 +

µ4

4λ
(3)
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This Lagrangian represents a real scalar field χ with real positive mass m2 = −µ2 and extra

terms of self-interaction. Note that in the Lagrangian it appears a residual constant term

representing a background constant negative energy distribution

Tµν(residual) = −µ4

4λ
gµν

In the realm of high energy physics it is considered that such a term ... ” has no physical

consequences and can be dropped” [15]. We will come back to this when we analyze its

gravitational effects.

Note that now, the potential of field χ takes the form

V = m2 χ2 +
λ

4
χ4 + λ ϕ0 χ3

Its minimum occurs for χ = 0. The other two extrema that exist for constant values χ0 are

points of maxima. The expansion of the field must be made (for all calculations) around

χ = 0 and not around ϕ = 0. The reason is that this last is an unstable point and the series

will suffer from convergence. Finally, we note that the actual field χ has a real positive mass.

A. The case of complex field

Let us now turn to the case of a complex field. The Lagrangian for φ = φ1 + i φ2 is given

by

L = ∂µφ
∗ ∂µφ− V (φ∗ φ) (4)

where the potential has the form

V = µ2 φ∗ φ + λ (φ∗ φ)2

It is convenient to write the field as

φ =
1√
2

(φ0 + χ) exp
i

φ0

θ(x)

The Lagrangian then becomes

L =
1

2
∂µχ ∂µχ +

1

2

(φ0 + χ)2

φ2
0

∂µθ ∂µθ

− µ2

2
(φ0 + χ)2)− h

4
(φ0 + χ)4 (5)

The extremum of the potential occurs for φ0 + χ = 0. For µ2 > 0 this extremum is a

minimum.
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B. From global to local symmetry

The theory of the complex field φ has a gauge invariance under the constant map

φ′ = eiα φ.

This means that this transformation occurs everwhere and does not distinguish any point

of space-time. If the parameter α becomes space-time dependent the symmetry is broken.

In order to restore the symmetry, one can use the freedom of the electromagnetic field Aµ

and couple this map with the map

A
′

µ = Aµ −
1

e
∂µα.

In early 1954 this scheme was generalized for more general maps (non-abelian theory) by

Yang and Mills for nonlinear fields, called generically gauge fields. It shows immediately

that by minimal coupling of the scalar field with a gauge field the symmetry is restored.

The modification consists in the passage from a global symmetry (valid for transformations

that are the same everywhere) to a local symmetry that depends on the space-time location.

A global property turns into a local one. It is like going from a cosmological framework –

that deals with the global structure of space-time — to microphysics.

C. Mass for a vectorial boson

The interaction of the complex field φ with a vector Wµ through the substitution of the

derivatives of the scalar field ∂µ φ by (∂µ − ieWµ) φ using the minimum coupling principle,

preserves the gauge invariance when the parameter α becomes a function of space-time α(x).

This means that the dynamics is invariant under the map

φ′ = φ exp i α(x)

W ′
µ = Wµ +

1

e
∂µα

We set

L = − 1

4
F µν Fµν + (∂µ − ieWµ) φ(∂µ + ieW µ) φ∗ − V (6)
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Let us re-define the field by

φ =
1

2
(φ0 + χ) eiθ/φ0

We can use the invariance under the gauge and choose

α = − θ

φ0

to eliminate θ. The dynamics turn into

L = − 1

4
F µν Fµν +

e2 φ2
0

2
Wν W ν

+
1

2
∂µχ ∂µχ− V (χ)

+ (e2 ϕ0 χ +
e2

2
χ2) Wν W ν (7)

that represents a massive vector field interacting non-minimally with a real scalar field. Note

that one of the degrees of freedom of the theory – represented by the scalar field θ(x) —

was eliminated. Indeed, it was transformed into an extra degree of freedom of the massive

vector field (that gained one more degree of liberty going from 2 to 3). The total number

we had (two for the field φ and two for the massless field Wµ) is preserved. It only changed

places. The degree of freedom of θ was conceded to the (now) massive vector boson.

It is not difficult to generalize the above procedure for more than one vector field in such

a way that one of them remains massless. This was the procedure for the case of the unified

field theory of electro-weak interaction: the intermediary boson gain a mass but the photon

remains massless.

D. Mass for a fermion

Let us couple this scalar field with a spinor Ψ through the Lagrangian

L =
1

2
∂µϕ ∂µϕ− V (ϕ) + LD − hϕ Ψ̄ Ψ (8)

where LD is Dirac dynamics for massless free field. Making the same replacement we made

previously using χ instead of ϕ this theory becomes

L =
1

2
∂µχ ∂µχ− V (χ) + LD − h (ϕ0 + χ) Ψ̄ Ψ (9)
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The equation for the spinor field becomes

iγµ∂µ Ψ− hϕ0 Ψ− hχ Ψ̄ Ψ = 0 (10)

which represents a spinor field of mass hϕ0 > 0 interacting with a scalar field χ.

III. WHAT GIVES MASS TO THE SCALAR FIELD THAT GIVES MASS FOR

THE VECTOR AND SPINOR FIELDS?

In the preceding sections we described the Higgs model that produced an efficient scenario

for generating mass to the vector bosons in the realm of high-energy physics. At its origin

appears a process relating the transformation of a global symmetry into a local one and the

corresponding presence of vector gauge fields.

This mechanism appeals to the intervention of a scalar field that appears as the vehicle

which provides mass to the gauge vector field Wµ. For the mass to be a real and constant

value (a different value for each field) the scalar field ϕ must be in a minimum state of

its potential V. This fundamental state of the self-interacting scalar field has an energy

distribution given by Tµν = V (ϕ0) gµν . A particular form of self-interaction of the scalar

field ϕ allows the existence of a constant value V (ϕ0) that is directly related to the mass

of Wµ. This scalar field has its own mass, the origin of which remains unclear. In [5] a new

mechanism depending on the gravitational interaction, that can provide mass to the scalar

field was presented. In these lectures we shall analyze this mechanism.

Although the concept of mass pervades most of all analysis involving gravitational inter-

action, it is an uncomfortable situation and still to this day there has been no successful

attempt to derive a mechanism through which mass is understood a direct consequence of

a dynamical process depending on gravity [10].

The main idea concerning inertia in the realm of gravity according to the origins of

General Relativity, goes in the opposite direction to the mechanism that we analyzed in

the previous section in the territory of the high-energy physics. Indeed, while the Higgs

mechanism explores the reduction of a global symmetry into a local one, Mach’s principle

suggests a cosmical dependence of local properties, making the origin of the mass of a given

body dependent on the structure of the whole universe. In this way, there ought to exist a

mechanism by means of which this quantity - mass – depends on the state of the universe.
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Let us describe an example of such mechanism in order to see how this vague idea can

achieve a qualitative scheme [11].

A. Mass for scalar field: a trivial case

We start by considering Mach principle as the statement according to which the inertial

properties of a body A are determined by the energy-momentum throughout all space. How

could we describe such universal state that takes into account the whole contribution of the

rest-of-the-universe onto A ? There is no simpler way than consider this state as the most

homogeneous one and relate it to what Einstein attributed to the cosmological constant

or, in modern language, the vacuum of all remaining bodies. This means to describe the

energy-momentum distribution of all complementary bodies of A as

Tµν = λ gµν

Let ϕ be a massless field the dynamics of which is given by the Lagrangian

Lϕ =
1

2
∂αϕ ∂αϕ

In the framework of General Relativity its gravitational interaction is given by the La-

grangian

L =
1

κ0

R +
1

2
∂αϕ ∂αϕ + B(ϕ) R− λ

κ0

(11)

where for the time being the dependence of B on the scalar field is not fixed. This dynamics

represents a scalar field non-minimally coupled to gravity. The cosmological constant is

added by the reasons presented above and represents the influence of the rest-of-the-universe

on ϕ. We shall see that λ is the real responsible to provide mass for the scalar field. This

means that if we set λ = 0 the mass of the scalar field should vanish.

Independent variation of ϕ and gµν yields

�ϕ−R B′ = 0 (12)

α0 (Rµν −
1

2
R gµν) = −Tµν (13)
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where we set α0 ≡ 2/κ0 and B′ ≡ ∂B/∂ϕ. The energy-momentum tensor is given by

Tµν = ∂µϕ ∂νϕ−
1

2
∂αϕ ∂αϕ gµν

+ 2B (Rµν −
1

2
R gµν)

+ 2∇µ∇νB − 2�B gµν +
λ

κ0

gµν (14)

Taking the trace of equation (55) we obtain

(α0 + 2B) R = − ∂αϕ ∂αϕ− 6�B +
4λ

κ0

(15)

Inserting this result on the equation (46 ) yields

�ϕ + Z = 0 (16)

where

Z ≡ B′

α0 + 2B

(
∂αϕ ∂αϕ + 6�B − 4λ

κ0

)
or, equivalently,

Z =
B′

α0 + 2B

(
∂αϕ ∂αϕ(1 + 6B′′) + 6 B′ �ϕ− 4λ

κ0

)
Therefore, the scalar field acquires an effective self-interaction through the non-minimal

coupling with the gravitational field. At this stage it is worth to select among all possible

candidates of B a particular one that makes the factor on the gradient of the field to

disappear in the expression of Z by setting

B = a + b ϕ− 1

12
ϕ2

where a and b are arbitrary parameters. The quantity a makes only a re-normalization of the

constant 1/κ0 and parameter b is responsible for distinguishing different masses for different

fields. Making a translation on the field

Φ = −ϕ + 6b

it follows

�Φ + µ2 Φ = 0 (17)

where

µ2 =
2λ

3

κren

κ0

. (18)
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where

κren =
1

α0 + 2a + 6b2

Thus as a result of the above process the scalar field acquires a mass µ that depends on λ.

If λ vanishes then the mass of the field vanishes. The net effect of the non-minimal coupling

of gravity with the scalar field corresponds to a specific self-interaction of the scalar field.

The mass of the field appears only if we take into account the existence of all remaining

bodies in the universe in the state in which all existing matter is on the corresponding

vacuum. The values of different masses for different fields is contemplated in the parameter

b.

B. Mass for scalar field-II

Let us now analyze a more general scenario to provide mass to a scalar field. We start

from the Lagrangian that describes a massless field ϕ that is

Lϕ =
1

2
∂αϕ ∂αϕ

The gravitational interaction yields the modified Lagrangian

L =
1

κ
R +

1

2
W (ϕ) ∂αϕ ∂αϕ + B(ϕ) R− 1

κ
Λ (19)

where for the time being the dependence of B and W on the scalar field is not fixed. We

set ~ = c = 1.

This dynamics represents a scalar field coupled non-minimally with gravity. There is

no direct interaction between ϕ and the rest-of-the-universe (ROTU), except through the

intermediary of gravity described by a cosmological constant Λ. Thus Λ represents the whole

influence of the ROTU on ϕ.

Independent variation of ϕ and gµν yields

W �ϕ +
1

2
W ′ ∂αϕ ∂αϕ−B′ R = 0 (20)

α0 (Rµν −
1

2
R gµν) = −Tµν (21)

where α0 ≡ 2/κ and B′ ≡ ∂B/∂ϕ. The energy-momentum tensor defined by
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Tµν =
2√
−g

δ(
√
−g L)

δgµν

is given by

Tµν = W ∂µϕ ∂νϕ−
1

2
W ∂αϕ ∂αϕ gµν

+ 2B (Rµν −
1

2
R gµν)

+ 2∇µ∇νB − 2�B gµν +
1

κ
Λ gµν (22)

Taking the trace of equation (21) we obtain

(α0 + 2B) R = − ∂αϕ ∂αϕ (W + 6 B′′)− 6B′ �ϕ + 4
Λ

κ
(23)

where we used that �B = B′ �ϕ + B′′ ∂αϕ ∂αϕ.

Inserting this result back on the equation (20 ) yields

M �ϕ + N ∂αϕ ∂αϕ−Q = 0 (24)

where

M ≡ W +
6(B′)2

α0 + 2B

N ≡ 1

2
W ′ +

B′ (W + 6B′′)

α0 + 2B

Q =
4 Λ B′

κ (α0 + 2B)

Thus, through the non-minimal coupling with the gravitational field the scalar field ac-

quires an effective self-interaction. At this point it is worth to select among all possible

candidates of B and W particular ones that makes the factor on the gradient of the field

to disappear on the equation of motion by setting N = 0. This condition will give W as a

function of B :

W =
2q − 6(B′)2

α0 + 2B
(25)

where q is a constant. Inserting this result into the equation (24) yields

�ϕ− 2 Λ

q κ
B′ = 0. (26)
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At this point one is led to set

B = −β

4
ϕ2

to obtain

�ϕ + µ2 ϕ = 0 (27)

where

µ2 ≡ β Λ

q κ
(28)

For the function W we obtain

W =
2 q − 3 β2 ϕ2

2 α0 − βϕ2

One should set q = α0 in order to obtain the standard dynamics in case β vanishes. Using

units were ~ = 1 = c we write

L =
1

κ
R +

2 q − 3 β2 ϕ2

2 (2 α0 − βϕ2)
∂αϕ ∂αϕ− 1

4
β ϕ2 R− Λ

κ

Thus as a result of the gravitational interaction the scalar field acquires a mass µ that

depends on the constant β and on the existence of Λ :

µ2 =
β Λ

2
(29)

If Λ vanishes then the mass of the field vanishes. The net effect of the non-minimal

coupling of gravity with the scalar field corresponds to a specific self-interaction of the

scalar field. The mass of the field appears only if we take into account the existence of all

remaining bodies in the universe — represented by the cosmological constant — in the state

in which all existing matter is on the corresponding vacuum. The values of different masses

for different fields is contemplated in the parameter β.

C. Re-normalization of the mass

The effect of the rest-of-the-universe on a massive scalar field can be analyzed through

the same lines as above. Indeed, let us consider the case in which there is a potential V (ϕ)

L =
1

κ
R +

W

2
∂αϕ ∂αϕ + B(ϕ) R− V (ϕ)− Λ

κ
(30)

The equation for the scalar field is given by

W �ϕ +
1

2
W

′
∂α ϕ ∂α ϕ−B

′
R + V

′
= 0 (31)
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Use the equation for the metric to obtain the scalar of curvature in terms of the field and

Λ. It then follows that terms in ∂α ϕ ∂α ϕ are absent if we set

W =
2q − 6 (B

′
)2

α0 + 2B

where q is a constant. For the case in which B = −β ϕ2/4 and for the potential

V =
µ0

2
ϕ2

and choosing q = 1/κ (in order to obtain the standard equation of the scalar field in case

B = 0) yields

�ϕ + (µ2
0 + β Λ) ϕ +

β µ2
0

4
κϕ3 = 0 (32)

This dynamics is equivalent to the case in which the scalar field shows an effective potential

(in absence of gravity) of the form

Veff = (µ2
0 + β Λ)

ϕ2

2
+

β µ2
0 κ

16
ϕ4

Thus the net effect of the gravitational interaction for the dynamics driven by (30) is to

re-normalize the mass from the bare value µ0 to the value

µ2 = µ2
0 + β Λ.

We can then contemplate the possibility that all bodies represented by a scalar field could

have the same bare mass and as a consequence of gravitational interaction acquires a split

into different values characterized by the different values of β. This result is not exclusive of

the scalar field but is valid for any field.

IV. THE CASE OF FERMIONS

Let us now turn our attention to the case of fermions. The massless theory for a spinor

field is given by Dirac equation:

iγµ∂µ Ψ = 0 (33)

This equation is invariant under γ5 transformation. In order to have mass for the fermion

this symmetry must be broken. Who is the responsible for this?

Gravity breaks the symmetry
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Electrodynamics appears in gauge theory as a mechanism that preserves a symmetry when

one pass from a global transformation to a local one (space-time dependent map). Nothing

similar with gravity. On the contrary, in the generation of mass through the mechanism that

we are analyzing here, gravity is the responsible to break the symmetry. In the framework of

General Relativity the gravitational interaction of the fermion is driven by the Lagrangian

L =
i ~ c

2
Ψ̄γµ∇µΨ− i

2
∇µΨ̄γµΨ

+
1

κ
R + V (Φ) R− 1

κ
Λ

+ LCT (34)

where the non-minimal coupling of the spinor field with gravity is contained in the term

V (Φ) that depends on the scalar

Φ ≡ Ψ̄ Ψ

which preserves the gauge invariance of the theory under the map Ψ → exp(i θ) Ψ. Note

that the dependence on Φ on the dynamics of Ψ breaks the chiral invariance of the mass-less

fermion, a condition that is necessary for a mass to appear.

For the time being the dependence of V on Φ is not fixed. We have added a counter-term

LCT for reasons that will be clear later on. On the other hand, the form of the counter-term

should be guessed, from the previous analysis that we made for the scalar case, that is we

set

LCT = H(Φ) ∂µΦ ∂µΦ (35)

This dynamics represents a massless spinor field coupled non-minimally with gravity. The

cosmological constant represents the influence of the rest-of-the-universe on Ψ.

Independent variation of Ψ and gµν yields

iγµ∇µ Ψ + (R V ′ −H ′ ∂µΦ ∂µΦ− 2H�Φ) Ψ = 0 (36)

α0 (Rµν −
1

2
R gµν) = −Tµν (37)
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where V ′ ≡ ∂V/∂Φ. The energy-momentum tensor is given by

Tµν =
i

4
Ψ̄γ(µ∇ν)Ψ−

i

4
∇(µΨ̄γν)Ψ

+ 2V (Rµν −
1

2
R gµν) + 2∇µ∇νV − 2�V gµν

+ 2H ∂µΦ ∂νΦ−H ∂λΦ ∂λΦ gµν +
α0

2
Λ gµν (38)

Taking the trace of equation (37) we obtain after some algebraic manipulation:

(α0 + 2V + V ′) R = H ′ Φ ∂αΦ ∂αΦ

+ 2H Φ �Φ− 6�V + 2 α0 Λ (39)

Inserting this result back on the equation (36) yields

iγµ∇µ Ψ +
(
X ∂λΦ ∂λΦ + Y �Φ

)
Ψ + Z Ψ = 0 (40)

where

Z ≡ 2 α0 Λ V ′

Q

X =
V ′ (Φ H ′ − 2H − 6V ′′)

Q
−H ′

Y =
V ′ (2H Φ− 6V ′)

Q
− 2H

where Q ≡ α0 + 2V + Φ V ′.

At this stage it is worth selecting among all possible candidates of V and H particular

ones that makes the factor on the gradient and on � of the field to disappear from equation

(40). The simplest way is to set X = Y = 0 which imply only one condition, that is

H =
− 3(V ′)2

α0 + 2V
(41)

The non-minimal term V is such that Z reduces to a constant, that is

V =
α0

2

[
(1 + σ Φ)−2 − 1

]
(42)

Then it follows immediately that

H = −3α0 σ2 (1 + σ Φ)−4 (43)
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where σ is a constant.

The equation for the spinor becomes

iγµ∇µ Ψ−mΨ = 0 (44)

where

m =
4 σ Λ

κ c2
. (45)

Thus as a result of the above process the spinor field acquires a mass m that depends

crucially on the existence of Λ. If Λ vanishes then the mass of the field vanishes. The non-

minimal coupling of gravity with the spinor field corresponds to a specific self-interaction.

The mass of the field appears only if we take into account the existence of all remaining

bodies in the universe — represented by the cosmological constant. The values of different

masses for different fields are contemplated in the parameter σ.

The various steps of our mechanism can be synthesized as follows:

• The dynamics of a massles spinor field Ψ is described by the Lagrangian

LD =
i

2
Ψ̄γµ∇µΨ− i

2
∇µΨ̄γµΨ;

• Gravity is described in General Relativity by the scalar of curvature

LE = R;

• The field interacts with gravity in a non-minimal way described by the term

Lint = V (Φ) R

where Φ = Ψ̄ Ψ;

• The action of the rest-of-the-universe on the spinor field, through the gravitational

intermediary, is contained in the form of an additional constant term on the Lagrangian

noted as Λ;

• A counter-term depending on the invariant Φ is introduced to kill extra terms coming

from gravitational interaction;
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• As a result of this process, after specifying V and H the field acquires a mass being

described as

iγµ∇µ Ψ−mΨ = 0

where m is given by equation (45) and is zero only if the cosmological constant vanishes.

This procedure allows us to state that the mechanism proposed here is to be understood

as a realization of Mach principle according to which the inertia of a body depends on

the background of the rest-of-the-universe. This strategy can be applied in a more general

context in support of the idea that (local) properties of microphysics may depend on the

(global) properties of the universe. We will analyze this in the next session (see also [6]).

Thus, collecting all these terms we obtain the final form of the Lagrangian

L =
i

2
Ψ̄γµ∇µΨ− i

2
∇µΨ̄γµΨ

+
1

κ
(1 + σ Φ)−2 R− 1

κ
Λ

− 6

κ
σ2 (1 + σ Φ)−4 ∂µΦ ∂µΦ (46)

Some comments

• In the case σ = 0 the Lagrangian reduces to a massless fermion satisfying Dirac’s

dynamics plus the gravitational field described by General Relativity;

• The dimensionality of σ is L3;

• The ratio m/σ = 4 Λ/κ c2 which has the meaning of a density of mass is an universal

constant. How to interpret such universality?

A possible solution of this question can be found in the following way. The present

mechanism is a real possibility if the mass obtained through it does not depends neither

in the intensity of the gravitational field nor on the Newton’s constant, as it occurs in the

previous case of the scalar field and for the vector field as it will be shown in the next section.

In the case of fermions, we have found that the constant of interaction has dimensionality

lenght3. Thus one should write σ = σ0 L2
Planck Λ−1/2 where σ0 is a dimensionless constant.

obtaining in this case, for the mass of the fermions, the similar result µ = σ0 Λ.
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V. THE CASE OF VECTOR FIELDS

We start with a scenario in which there are only three ingredients: a massless vector field,

the gravitational field and an homogeneous distribution of energy - that is identified with

the vacuum. The theory is specified by the Lagrangian

L = −1

4
Fµν F µν +

1

κ
R− Λ

κ
(47)

The corresponding equations of motion are

F µν
;ν = 0

and

α0 (Rµν −
1

2
R gµν) = −Tµν

where Fµν = ∇νWµ −∇µWν and α0 ≡ 2/κ.

In this theory, the vacuum Λ is invisible for Wµ. The energy distribution represented by

Λ interacts with the vector field only indirectly once it modifies the geometry of space-time.

In the Higgs mechanism this vacuum is associated to a fundamental state of a scalar field

ϕ and it is transformed in a mass term for Wµ. The role of Λ is displayed by the value of

the potential V (ϕ) in its homogeneous state. We will now show that there is no needs to

introduce any extra scalar field by using the universal character of gravitational interaction

to generate mass for Wµ.

The point of departure is the recognition that gravity may be the real responsible for

breaking the gauge symmetry. For this, we modify the above Lagrangian to include a non-

minimal coupling of the field Wµ to gravity in order to explicitly break such invariance.

There are only two possible ways for this [13]. The total Lagrangian must be of the form

L = −1

4
Fµν F µν +

1

κ
R

+
γ

6
R Φ + γ Rµν W µ W ν

− Λ

κ
(48)

where we define
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Φ ≡ Wµ W µ.

The first two terms of L represents the free part of the vector and the gravitational fields.

The second line represents the non-minimal coupling interaction of the vector field with

gravity. The parameter σ is dimensionless. The vacuum – represented by Λ – is added by

the reasons presented above and it must be understood as the definition of the expression

”the influence of the rest-of-the-universe on Wµ”. We will not make any further hypothesis

on this [14].

In the present proposed mechanism, Λ is the real responsible to provide mass for the

vector field. This means that if we set Λ = 0 the mass of Wµ will vanish.

Independent variation of Wµ and gµν yields

F µν
;ν +

γ

3
R W µ + 2γ Rµν Wν = 0 (49)

α0 (Rµν −
1

2
R gµν) = −Tµν (50)

The energy-momentum tensor defined by

Tµν =
2√
−g

δ(
√
−g L)

δgµν

is given by

Tµν = Eµν

+
γ

3
∇µ∇νΦ−

γ

3
�Φ gµν +

γ

3
Φ (Rµν −

1

2
R gµν)

+
γ

3
RWµ Wν + 2γRµ

λ Wλ Wν + 2γRν
λ Wλ Wµ

− γ Rαβ W α W β gµν − γ∇α∇β (Wα W β) gµν

+ γ∇ν ∇β(Wµ W β) + γ∇µ∇β(Wν W β)

+ γ �(WµWν) +
1

κ
Λ gµν (51)

where

Eµν = Fµα Fα
ν +

1

4
Fαβ Fαβ gµν

Taking the trace of equation (50) we obtain

R = 2 Λ− κ γ∇α∇β (Wα W β) (52)
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Then, using this result back into equation (49) it follows

F µν
;ν +

2 γ Λ

3
W µ

− κ γ2

3
∇α∇β (Wα W β) W µ

+ 2 γ Rµ
ν W ν = 0 (53)

The non-minimal coupling with gravity yields an effective self-interaction of the vector field

and a term that represents its direct interaction with the curvature of space-time. Besides,

as a result of this process the vector field acquires a mass µ that depends on the constant γ

and on the existence of λ. The term

2 γ Rµ
ν W ν

gives a contribution (through the dynamics of the metric equation (50) of γ Λ yielding for

the mass the formula

µ2 =
5

3
γ Λ (54)

Note that the Newton’s constant does not appear in our formula for the mass. The net effect

of the non-minimal coupling of gravity with W µ corresponds to a specific self-interaction of

the vector field. The mass of the field appears only if we take into account the existence of

the rest-of-the-universe — represented by Λ — in the state in which this environment is on

the corresponding vacuum. If Λ vanishes then the mass of the field vanishes.The values of

different masses for different fields are contemplated in the parameter γ.

Quantum perturbations

How this process that we have been examining here to give mass to all kind of bodies

should be modified in a quantum version? We note, first of all, that the gravitational

field is to be treated at a classical level, once there is neither theoretical nor observational

evidence that exists a quantum version of gravitational interaction. Thus, any modification

of the present scheme means to introduce quantum aspects of the vector field. This will not

change the whole scheme of generation of mass described above.Indeed, in the semi-classical

approach in which the matter field is quantized but the metric is not, the modification of

the equation of general relativity becomes

α0 (Rµν −
1

2
R gµν) = − < Tµν > (55)
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where the field is in a given specific state. Throughout all the process of gravitational

interaction the system does not change its state, allowing the same classical treatment as

above.

VI. THE CASE OF SPIN-TWO FIELD

As in the previous cases we start with a scenario in which there are only three ingredi-

ents: a linear tensor field, the gravitational field and an homogeneous distribution of energy

identified with the vacuum. We note that there are two possible equivalent ways to describe

a spin-two field that is:

• Einstein frame

• Fierz frame

according we use a symmetric second order tensor ϕµν or the third-order tensor tensor Fαβλ.

Although the Fierz representation is not used for most of the works dealing with spin-2 field,

it is far better than the Einstein frame when dealing in a curved space-time[16]. Thus, let us

review briefly the basic properties of the Fierz frame[22]. We start by defining a three-index

tensor Fαβµ which is anti-symmetric in the first pair of indices and obeys the cyclic identity:

Fαµν + Fµαν = 0, (56)

Fαµν + Fµνα + Fναµ = 0. (57)

This expression implies that the dual of Fαµν is trace-free:

∗
F

αµ
µ = 0, (58)

where the asterisk represents the dual operator, defined in terms of ηαβµν by

∗
F

αµ
λ ≡

1

2
ηαµ

νσ F νσ
λ.

The tensor Fαµν has 20 independent components. The necessary and sufficient condition for

Fαµν to represent an unique spin-2 field (described by 10 components) is [23]

∗
F

α(µν)
,α = 0, (59)
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which can be rewritten as

Fαβ
λ

,µ + Fβµ
λ

,α + Fµα
λ

,β −
1

2
δλ
α(Fµ,β − Fβ,µ) +

−1

2
δλ
µ(Fβ,α − Fα,β)− 1

2
δλ
β(Fα,µ − Fµ,α) = 0. (60)

A direct consequence of the above equation is the identity:

Fαβµ
,µ = 0 . (61)

We call a tensor that satisfies the conditions given in the Eqns.(56), (57) and (59) a Fierz

tensor. If Fαµν is a Fierz tensor, it represents an unique spin-2 field. Condition (59) yields a

connection between the Einstein frame (EF) and the Fierz frame (FF): it implies that there

exists a symmetric second-order tensor ϕµν that acts as a potential for the field. We write

2 Fαµν = ϕν[α,µ] +
(
ϕ,α − ϕα

λ
,λ

)
ηµν

−
(
ϕ,µ − ϕµ

λ
,λ

)
ηαν . (62)

where ηµν is the flat spacetime metric tensor, and the factor 2 in the l.h.s. is introduced for

convenience.

Taking the trace of equation (62) Fα ≡ Fαµνη
µν it follows that

Fα = ϕ,α − ϕα
λ

,λ,

where . Thus we can write

2Fαµν = ϕν[α,µ] + F[α ηµ]ν . (63)

Using the properties of the Fierz tensor we obtain the important identity:

Fα
(µν),α ≡ − 2 G(L)

µν , (64)

where G(L)
µν is the linearized Einstein tensor, defined by the perturbation gµν = ηµν + ϕµν

by

2 G(L)
µν ≡ �ϕµν − ϕε

(µ,ν) ,ε + ϕ,µν − ηµν

(
�ϕ− ϕαβ

,αβ

)
. (65)

The divergence of Fα
(µν),α yields Bianci identity:

Fα(µν)
,αµ ≡ 0. (66)
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Indeed,

Fαµν
,αµ + Fανµ

,µα = 0. (67)

The first term vanishes identically due to the symmetric properties of the field and the

second term vanishes due to equation (61). Using Eqn.(64) the identity which states that

the linearized Einstein tensor G(L)
µν is divergence-free is recovered.

We shall build now dynamical equations for the free Fierz tensor in flat spacetime. Our

considerations will be restricted here to linear dynamics. The most general theory can

be constructed from a combination of the three invariants involving the field. These are

represented by A, B and W :

A ≡ Fαµν Fαµν , B ≡ Fµ F µ,

W ≡ Fαβλ

∗
F

αβλ =
1

2
Fαβλ F µνλ ηαβ

µν .

W is a topological invariant so we shall use only the invariants A and B. The EOM for the

massless spin-2 field in the ER is given by

G(L)
µν = 0. (68)

As we have seen above, in terms of the field F λµν this equation can be written as

F λ(µν)
,λ = 0. (69)

The corresponding action takes the form

S =
1

k

∫
d4x (A−B). (70)

Then,

δS =

∫
Fα (µν)

,α δϕµν d4x. (71)

we obtain

δS = −2

∫
G(L)

µν δϕµν d4x, (72)

where G(L)
µν is given in Eqn.(65).

Let us consider now the massive case. If we include a mass for the spin 2 field in the

Fierz frame, the Lagrangian takes the form

L = A−B +
m2

2

(
ϕµν ϕµν − ϕ2

)
, (73)
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and the EOM that follow are

Fα
(µν),α −m2 (ϕµν − ϕ ηµν) = 0, (74)

or equivalently,

G(L)
µν +

m2

2
(ϕµν − ϕ ηµν) = 0.

The trace of this equation gives

Fα
,α +

3

2
m2 ϕ = 0, (75)

while the divergence of Eqn.(74) yields

Fµ = 0. (76)

This result together with the trace equation gives ϕ = 0.

In terms of the potential, Eqn.(76) is equivalent to

ϕ, µ − ϕε
µ ,ε = 0. (77)

It follows that we must have

ϕµν
,ν = 0.

Thus we have shown that the original ten degrees of freedom (DOF) of Fαβµ have been

reduced to five (which is the correct number for a massive spin-2 field) by means of the five

constraints

ϕµν
,ν = 0, ϕ = 0. (78)

Equation of spin-2 in curved background

The passage of the spin-2 field equation from Minkowski spacetime to arbitrary curved

riemannian manifold presents ambiguities due to the presence of second order derivatives

of the rank two symmetric tensor ϕµν that is used in the so called Einstein-frame (see for

instance [? ]). These ambiguities disappear when we pass to the Fierz frame representation

that deals with the three index tensor Fαµν as it was shown in [? ].
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There results a unique form of minimal coupling, free of ambiguities. Let us define from

ϕµν two auxiliary fields G(I)
µν and G(II)

µν through the expressions:

2 G(I)
µν ≡

�ϕµν − ϕε(µ;ν)
;ε + ϕ;µν − ηµν

(
�ϕ− ϕαβ

;αβ

)
, (79)

2 G(II)
µν ≡

�ϕµν − ϕε(µ
;ε

;ν) + ϕ;µν − ηµν

(
�ϕ− ϕαβ

;αβ

)
. (80)

These objects differ only in the order of the second derivative in the second term on the

r.h.s. of the above equations. The equation of motion [? ] free of ambiguities concerns the

tensor field

Ĝµν ≡
1

2

(
G(I)

µν + G(II)
µν

)
(81)

and is given by

Ĝµν +
1

2
m2 (ϕµν − ϕgµν) = 0. (82)

which is precisely the usual equations for massive spin-2 field.

Generating mass for the spin-2 field

We follow the same strategy as in the previous case and take the dynamics of the spin-2

field as given by

L = Fαµν Fαµν − Fα Fα +
1

κ
R

+ a Rαµβν ϕαβ ϕµν

− Λ

κ
(83)

The equations of motion are given by:

Fα
(µν);α + 2a Rαµβν ϕαβ = 0, (84)

1

κ

(
Rµν −

1

2
R gµν +

Λ

2
gµν

)
+ Tµν + a Yµν = 0 (85)

where the quantity Yµν is given by the variation of the non minimal coupling term:
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δ

∫ √
−g Rαµβν ϕαβ ϕµν =

∫ √
−g Yµν δgµν (86)

where Yµν is given in terms of Sαµβν defined as

Sαµβν ≡ ϕαβ ϕµν − ϕαν ϕβµ

which has the symmetries:

Sαµβν = −Sαµνβ = −Sµαβν = Sβναµ.

A direct calculation yields

Y µν ≡ Sλµνε
;ε;λ −

1

2
Rασβλ ϕαβ ϕσλ gµν +

3

2
Rασβ

(µ ϕν)σ ϕαβ − 1

2
Rασβλ ϕαβ ϕσλ gµν

Let us remind that the Riemann curvature can be written in terms of its irreducible

quantities involving the Weyl conformal tensor Wασβλ and the contracted Ricci tensor by

the formula:

Rαµβν = Wαµβν +
1

2
(Rαβ gµν + Rµν gαβ −Rαν gβµ −Rβµ gαν)−

1

6
R gαµβν .

Then

Rαµβν ϕαβ ϕµν = Wαµβν ϕαβ ϕµν +

(
Rαβ −

1

6
R gαβ

) (
ϕ ϕαβ − ϕα

λ ϕλβ
)
.

We can then re-write the equation of the spin-2 field as

Fα
(µν);α −

a Λ

3
(ϕµν − ϕ gµν) + 2a Wαµβν ϕαβ + Qµν = 0, (87)

where Qµν contain non-linear terms of interaction of the spin-2 field with gravity.

VII. GENERALIZED MACH’S PRINCIPLE

In this section we present an extension of Mach principle in similar lines as it has been

suggested by Dirac, Hoyle and others. This generalization aims to produce a mechanism that

transforms the vague idea according to which local properties may depend on the universe’s

global characteristics into an efficient process. We will apply the strategy that we used in

the precedent sections to generate mass in order to elaborate such generalization.
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The cosmological influence on the microphysical world: the case of chiral-

invariant Heisenberg-Nambu-Jona-Lasinio dynamics

There have been many discussions in the scientific literature in the last decades related

to the cosmic dependence of the fundamental interactions. The most popular one was the

suggestion of Dirac – the so called Large Number Hypothesis – that was converted by Dicke

and Brans into a new theory of gravitation, named the scalar-tensor theory. We will do not

analyze any of these here. On the contrary, we will concentrate on a specific self-interaction

of an elementary field and show that its correspondent dynamics is a consequence of a

dynamical cosmological process. That is, to show that dynamics of elementary fields in the

realm of microphysics, may depend on the global structure of the universe.

The first question we have to face concerns the choice of the elementary process. There is

no better way than start our analysis with the fundamental theory proposed by Nambu and

Jona-Lasinio concerning a dynamical model of elementary particles [19]. Since the original

paper until to-day hundreds of papers devoted to the NJL model were published [18]. For

our purpose here it is enough to analyze the nonlinear equation of motion that they used in

their original paper as the basis of their theory which is given by

iγµ∇µ Ψ− 2s(A + i B γ5)Ψ = 0

This equation, as remarked by these authors, was proposed earlier by Heisenberg [20] al-

though in a quite different context. We will not enter in the analysis of the theory that follows

from this dynamics. Our question here is just this: is it possible to produce a model such that

HNJL (Heisenberg-Nambu-Jona-Lasinio) equation for spinor field becomes a consequence of

the gravitational interaction of a free massless Dirac field with the rest-of-the-universe? We

shall see that the answer is yes.

We used Mach’s principle as the statement according to which the inertial properties of

a body A are determined by the energy-momentum throughout all space. We follow here a

similar procedure and will understand the Extended Mach Principle as the idea which states

that the influence of the rest-of-the-universe on microphysics can be described through the

action of the energy-momentum distribution identified with the cosmic form

TU
µν = Λ gµν
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Non minimal coupling with gravity

In the framework of General Relativity we set the dynamics of a fermion field Ψ coupled

non-minimally with gravity to be given by the Lagrangian (we are using units were ~ = c = 1)

L = LD +
1

κ
R + V (X) R− 1

κ
Λ + LCT (88)

where

LD ≡
i

2
Ψ̄γµ∇µΨ− i

2
∇µΨ̄γµΨ (89)

The non-minimal coupling of the spinor field with gravity is contained in the term V (X)

and depends on the scalar X defined by

X = A2 + B2

where A = Ψ̄ Ψ and B = iΨ̄ γ5 Ψ. We note that we can write, in an equivalent way,

X = Jµ Jµ

where Jµ = Ψ̄γµΨ. This quantity X is chiral invariant, once it is invariant under the map

Ψ′ = γ5 Ψ.

Indeed, from this γ5 transformation, it follows

A′ = −A, B′ = −B; then,X ′ = X.

The case in which the theory breaks chiral invariance and the interacting term V depends

only on the invariant A – is the road to the appearance of a mass as we saw in the previous

sections [6]. Here we start from the beginning with a chiral invariant theory. For the time

being the dependence of V on X is not fixed. We have added LCT to counter-balance the

terms of the form ∂λX ∂λX and �X that appear due to the gravitational interaction. The

most general form of this counter-term is

LCT = H(X) ∂µX ∂µX (90)

We shall see that H depends on V and if we set V = 0 then H vanishes. This dynamics

represents a massless spinor field coupled non-minimally with gravity. The cosmological

constant represents the influence of the rest-of-the-universe on Ψ.
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Independent variation of Ψ and gµν yields

iγµ∇µ Ψ + Ω (A + i B γ5)Ψ = 0 (91)

where

Ω ≡ 2R V ′ − 2H ′ ∂µX ∂µX − 4H�X

α0 (Rµν −
1

2
R gµν) = −Tµν (92)

where we set α0 ≡ 2/κ and V ′ ≡ ∂V/∂X. The energy-momentum tensor is given by

Tµν =
i

4
Ψ̄γ(µ∇ν)Ψ−

i

4
∇(µΨ̄γµ)Ψ

+ 2V (Rµν −
1

2
R gµν) + 2∇µ∇νV − 2�V gµν

+ 2H ∂µX ∂νX −H ∂λX ∂λX gµν +
α0

2
Λ gµν (93)

Taking the trace of equation (92), after some simplification and using

�V = V ′ �X + V ′′ ∂µX ∂µX (94)

it follows

(α0 + 2V + 2 V ′ X) R = (4HX − 6V ′)�X

+ (2H ′ X − 6V ′′ − 2H) ∂αX ∂αX

+ 2 α0 Λ (95)

Then

Ω = (M �X + N ∂µX ∂µX)

+
4 α0 Λ V ′

α0 + 2V + 2 V ′ X
(96)

where

M =
2V ′(4HX − 6V ′)

α0 + 2V + 2 V ′ X
− 4 H

N =
2V ′ (2 X H ′ − 6V ′′ − 2 H)

α0 + 2V + 2 V ′ X
− 2 H ′
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Defining ∆ ≡ α0 + 2V + 2 V ′ X we re-write M and N as

M = − 4

∆

(
3 V ′2 + H (α0 + 2V )

)
N = − 2

∆

(
3 V ′2 + H (α0 + 2V )

)′
Inserting this result on the equation (91) yields

iγµ∇µ Ψ +
(
M �X + N ∂λX ∂λX

)
Ψ + Z (A + i B γ5)Ψ = 0 (97)

where

Z =
4 α0 Λ V ′

∆

At this stage it is worth to select among all possible candidates of V and H particular

ones that makes the factor on the gradient and on � of the field to disappear from equation

(97).

The simplest way is to set M = N = 0, which is satisfied if

H = − 3 V ′2

α0 + 2V

Imposing that Z must reduce to a constant we obtain

V =
1

κ

[
1

1 + β X
− 1

]
. (98)

As a consequence of this,

H = − 3 β2

2κ

1

(1 + β X)3
(99)

where β is a constant. Using equations 97) and 98) the equation for the spinor becomes

iγµ∇µ Ψ− 2s(A + i B γ5)Ψ = 0 (100)

where

s =
2 β Λ

κ(~ c)
. (101)

Thus as a result of the gravitational interaction the spinor field satisfies Heisenberg-

Nambu-Jona-Lasinio equation of motion. This is possible due to the influence of the rest-

of-the-Universe on Ψ. If Λ vanishes then the constant of the self-interaction of Ψ vanishes.

The final form of the Lagrangian is provided by

L = LD +
1

κ (1 + βX)
R− 1

κ
Λ− 3β2

2κ

1

(1 + βX)3
∂µX ∂µX (102)
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In this section we analyzed the influence of all the material content of the universe on a

fermionic field when this content is in two possible states: in one case its energy distribution

is zero; in another case it is in a vacuum state represented by the homogeneous distribution

Tµν = Λgµν . Note that when Λ vanishes, the dynamics of the field is independent of the

global properties of the universe and it reduces to the massless Dirac equation

iγµ∇µ Ψ = 0

In the second case, the rest-of-the-universe induces on field Ψ the Heisenberg-Nambu-

Jona-Lasinio non-linear dynamics

iγµ∇µ Ψ− 2s (A + iBγ5) Ψ = 0.

Such scenario shows a mechanism by means of which the rules of the microphysical world

depends on the global structure of the universe. It is not hard to envisage others situations

in which the above mechanism can be further applied.

VIII. APPENDIX: VACUUM STATE IN NON-LINEAR THEORIES

Although the cosmological constant was postulated from first principles, quantum field

theory gave a simple interpretation of Λ by its association to the fundamental vacuum state.

It is possible to describe its origin even classically as a consequence of certain special states

of matter. For instance, non linear theories produce classically a vacuum, defined by its

distribution of energy-momentum tensor provided by expression (1). Let us review very

briefly how this occurs in a specific example. We start by the standard definition of the

symmetric energy-momentum tensor as variation of the Lagrangian induced by variation of

the metric tensor, that is

Tµν =
2√
−g

δL
√
−g

δgµν
(103)

In order to present a specific example, let us concentrate on the case of electromagnetic

field in which the Lagrangian depends only on the invariant F defined by

F ≡ Fµν F µν
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Then, the expression of the energy-momentum tensor is given by

Tµν = −4 LF Fµ
α Fαν − L gµν . (104)

where LF = ∂L/∂F represents the derivative of the Lagrangian with respect to the invariant

F. The corresponding equation of motion of the field is provided by

(LF F µν); ν = 0. (105)

where the symbol ; represents covariant derivative. This equation admits a particular solu-

tion when LF vanishes for non-null constant value F0 . When the system is in this state,

the corresponding expression of the energy-momentum tensor reduces to

Tµν = Λ gµν

where

Λ = L0.

The consequences of this state in Cosmology due to non linear theories of Electrodynamics

was revisited recently (see [9]). A by-product is the emergence of effective geometries that

mimics gravitational processes like, for instance, non-gravitational black holes or analogue

expanding universes in laboratory.
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