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Summary. In this paper we have given a unified graph coloring algorithm for planar
graphs. The problems that have been considered in this context respectively, are
vertex, edge, total and entire colorings of the planar graphs. The main tool in the
coloring algorithm is the use of spiral chain which has been used in the non-computer
proof of the four color theorem in 2004. A more precies explanation of the proof of
the four color theorem by spiral chain coloring is also given in this paper. Then
we continue to spiral-chain coloring solutions by giving the proof of other famous
conjectures of Vizing’s total coloring and planar graph conjectures of maximum
vertex degree six. We have also given the proof of a conjecture of Kronk and Mitchem
that any plane graph of maximum degree ∆ is entirely (∆ + 4)-colorable. The last
part of the paper deals with the three colorability of planar graphs under the spiral
chain coloring. We have given an efficient and short proof of the Grötzsch’s Theorem
that triangle-free planar graphs are 3-colorable.

1.1 Introduction

Without doubt the root of all graph coloring problems e.g., see for example
[13],[33] go to the famous four color map coloring problem of Guthrie [14] and
its solution that is becoming a theorem has a long and strange story [1]-[3].
Also the lengthy and computer-aided proof(s) and verification of its correct-
ness by another computer program makes the problem even more attractive
and interesting [1],[17],[34].

The author has given an algorithmic proof to the four color theorem which
is not rely on a computer program but it is based on graph theory notions
such as vertices, edges, cycles, planar graphs etc., in 2004 [19]. The only new
concept introduced in the proof, is a special path in the planar graph called
spiral chain. By using spiral chains and spiral-chain coloring in the planar
graphs proofs have been proposed for several open coloring problems [20],[21].
The purpose of this paper is to show that spiral chain coloring algorithm,
for at least for planar graphs can be unified to other coloring problems. In
order to show the ability of the spiral-chain coloring algorithm we have chosen
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maximal planar graphs for vertex, edge, total and entire coloring problems.
Note that solutions of some of these problems are still open.

Throughout the paper let us assume that from a plane graph we under-
stand a maximal planar graph embedded in the plane without crossing of the
edges. The four color problem is to color the vertices of a plane graph with
only four colors so that adjacent vertices receive different colors. The four
color theorem says that four colors is enough for any plane graph. But the
answer of the question of three colorability of the plane graph is open and only
partial results exits, such as planar graphs without triangles or planar graphs
with even triangulations have been shown to be 3-colorable [22],[23],[25]. We
will be re-visited the spiral chain coloring solution of the Steinberg’s three col-
orability problem in the last section of this paper for some extra justification
[21],[24].

Probably edge-coloring of graphs is almost as old as the four color problem
and comes from its equivalent formulation of Tait [6]. That is 4CT is equivalent
to the coloring the edges of any cubic bridgeless planar graph with only three
colors such that any two incident edges receive different colors. Again spiral
chain edge coloring solution to this problem has been given by Cahit without
relying on the proof of the four color theorem in 2005 [19]. The proof is based
on the spiral chains of a bridgeless cubic graph and coloring them with three
colors say Green, Yellow and Red, where Green has priority over Yellow and
Red and Yellow has priority over color Red. Finally in case of color conflict
at two incident edges use appropriate backward Kempe-chain switching to
resolve the conflict [19]. Tait’s coloring is the first example but the real starting
point of edge coloring of graphs is the famous theorem of Vizing that states
that any graph G has edge-chromatic number χ

′

(G) = ∆(G) or ∆(G) + 1,
where ∆(G) is the maximum vertex degree in G and by ”chromatic number”
we mean minimum number of colors. The main problem in edge coloring is
to determine which of these two possibilities holds for a given graph G. The
graph G is called it is in Class I if χ

′

(G) = ∆(G) and is in Class II otherwise.
It is a famous conjecture of Vizing that planar graphs with ∆(G) ≥ 6 are in
Class I [16]. Except the case ∆(G) = 6 all other cases have been settled [32].

The problem of simultaneously coloring sets of elements of a graph posed
by Ringel in 1960 [30] who conjectured that the vertices and faces of a plane
graph may be colored with six colors. This has been settled by Borodin in [29].
Vizing conjectured that the vertices and edges of any graph may be colored
with ∆(G) + 2 colors (known as total coloring of graphs) [10]. Similarly a
conjecture of Melnikov for edge-face coloring has been settled by Sanders and
Zhao [31].

Lastly plane graph coloring can be considered in its most general forum
as coloring all elements (vertices, edges and faces) simultaneously. This type
coloring has been considered under the name ”entire coloring” by Kronk and
Mitchem in 1972 [16]. They also conjectured that any plane graph of maximum
degree ∆ can be colored with ∆(G) + 4 colors and showed that this true for
∆(G) = 3. Other results on this conjecture are first by Borodin for ∆(G) ≥ 12
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and then ∆(G) ≥ 7 and finally improved to ∆(G) ≥ 6 by using discharging
and non-existence of an minimal counter example by Sanders and Zhao [18].
The cases ∆(G) ∈ {4, 5} remain undecided.

In this paper we have shown that all the above coloring problems of the
plane graphs can be settled algorithmically by the use of spiral chain coloring
technique.

1.2 Spiral Chains

Let G(V, E) be a plane graph with vertex set V and edge set E. Assume that
d(v) ≥ 3 for v ∈ V . The outer-cycle Co0 of G is a cycle for which there is
no edges of G remain outer-region of Co. Note that |V (Co)| = 3 and all faces
are triangles since G is maximal planar. Let V (Co0) = {va, vb, vc} . We define
spiral chain(s) S1 of G as a (disjoint) path(s) with a topological property
(we mean the spiral shape of the path) as follows. The path P1(va, vc) =
{va, vb, vc} where vcva /∈ P (va, vc) of Co0 is a subpath of spiral chain S1, that
is we select edges of Co0 starting from va in clockwise direction till vc. Then
we delete the vertices of P (va, vc) and obtain the subgraph G1 of G which is
triangulated but not necessarily maximal since its outer-cycle Co1may have
length greater 3. Let V (Co1) = {vd,1, vd,2, ...vd,k} where vertices labeled in
clockwise direction. Let vd,i be the highest indexed vertex such that vcvd,i ∈
E(G). Then we write new extended spiral subpath of S1 as

P (va, vi−1) = P1(va, vc) ∪ l1 ∪ P2(vd,i, vd,i−1),
where P (vd,i, vd,i−1) = {vd,i, vd,i+1, ..., vd,i−1} and we call l1 = {vcvd,i} the

connecting link-edge of the spiral sub-paths P1(va, vc) and P2(vd,i, vd,i−1).
Similar above we trace other vertices of the subgraphs G2, G3, ..., Gk and
obtain spiral chain of G if n = |V (G)| = ∪k

i=1|V (Gi)| which can be expressed
as

S1 = P1(va, vc)∪l1∪P2(vd,i, vd,i−1)∪l2∪P3(ve,i, ve,i−1)∪l3∪P4(vf,i, vf,i−1)∪
... .

If ∪k
i=1|V (Gi)| < n then this means that there is no link-edge connecting

the last spiral sub-path of Gk to the next one in Gk+1. In this case we choose
the closest vertex u to the last vertex v of S1such that vu /∈ E(G). In gen-
eral two consecutive spiral chains Sk and Sk+1 is separated by an maximal
outerplanar subgraph Gk,k+1 such that vu /∈ E(G), v ∈ Sk, u ∈ Sk+1. Start
the spiral chain S2 from u as described above. Eventually we obtain vertex
disjoint spiral chains S1, S2, ..., Sp when all vertices of G have been visited.
Hence in general we can write the set of spiral chains of G as

S = ∪p
i=1Si = ∪p−1

i=1 Pili ∪ Pp

Note that if p = 1 then S1 is an Hamiltonian path of G and for p > 1
some of spiral chains may be a isolated vertex.

For a given graph G the set of S of spiral chains decompose G into nested
vertex disjoint spiral chains. Any vertex can belong exactly one spiral chain.
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Since G is maximal planar graph its faces must be triangles (cycle of length
three). A face (triangle) in G can be in three types: α, β and γ−triangles.

Definition 1. An triangle in G under the spiral decomposition S is called
αtriangle if all its edges are non-spiral edges, β−triangle if exactly two of
its edges are non-spiral edges and γ−triangle if only one of its edge is an
non-spiral edge.

It is not difficult to see that for any spiral decomposition S there exits at
least one γ-triangle but we can draw graphs without α-triangles. The proof of
the first statement can be seen that there is a spiral subpath with a link-edge
and a suitable non-spiral edge which form an maximal outerplanar subgraph
of G. But any maximal outerplanar graph has a γ-triangle. In Figure 1 we
have shown an maximal planar graph and its spiral chain with all β-triangles
except with one γ-triangle (shown in grey in the figure).
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Fig. 1.1. Three coloring by spiral chain.

Lemma 1. Let #(α) and #(γ) be the number of α- and β-triangles in any
spiral chain decomposition S of G. Then #(γ) = #(α) + 1.

Let Go be an maximal outerplanar graph. Go is an triangulated planar
graph in which all vertices are on the (outer-cycle) Hamiltonian cycle Hc and
all edges other than the edges of Ho can be placed without crossing into the
inside region defined by the Ho. Similar above we can define an triangle in Go

as α-triangle if all its edges are non-Ho edges, β-triangle if its two edges are
non-Ho and γ-triangle if only one of its edge is an non-Ho edge.

Lemma 2. Let #(α)o and #(γ)o be the number of α- and β-triangles in an
maximal outerplanar graph Go. Then #(γ) = #(α) + 2.
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Any (n − 1) edges of Ho form an spiral chain (Hamilton path) in G. Let
e be the non-spiral edge of Ho. If e was an edge of a β-triangle in Go then
becomes an edge of an α-triangle in G under S or similarly if e was an edge
of a γ-triangle in Go then becomes an edge of a β-triangle in G.

1.3 Spiral chain coloring

In this section we apply spiral chain coloring algorithm to the some of the
planar graph coloring problems which have not completely settled. We have
particularly investigated the undecided cases of the corresponding conjectures
on edge, total and entire coloring conjectures. Let us first give an complemen-
tary justification of the proof of the four color theorem based on spiral chains of
the maximal planar graphs. Assume that G has no vertex degree smaller than
4. We will be denoting the colors in several ways e.g., by numbers 1,2,3,4,.. or
by letters c1, c2, c3, c4, ... or by capital letters Red, Y ellow, Green, Blue, ....
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Fig. 1.2. Almost three colorable graph.

1.3.1 Spiral Chain Vertex Coloring

Stockmeyer has shown that 3-colorability is NP -complete for planar graphs
but we can decide whether the planar graph is 3-colorable by using spiral chain
coloring. We call a graph G is almost three colorable (4-chromatic critical) if
it is possible to color vertices such that only one vertex has to be colored by
the fourth color. In Fig. 1 we have illustrate 3-coloring of an maximal planar
graph by using spiral chain coloring. The graph satisfy even triangulation
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condition of Heawood, so it has to be 3-colorable but we don’t need to know
that beforehand. In Fig. 2 we have shown another example of spiral chain
coloring which is almost 3-colorable in the sense that only once and on the
last vertex of the spiral chain the fourth color is being used.

If G and its spiral chain decomposition has no α-triangle then Figs.1-4
suggest the following lemma:

Lemma 3. Any α-triangle free maximal planar graph can be 4-colorable by
spiral chain coloring without Kempe-switch.

Let S1, S2, ..., Sk be the set of spiral chains of G. Spiral chain coloring
algorithm colors the vertices of S1, S2, ..., Sk in reverse order. Let V (Sk) =
{v1, v2, ..., vm} ,m ≤ n be the set of vertices of Sk. Spiral segment Sk,i of Sk

is the subset of vertices V (Sk,i) = {v1, v2, ..., vp}i, i = 1, 2, ..., r, p ≤ m ≤ n
such that induced an maximal outerplanar subgraph, where p is the length
of the spiral segment and it is maximum possible with respect to this prop-
erty. We also call this the first maximal outerplanar subgraph induced by
the spiral segment vertices as the ”core of the spiral”. That is spiral segment
vertices of the core is V (Sk,1) = {v1, v2, ..., vp}1. In Fig. 2 the core of the
spiral is shown in gray color and the first spiral segment vertices colored by
G, R, G, Y, G, Y, R, Y, R and it can easily be seen that if we take next vertex
(colored by Y ) to the spiral segment the core is no longer an maximal out-
erplanar subgraph. The next spiral segment together with the previous spiral
segment vertices forms another maximal outerplanar subgraph (in Fig. 2 sec-
ond spiral segment is Y, R, Y, R, Y, R, G). Hence we can write the r consecutive
spiral segments of Sk as

V (Sk) = V (Sk,1)∪V (Sk,2)∪...∪V (Sk,r) , V (Sk,1)∩V (Sk,2)∩...∩V (Sk,r) =
φ. We also say, for any three consecutive spiral segments Sk,(i−1), Sk,i, Sk,(i−1)

of spiral chain Sk, spiral segment Sk(i−1) is a lower-spiral segment of Sk,i and
spiral segment Sk(i+1) is an upper-spiral segment of Sk,i.

In its most general form an maximal planar graph is decomposed into ver-
tex disjoint spiral chains and each spiral chain is further decomposed, in a well
defined fashion, into vertex disjoint spiral segments. Moreover spiral chains
and spiral segments are in the form of an shelling structure (nested shells of
triangulations). Next we will show that there is an simple and efficient coloring
algorithm that colors the vertices of spiral from the inner spiral chain toward
an outer spiral chain. Since the core spiral segment Sk,1 always induce an max-
imal outerplanar subgraph of the graph we start coloring core spiral-segment
vertices with only three colors, say green, red and yellow without any color
conflict. Let us call to these three colors as Color Class I, CC1 = {G, R, Y }.
Note that we have just three colored the first spiral segment (core) and since it
is maximal outerplanar graph three-coloring with CC1 = {G, R, Y } is unique.

• A β-triangle in the core spiral segment Sk,1. That is if start from the very
first triangle of the spiral chain which must be an γ- or β-triangle all other
triangles induced by the core vertices uniquely colored by the colors of
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CC1. Now consider next spiral segment Sk,2 which upper-spiral segment
with respect to the core segment Sk,1. We continue the coloring the vertices
of Sk,2 with the colors in CC1 as long as there is no α- or γ-triangle in the
previous core subgraph.

• An γ-triangle in the core spiral segment Sk,1. That is if we have an γ-
triangle with three consecutive vertices vi−1, vi, vi+1 ∈ V (Sk,1) such that
(vi−1vi), (vivi+1) ∈ E(Sk,1), and (vi−1vi+1) ∈ E(G) then vi−1, vi, vi+1

must use all the distinct colors of CC1, say c(vi−1) = G, c(vi) = R, c(vi+1) =
Y . An vertex v ∈ V (Sk,2) that adjacent to the vertices vi−1, vi, vi+1 forms
three β-triangles and force to use the new color B for the vertex v. If (uw) ∈
Sk,2 such that (uvi), (wvi), (wvi+1) ∈ E(G) are the non-spiral edges and
c(u) = Y then we color w as c(w) = B. Hence in these cases we switch to
new three color class CC2 = {R, Y, B} .

From the above three colors classes CC1 = {G, R, Y } and CC2 = {R, Y, B}
we define safe colors as follows: The color green G ∈ CC1 is a safe-color with
respect to CC2 since G /∈ CC2 and similarly the color blue B ∈ CC2 is a
safe-color with respect to CC1 since B /∈ CC1. Hence the red R and yellow
Y are non-safe colors for both CC1 and CC2. Now let if we would have no
other triangle types (that is no α-triangles) in the spiral decomposition we
would color without need of use of Kempe-switch all spiral segments with the
alternating the two three color classes CC1 and CC2. That is Sk,i =⇒ CC1 =
{G, R, Y } , i = 1, 3, 5, ... and Sk,i =⇒ CC2 = {R, Y, B} , i = 2, 4, 6, ....

Now consider the last vertex vl of the last spiral segment Sk,r. If r the
number of spiral segments is odd then color vl as c(vl) = G and if r is even
then color vl as c(vl) = B. This completes the proof of the above lemma.
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Fig. 1.3. Spiral-chain coloring without Kempe-switch.
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Fig. 1.4. Spiral-chain vertex 4-coloring of an planar graph without an α-triangle
and with a sailing-boat subgraph.

We need a definition of a special subgraph in the spiral chain decomposition
of G.

Definition 2. Consider two consecutive spiral chains (or spiral segments) Sp

and Sp+1. Let vi−1, vi, vi+1 ∈ Sp and vr, vr+1 ∈ Sp+1, Consider the subgraph
formed by (vi−1vi), (vivi+1) ∈ E(Sp) and (vrvr+1) ∈ E(Sp+1) and the non-
spiral edge (vi−1vi+1) of Sp and non-spiral edges (vrvi−1), (vrvi), (vr+1vi), (vr+1vi+1).
That is the subgraph formed in this way is called the ”sailing boat” and picto-
rially looks like a sailing boat in between two consecutive parallel spiral chains
which consist of one γ-triangle and three β-triangles. In other words the sail-
ing boat subgraph is a wheel with five vertices drawn in the plane like the shape
of a sailing boat between two parallel spiral segments.

• An α-triangle in the core spiral segment Sk,1. It is easy to see that un-
der spiral chains decomposition an isolate α-triangle can create three γ-
triangles. That is in an triangulation under spiral chain, any sequence of β-
triangles with a common α-triangle edge must end-up with an γ-triangle.
Recall that all edges of an α-triangle are non-spiral edges. Consider a
sailing-boat subgraph between Si−1 and Si. Let {v1, v2, v3, v4, ...., vx, ...} ∈
Si−1 where v1, v2, v3 are the vertices of an γ-triangle of the sailing boat
and {..., u1, u2, ...} ∈ Si. The edge sets of Si and Si−1 are (u1u2) ∈
E(Si), {(v1v2), (v2v3), (v3v4)} ∈ E(Si−1). The edges (non-spiral) of the α-
triangle are (v1v3)(v3vx)(v1vx) and (vxv4) ∈ E(G). Without loss of gener-
ality assume that Si−1 =⇒ CC1 = {G, R, Y } and Si =⇒ CC2 = {B, Y, G}.
Spiral chain coloring color the vertices as follows: c(v1) = G, c(v2) =
R, c(v3) = Y (γ-triangle in Si−1)=⇒ c(vx) = R (α-triangle vertex) and
c(v4) = G (β-triangle vertex). Now if in Si, c(u1) = B then we cannot find



1 SPIRAL CHAIN COLORING 9

proper color for c(u2) =? But then re-color c′(v3) = B and c′(u2) = Y
(a single Kempe-switch) to resolve impasse on vertex u2 and maintain
3-coloring of spiral chain (or segment) Si

1. Of course spiral chain (or seg-
ment) Si−1 becomes 4-coloring since B is a safe color of CC2 and Y is a
non-safe color.
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Fig. 1.5. Spiral-chain coloring with a Kempe-switch.

Algorithm 1.[Description] Let S1, S2, ..., Sk be the set of spiral chains
of G. Color the vertices from an inner spiral chain towards an outer spiral
chain. Color spiral chain from inner towards outer spiral segments. Color the
core spiral segment with the color class CC1 = {G, R, Y }. For the other
spiral segments use Sk,i =⇒ CC1 = {G, R, Y } , i = 1, 3, 5, ... and Sk,i =⇒
CC2 = {R, Y, B} , i = 2, 4, 6, .... An vertex in the core-spiral receive an unique
color form CC1 based on the adjacent previously colored triangle. In all spiral
segments other than the core-spiral assign non-safe color to a vertex whenever
is possible. If non-safe color cannot be assigned use respective safe color of the
three color classes. In a spiral segment coloring if an vertex is in the sailing-
boat subgraph and cannot be colored properly then switch safe color with
non-safe color between the parallel spiral segments. This operation assures
three colorability of the current outer spiral segment at any step. Furthermore
three colorability of the outer-spiral segment assures always to find an safe
color to assign to the last vertex of the spiral chain.

1 Exchange of a safe color of the upper spiral chain with a proper non-safe color of
lower spiral chain can be viewed as preparation the rest of spiral chain segment
vertices for 3-coloring. Think of hiding the unwanted colored spots on the surface
of an cake by pushing them with your finger!
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Therefore we write the following theorem from which the four color theo-
rem follows:

Theorem 1. All maximal planar graphs are 4-colorable.

In the next section we will investigate edge-coloring problem of planar
graphs under the spiral chain coloring technique.

1.3.2 Spiral Chain Edge Coloring

In 1979 Seymour has conjectured that there is no planar non-elementary crit-
ical graph [7]. This conjecture implies the four color theorem, the existence of
an algorithm determining the chromatic index of a planar graph in polynomial
time and non-existence of planar class two graph with maximum degree at
least 6. The latter from 1965 Vizing also proved the case ∆(G) ≥ 8. There
are planar class two graphs known with maximum degree 2, 3, 4, and 5. The
case ∆(G) = 7 has been settled by using discharging method by Grünwald in
his Ph.D. thesis in 2000 [8]. The cyclic spiral coloring algorithm given in this
paper not only settles the case ∆(G) = 6 but also answers Seymour’s ques-
tion in affirmative. Another comment about the cyclic spiral chain coloring
algorithm is the complexity of the 3-colorability problem of planar graphs.

Let us assume that Ga is an almost maximal planar graph with maximum
vertex degree 6 such that all its finite faces are triangles. Clearly Ga may be
made fully maximal by joining its all outer-vertices to another vertex vo. An
configuration around the vertex vx ∈ Si is the subgraph of G induced with
all adjacent vertices of vx and the vertex vx itself. Consider three sections
of spiral chains Si−1, Si and Si+1. That is spiral-section Si is neighbor both
Si−1 and Si+1. We say Si+1 is upper-spiral neighbor of vx ∈ Si and Si−1 is
lower-spiral neighbor of vx ∈ Si. An triangle in between Si and Si+1 is called
upper triangle αu, βu or γu depending on its type. An triangle in between Si

and Si−1 is called lower triangle αl, βl or γl depending on its type. Then all
triangles of an configuration with respect to vertex vx ∈ Si can be written in
anticlockwise direction cyclically as an sequence of triangle types

〈αlβlγlαuβuγu〉

where the order of αi, βi, γi, i = l, u depends on the structure of the con-
figuration but we always start from the first lower-triangle. For example in
Fig.6 triangles around vertex vx are 〈γlαlβlβlβuβu〉.

Algorithm 2. Spiral Chain Edge Coloring.
Step 1. Find spiral chains S1, S2, ..., Sk of Ga.
Step 2. Color anticlockwise direction the edges incident to the first vertex

of Sk starting the spiral-edge. The coloring rule used here is to assign the first
available color from the set of colors C = {c1, c2, ..., cm}.

Step 3. Repeat Step 2 for all edges of Sk, Sk−1, ..., S1.
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Fig. 1.6. Configuration < γl αl βl βl βu βu > at vertex vx (red lines already colored,
blue lines current and black lines future edges to be colored).

In Fig.7 we illustrate CSP algorithm for an maximal planar graph with 12
vertices. The graph has one spiral-chain S and its vertices are v12, v11, ..., v1.
Note that ∆(G) = d(v9) = d(v7) = d(v4) = d(v1) = 6.

Theorem 2. The algorithm SCE colors the edges of Ga with no more than ∆
colors.

Proof : Let C = {c1, c2, ...} be the set of colors. The proof is based on the
argument that cyclic spiral edge coloring of an configuration at a vertex v
never creates an impasse or need of use more than ∆ colors. Let us list the
possible configurations at a vertex v , where we choose the degree of v as six
to show that algorithm works even in the worst case. Bold lines in counter-
clockwise direction represent three parallel spiral chains Si−1, Si, Si+1.

(1) 〈βlβlβlβlβl〉
(2) 〈βlβlβlβlβuβu〉
(3) 〈γlαlαlγlβuβu〉
(4) 〈βlβlαlγlβuβu〉
(5) 〈γlαlβlβlβuβu〉
(6) 〈γlβlαlβlβuβu〉
(7) 〈βlαlβlγlβuβu〉
(8) 〈γlαlβlβuβuβu〉
(9) 〈βlαlγlβuβuβu〉
(10) 〈γlαlβlβuαuβu〉
(11) 〈βlαlγlβuαuβu〉
(12) 〈βlβlβlβuβuβu〉
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In configuration 〈βlβlβlβlβl〉 if v is the last vertex of the spiral chain,
since all edges incident at v have been colored before we terminate the al-
gorithm. Let us consider configuration (5) 〈γlαlβlβlβuβu〉 which is shown
in Fig.6. In Fig.6 edges in ”red” are already colored, in ”blue” are the
current edges and in ”black” lines the future edges that to be colored.
Let the three parallel spiral chains be Si−1 = {..., vi−1,1, vi−1,2, ...} , Si =
{..., vi,1, vi,2, vi,3, vi,4, ...} , Si+1 = {..., vi+1,1, ...} .

W.l.o.g. let c(vi,2vi,1) = c1, c(vi,2vi−1,1) = c2, c(vi,2vi−1,2) = c3.
If c(vi,4vi−1,2) = c4 and c(vi+1,1vi,1) = c5 then put c(vi,2vi,3) = c4, c(vi,4vi,2) =

c5, and c(vi,2vi+1,1) = c6.
If c(vi,4vi−1,2) = c5 and c(vi+1,1vi,1) = c6 then put c(vi,2vi,3) = c4, c(vi,4vi,2) =

c6, and c(vi,2vi+1,1) = c5.
If c(vi,4vi−1,2) = c(vi+1,1vi,1) = c5 then put c(vi,2vi,3) = c5, c(vi,4vi,2) =

c4, and c(vi,2vi+1,1) = c6.
If c(vi,4vi−1,2) = c(vi+1,1vi,1) = c6 then put c(vi,2vi,3) = c6, c(vi,4vi,2) =

c4, and c(vi,2vi+1,1) = c5.
Therefore in all cases (coloring of the edges denoted in blue in Fig.6) it

is possible to complete coloring the edges incident vi,2 without needing the
seventh color c7. It can be verified that this is true for all other configurations
(1)-(12). That is chromatic index χ′(Ga) = 6 when ∆ = 6. This completes
the proof of the theorem.

Theorem 3. The edges of an maximal planar graph G can be colored with
∆ = 6 colors.

Proof : We note that outer-cycle of an maximal planar graph has a length
three and Ga is a subgraph of G. Since we assume that ∆(G) = 6 we can
obtain Ga by deleting some of the outer vertices of G. Let S1, S2, ..., Sk be the
spiral chains of G. By Theorem 5 we know that spiral chain edge coloring
algorithm colors the edges of Ga without any impasse, where in the edge-
coloring the order spiral chains is Sk, Sk−1, .... When we complete the coloring
of Ga for some spiral chain Sp we can continue in the same way for the other
edges of spiral chains in G as long as edges are not incident to the last vertex
of the spiral chain. Let v1v2 be the last edge of the spiral chain S1. In order
to complete the proof we have to give termination condition of the algorithm
for edge coloring of G with no more than ∆(G) colors. Since G is an maximal
planar graph with ∆(G) = 6, in the worst case (from the point of the spiral
edge coloring) we may assume that the degree of the first vertex v1 of S1 as
d(v1) = 6. We also assume that the vertices of the spiral-chains are ordered
from an outer-vertex towards inner vertices of G as V = {v1, v2, ..., vn}. That
is spiral-chains can be written as V (G) = S1(V1)∪S2(V2)∪ ...∪Sk(Vk),where
Si(Vi) 6= φ and S1(V1)∩S2(V2)∩ ...∩Sk(Vk) = φ. Clearly v1v2 is a spiral-chain
edge and v1vi, i = 3, 4, ..., 7 are non-spiral edges. Based on the configuration
at vertex v2 we consider the following:

Case 1. Configuration 〈βlβlβlαlγl〉 at the vertex v2 , with deg(v2) = 6.
Clearly since v2 is an outer-vertex all triangles of configurations at v2 must be
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Fig. 1.7. Termination of spiral chain edge coloring algorithm with respect to the
configuration at vertex v2.

lower triangles. The graph G with 〈βlβlβlαlγl〉 is shown in Fig.7(a) together
with an proper edge-coloring with χ′(G) = 6. Spiral chain coloring works
without any impasse up to the vertex v3. Cyclic coloring of the edges incident
to vertex v4 cannot be possible for the edge as c(v4v2) = 6 since v9v2 has
already been colored as c(v9v2) = 6 before. Cyclic one step shift of the colors
2, 3, 6 respectively on the edges v4v3, v4v2, v4v1 resolves this impasse. That
is c(v4v3) = 2, c(v4v2) = 3, c(v4v1) = 6. Then we can put c(v3v2) = 4 and
c(v2v1) = 1 and complete spiral edge coloring of G.

Case 2. Configuration 〈βlβlβlβlβl〉 at the vertex v2,with deg(v2) = 6.The
graph G with 〈βlβlβlβlβl〉 is shown in Fig. 7(b) together with an proper
edge-coloring with χ′(G) = 6. In this configuration spiral chain edge coloring
algorithm faces with the impasse at the last edge v2v1. That is we cannot
assign c(v2v1) 6= 1 since c(v2v7) = 1. But we then have (4, 1)−Kempe chain
(v2, v7, v9, v8). So we can re-color edges of this Kempe-chain as c(v2v7) =
4, c(v7v9) = 1, c(v9v8) = 4 and open room for the edge v2v1 to be colored as
c(v2v1) = 1.

Case 3. Configuration 〈βlβlβlβl〉 at the vertex v2, with deg(v2) = 5.
Similar to the Case 1 above (see Fig.7(c)).

Case 4. Configuration 〈βlβlβl〉 at the vertex v2, with deg(v2) = 4. Similar
to the Case 2 above (see Fig.7(d)).
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Therefore combining the result that χ′(G) = ∆(G) if G is simple, planar
and ∆(G) ≥ 7 (Vizing 1965 and Sanders and Zhao 2001) and Theorem 6
above we can write:

Theorem 4. Planar graph G with ∆(G) ≥ 6 is a Class 1.

Fig. 10 illustrates spiral edge coloring algorithm for an maximal planar
graph G with 12 vertices. Increasing vertex numbers indicate the spi-
ral chain. Therefore edge coloring starts from the first edge (v12v11) and
assign colors C = {c1, c2, c3, c4, c5, c6} as cyclically in the counterclock-
wise direction and continue in this way for the other spiral chain edges
(v11v10), (v10v9), ...., (v2v1). In the figure we have shown colors as red, yellow,
green, light-blue, blue and pink where color red has the highest and color pink
has the lowest priority in the cyclic assignment of the colors. Since degree of
vertex deg(v2) = 4 < ∆(G), configuration at v2 would not create any impasse
that would otherwise require Kempe-chain switching in order to resolve the
impasse. Hence spiral edge-coloring confirms that χ′(G) = ∆ for ∆(G) = 6.

1.4 Total and Entire Coloring

It is easy to reach the conclusion that chromatic number in the vertex coloring
of a graph is related with the maximum size of complete graph minor e.g.,
Hadwiger Conjecture and chromatic index in the edge coloring of a graph is
related with the maximum vertex degree. In the total coloring in which ver-
tices and edges of a graph simultaneously colored and in the entire coloring of
a planar graph in which vertex, edge and faces simultaneously colored, chro-
matic numbers are related mainly with the maximum vertex degree. But as
the total and entire colorings of K4 in Fig. 8 shows vertex colors are dominant
over edge and face colors in the process of finding exact colorings. Let us use
the terminology used in [22]; denote the vertex, edge, and face sets of G by
V (G), E(G), and F (G), respectively. An total coloring of G (where G may
not be a planar graph) is a function assigning values (colors) to the elements
of V (G) ∪ E(G) and an entire coloring of G (here G is necessarily an (plane)
planar graph) is a function assigning values to elements V (G)∪E(G)∪F (G)
in such a way that any two distinct adjacent/incident elements receive dis-
tinct colors. The total chromatic number χ(G) a graph G is the least number
of colors needed in any total coloring of G. Total coloring conjecture (Be-
hzad, Vizing) asserts the total chromatic number of any graph is bounded by
χ(G) ≤ ∆(G)+2. Here we will be dealing with the open case of planar graphs
with maximum vertex degree ∆(G) = 6.

Let C = {c1, c2, ..., ck} = {1, 2, 3, ...., k} be the set of colors. We will
assume that in assigning an color to the element of a graph color ci has a
priority over color cj if i < j.

Denote by the sets Cv, Ce and Cf distinct colors used in the coloring
vertices, edges and faces of a graph G. For example for the colorings of K4 in
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Fig. 8(a) shows a total coloring of K4 with Ct
v = {1, 2, 3, 4} , Ct

e = {1, 2, 3, 4, 5}
and

Fig. 8(b) shows an entire coloring of K4 with Ce
v = {1, 5, 6, 7} , Ce

e =
{1, 2, 3} , Ce

f = {4, 5, 6, 7} where upper subscript denote type of the coloring
and lower subscript denotes type of the element in the graph G.

Note that we have Ce
v ∩ Ce

e = φ, Ce
f ∩ Ce

e = φ hence we may say that
for entire coloring of K4 edge colors have no influence on the vertex and face
colors.

3
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Fig. 1.8. Total and entire coloring of K4.

1.4.1 Spiral Chain Total Coloring

Kempe chain in an vertex (edge) coloring of a graph is in most general form
is connected two colored subgraph. When the vertices and edges are colored
as in total coloring we can talk about mixed Kempe chain.

Definition In an total coloring of G for two vertices v and u (u 6= v) if
the edges of an path P (v, u) ,between v and u colored by two colors ci and
cj and c(u) = cj we say the P (v, u) is a (mixed) m -Kempe chain if we have
forall w : (uw) ∈ E and c(w) 6= ci.

Algorithm 3.Spiral Total Coloring. Let C =
{

cv1, cv2, cv3, cv4, ce5, ce6, ...., ce(∆+2)

}

be the set of colors. Initially we intentionally reserve the first four colors for
the vertices and the other (∆ − 2) colors for the edges of G.

Step 1. Color the vertices of Ġ by using spiral chain vertex coloring algo-
rithm with the colors cv1, cv2, cv3, cv4.

Step 2. In this step we color the edges of G using spiral chain edge coloring
algorithm using the colors in the set C. While assigning an color to an edge
give always priority to low index color.

Step 3. If all edges of G colored with no more than ∆ + 2 colors termi-
nate edge-coloring algorithm. If the last edge of the spiral chain creates color
conflict then use m-Kempe switch to resolve the color conflict. This will be
explained in detail below.

Let (v1, v2, ..., vn) be the set of the vertices of a spiral chain S1 of G with
∆(G) = 6. If G has more than one spiral chains our argument valid for each
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spiral chains. It is easy to see that at Step 2 of the algorithm as long as we
color the edges incident to vertex vi, i > 2 i.e, internal vertex of the spiral
chain, since we have colored four edges form the subset of colors reserved
for the edges Ce =

{

ce5, ce6, ...., ce(∆+2)

}

of C and for the other two edges
incident vi from the subset of colors Cv = {cv1, cv2, cv3, cv4} which has been
used originally for the vertices of G. But when we arrive to color the last
spiral-chain edge (v2v1) if deg(v2) = ∆(G) we may have a situation that
c(v2v1) = c(v2vy) where edges incident vy has been handled before by the
algorithm. That is proper coloring of the edges incident to the last vertex
v1 of the spiral chain leads to color-conflict. In this case there must another
vertex vx (deg(vx) < 6) adjacent to v1 (that is (v1vx) is an non-spiral edge)
such that c(v1vx) = cei, i ∈ Ce and c(vx) = c(v2vy). Hence the four vertices
vy, v2, v1, vx form a m-Kempe chain. By performing m-Kempe-chain switching
we can recolor the edges and the vertex vx as:

c′(v2vy) = c(v2vy) = cvi

c′(v2v1) = c(v1vx) = cei

c′(v1vx) = c(vx)
c′(vx) = c(v1vx) = cei.
resolve the edge color conflict and complete total coloring of G with ∆+2

colors.
From the spiral chain edge and total coloring algorithms we have con-

tributed to the famous total coloring conjecture of Vizing and Behzad:

Theorem 5. The total chromatic number χ′(G) of planar graphs is χ′(G) ≤
∆(G) + 2.

For an illustration consider the total coloring of the graph in Fig.10. Al-
gorithm completes its vertex and edge coloring by assigning ”green” to the
first edge (v2v1) of the spiral chain. But we have c(v2v7) = c(v2v1). However
we have a m -Kempe chain v2, v1, v3. So we apply m-Kempe chain switch as
follows:

c(v2v1) = ”pink” =⇒ c∗(v2v1) = ”green”
c(v1v3) = ”green” =⇒ c∗(v1v3) = ”pink”
c(v3) = ”pink” =⇒ c∗(v3) = ”green”.
So edge color conflict resolved i.e., c(v2v7) 6= c∗(v2v1).

1.4.2 Spiral Chain Entire Coloring

Kronk and Mitchem have conjectured that any plane graph of maximum de-
gree ∆ can be colored entirely (simultaneous coloring of vertices, edges and
faces) with ∆(G) + 4 colors and showed that this true for ∆(G) = 3 [16].
Other results on this conjecture are first by Borodin for ∆(G) ≥ 12 and then
∆(G) ≥ 7 and finally improved to ∆(G) ≥ 6 by using discharging and non-
existence of an minimal counter example by Sanders and Zhao [21]. The cases
∆(G) ∈ {4, 5} remain undecided. Our solution to entire coloring of plane graph
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Fig. 1.9. Spiral chain edge-coloring of a graph with ∆ = 6.Increasing vertex num-
bers indicate the spiral chain. Increasing edge numbers indicate order of edge color-
ing.

is based on the algorithms given for total and vertex spiral chain coloring of
planar graphs and valid for ∆(G) ≥ 3.

Algorithm 4.

Step 1. Find total coloring of G by using spiral chain total coloring algo-
rithm.

Step 2. Find four coloring of the dual of G′ by using vertex spiral chain col-
oring algorithm. Use only the last four colors of the set C =

{

c1, c2, ..., c(∆+4)

}

.
The main theorem can be stated as:

Theorem 6. Every plane graph with maximum degree ∆ ≥ 3 is entirely (∆+
4)-colorable.

Fig. 11 illustrates the spiral-chain entire coloring algorithm.
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Fig. 1.10. Total coloring of an maximal planar graph with ∆(G) = 6.

1

6

11

10 12

9

7

2

8

3*

5

4

*

*

High 

piority

Low 

piority

g2g1 g3 g4

g1

g1

g2

g2

g2

g2

g1

g3

g3

g1

g2
g3

g3
g2

g3

g2
g3

g2

g3

High 

piority

Low 

piority

g2

Fig. 1.11. Entire coloring of a planar graph.



1 SPIRAL CHAIN COLORING 19

1.5 Vertex Three-Colorability

1.5.1 Three color problem with triangles

Grünbaum has shown that planar graphs with at most three triangles are
3-colorable [26]. His conjecture that any planar graph having triangles apart
from each other at least distance d ≥ 1 are 3-colorable leads to series of
counterexample. Here distance d between the two triangles is the length of the
shortest path in the planar graph. Meinikov and Aksionov’s counterexample
shown in Figure 13 shows that for d ≥ 3 the graph G is not 3-colorable
[25],[38]. The reason for this impasse is the (R, Y )-Kempe chain (shown in
red dashed line) would not let us to change the only vertex colored in R to a
Y color, adjacent to the blue B colored vertex in the graph. But it is possible
to reach the same conclusion that graph shown in Figure 13 can only be four
colorable since it contains a unique K4 as a minor; hence by the settled part of
Hadwiger’s conjecture it is chromatic 4-critical. We have shown a four coloring
of G by using spiral chain coloring algorithm in which the last vertex colored
by the fourth color blue B.

S1

S3

S2

S4

S6

S5

Fig. 1.12. An example for the spiral chain solution of three-colorability.

In 1976 Steinberg conjectured that any planar graph without 4- and 5-
cycles is 3 colorable. In [21] we have given algorithmic proof to this conjecture
based again on spiral chains. Here for the sake of completeness we repeat
the algorithm which is exactly same in principle with the algorithms given in
this paper but the size of the color set is restricted to 3 i.e., C = {1, 2, 3} or
{G, Y, R}. Let us denote by G6, the class of planar graphs without cycles of
size from 4 to 6 and assume that for any vertex v ∈ V (G6) we have deg(v) ≥ 3.
That is forbidden subgraphs in G6 are C4, C5 and any two triangles (cycle of
length three) with an common edge. Assume that we have found all spiral
chains S1, S2, ..., Sk. Suppose that we have completed spiral chain coloring of
G6 with only using three colors (see [21]) and arrive at the last vertex v1 of
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Fig. 1.13. Meinikov-Aksionov’s counterexample.

the spiral chain S1. Now any vertex on the outer-cycle Co of G6 can be either
a vertex of an triangle or a non-triangle vertex. Let v1, v2, ...vk, k ≥ 6 be the
set of vertices of Co. Let (vivi+1) ∈ S1, i = 1, 2, ...., k − 1 and (v1vk) /∈ S1.Let
us call a ”gadget” to a subgraph consist of two triangles with an common
vertex. If k is even when vertices of Co must be colored alternatingly with G
and Y starting c(v1) = Y and if k is odd all vertices of Co again colored by G
and Y except the c(vk) = R. Let us consider a vertex u ∈ Co with c(u) = G. If
we would join u and v1 without violating the cycle-property of G6 and obtain
a new graph G′

6 then since now we have new spiral chain S′

1, the new outer-
cycle C′

o would be colored at most three colors. From this we conclude that a
possible counter-example to the spiral chain coloring algorithm is the one with
maximum degree at the first vertex v1of S1. That is to say that is there graph
G with an outer-cycle Co so that spiral chain coloring color vertices of Co with
three colors G, Y, R such that the last vertex v1 in the spiral chain forcibly
colored by B (see for example Fig. 2 of almost three colorable graph)? On
the other hand in G6 the outer-cycle vertices must be in the form of serially
connected gadgets or vertex of a cycle Ci such that |Ci| ≥ 6. It can be shown
that in this case Co can be colored with two colors and leaving room for the
vertex v1 to be colored with the third color.

Theorem 7. Planar graphs without 4 and 5 cycles are 3-colorable.

In [28] we investigate the 3-colorability problem of a planar graph in more
stronger way than the above theorem under the spiral chain coloring. In fact
if G has a certain type of (γ, β)-sequences then it is always possible to color
it with 3 colors by the spiral chains.

Planar graph shown in Fig.12 is taken from [27] and re-colored by the
spiral chain coloring algorithm.
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Fig. 1.14. Termination of spiral chain edge coloring algorithm with respect to the
configuration at vertex v2.

1.5.2 Grötzsch’s Theorem Re-visited

Although planar graphs without triangles have been shown to be 3-colorable
by H. Gröetzsch [23] in 1958, on going research is still underway on this
problem from the point of algorithmic complexity [35], simplification of the
proof [35],[39],[40] and various counterparts on the different surfaces [36],[37].
Best bound so far is O(nlogn) has been given by Kowalik [11]. In this section
we will give much simpler proof to this theorem with bound O(n) by the use of
spiral chain coloring algorithm [19]-[21],[28]. It is an easy fact that chromatic
number χ of a cycle C is 2 if |C| ≡ 0(mod2) and is 3 if |C| ≡ 1(mod2). Let
vx be a vertex of a cycle C and color the vertices as follow: (1) Start from
vertex vx and color the vertices of C in clockwise direction with the sequence
of colors 1, 3, 1, 3, .... (2) Start from vertex vx and color the vertices of C in
counter clockwise direction with the sequence of colors 1, 2, 1, 2, .... If we start
coloring (1) and (2) at the same time we end up with a vertex vy ∈ C for which
c(vx′) = 2 or 3 if |C| ≡ 0(mod2). If |C| ≡ 3(mod4) the two sequences end up
at two adjacent vertices vy′ and vy′′ such that c(vy′) = 2 and c(vy′′) = 3. But
color conflict arises when |C| ≡ 1(mod4) such that c(vy′) = c(vy′′) = 1. This
simple observation has some importance when we dealing with the algorithmic
approaches e.g., spiral chain coloring to the planar graphs without triangles.

Spiral chains in G(⋫) We may assume that minimum vertex degree is δ ≥ 3
since degree-two vertex has no effect on the three-colorability of triangle-free
planar graph G(⋫). Our proof of Gröetzsch’s three color theorem is based on
the following two lemmas:
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Lemma 4. In any spiral chain decompostion of G(⋫) non-spiral edges form
a spanning union of cycles and trees.

Lemma 5. The number of third color (Red) used in the algorithm is at most
equal to the number of odd cycles in G(⋫).

Spiral-chain coloring algorithms Let C = G, Y, R be the set of three colors
green, yellow and red. In the algorithm color green (G) has a priority over
yellow (Y ) and red (R) and color yellow (Y ) has a priority over red (R). Let
S1, S2, ..., Sk be the set of spiral chains (assume all in clockwise directions)
of G(⋫). Here spiral chain (path) S1 is constructed from arbitrarily selected
vertex of the outer-cycle Co of G(⋫) and continue in clockwise direction se-
lecting all the vertices of Co and then continue same way to the other inner
vertices (see for the details [19]-[21],[28]).

Algorithm 5. Color the vertices of the set of spiral chains S = Sk, Sk−1, ..., S1

(ordered backward direction with respect of the construction of spiral chains)
using the colors of the set C. Coloring rule of a vertex v ∈ Si, 1 ≤ i ≤ k is ”use
high-priority color whenever possible”. If c(v) = R then use (R, G)-Kempe
chain switching or (R, Y )-Kempe chain switching using non-spiral-edges to
re-color vertex v as c′(v) = G or Y .

Proof. Since G(⋫) is triangle-free and spiral-chains in S are ordered
(shelling structure) from outer spiral-chain towards an inner spiral-chain we
can start coloring the innermost Sk with two colors G and Y . Suppose we have
arrived to coloring of a vertex v with v, u, w ∈ Sk such that (vu) ∈ E(Sk) and
(vw) ∈ E(Sk), where E(Sk) and E(Sk) are respectively the spiral-chain and
non-spiral-chain edge sets of Sk. If c(u) = Y and c(w) = G then use (G, R)-
Kempe chain switching starting from vertex w and go to inner colored region
of G(⋫). Hence we recolor v as c′(v) = G.If c(u) = G and c(w) = Y then use
(Y, R)-Kempe chain switching starting from vertex w and go to inner colored
region of G(⋫). Hence we recolor v as c′(v) = Y . In both cases we avoid
of coloring current vertex v by R. This means that it is possible for a full
revolution of spiral-chain Sk (called spiral-segment in [19]) all vertices can be
colored by G and Y . It is clear that we can repeat the above argument for
other spiral chains. That is all red colored vertices which are unavoidable for
odd cycles (by Lemma 5) are pushed into the inner spiral segments vertices
of G(⋫). Let v1 is last vertex of S1(first vertex in the construction of spiral
chains). By the use of Kempe-chain switching for the outer spiral segment of
S1 in worst situation we color c(v1) = R. Hence G(⋫) is 3-colorable.

Algorithm 6. Let S = Sk, Sk−1, ..., S1 be the set of spiral chains of G(⋫).
Let F = Tp, Tp−1, ..., T1 be the forest of the set of trees formed by the non-
spiral edges of G(⋫). Color the vertices of trees in F with green (G) and yellow
(Y ). If v ∈ Ti, u ∈ Tj, w ∈ Tk, i 6= j 6= k with (vu), (vw) ∈ E(Sl), 1 ≤ l ≤ k
such that c(u) = G and c(w) = Y then color v as c(v) = R.

Proof.Let E(Si) and E(Si), i = 1, 2, ..., k respectively be the sets of spi-
ral and non-spiral edge sets of G(⋫). It is not difficult to see that since

deg(v) ≥ 3 for all v ∈ V (G(⋫)), F =
⋃k

i=1 E(Si) is a disjoint union of
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trees. Denote these trees by the set F = Tp, Tp−1, ..., T1 which is a spanning
forest of G(⋫). That is we have V (Tp)

⋃

V (Tp−1)
⋃

...
⋃

V (T1) = V (G(⋫) and
V (Tp)

⋂

V (Tp−1)
⋂

...
⋂

V (T1) = ∅. Since a tree is also a bipartite graph its
chromatic number is two. Therefore we color vertices of each tree Ti ∈ F
with colors G and Y . Then we re-color arbitrarily one of the vertex to
red R of all monochromatic (both green G or both yellow Y ) vertex-pairs
(uv) ∈ E(Sp), 1 ≤ p ≤ k, u ∈ Ti and v ∈ Tj, i 6= j i.e, c(u) = c(v) = G or
Y ⇒ c′(u) = G and c′(v) = R. This results a 3-coloring of G(⋫).

Theorem 8. Spiral chain coloring algorithms 5 and 6 color any triangle-free
planar graph G(⋫) with three colors.

START 

SPIRAL

END 

SPIRAL

START 

COLORING

END

COLORING

Fig. 1.15. Three coloring of a triangle-free planar graph by Algorithm 6.

Figure 1.14 illustrates the algorithms given above for three parallel spi-
ral chains Si+1(upper-spiral-chain), Si (middle-spiral-chain) and Si−1 (lower-
spiral-chain). We have also shown 3-coloring of the trees of the non-spiral
edges. In Fig. 2.15 we have illustrated spiral chain coloring algorithm for a
triangle-free planar graph for which non-spiral edges induce two cycles of
length 6 and trees . Bold lines indicate spiral edges while thin dashed lines
indicate non-spiral edges. In the graph there are two spiral chains S1 and S2.

1.6 Concluding Remarks

In this paper we have given solutions to several planar graph coloring conjec-
tures with the use of spiral chains. The author’s 2004 algorithmic spiral-chain
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coloring proof of the famous four color theorem opens new avenues to the
other graph coloring problems [19].

The natural question is this : ”Why spiral-chain makes the solution of the
problem so easy?” Our answer to this question are several folded. Firstly there
is a famous conjecture from the complexity theory that whether P is equal
NP or not. It is well known result that if a problem in the class NP has been
shown to be in P then all other problems in the NP class would have efficient
solutions. Similarly we can say that many problems related with the graphs,
particularly planar graphs, would have simple solutions if all of these graphs
have Hamiltonian cycles or paths. But we know that some of graphs are not
Hamiltonian and in fact finding one in a giving graph is not easy. Hamilton
path problem is difficult but the algorithmic answer of finding spiral-chain in
graph is almost trivially very easy. Moreover we can easily decided when and
how the graph has more than one spiral chains. Therefore spiral chain would
act as navigator and paths decomposition in the graph coloring for us to reach
the solution. In other words spiral chain is a road-map for efficient coloring
algorithm.

Secondly the use of the spiral-chain reduces the number of the cases consid-
erably in the proof. Many other proof methods in the graph coloring theorems
are to show nonexistence of minimal counter-examples. But this in most of the
times is a very complex task and sometimes we need to investigate case-by-
case by only using a computer. Just consider how the possible impasse in the
spiral chain proof of the four color theorem is ruled out by re-coloring certain
vertex pair in the ”sailing boat” subgraph of the maximal planar graph.

I think the third one is the most important. Suppose we start to color
the vertices of a planar graph by using spiral chain then you cannot say
beforehand whether this process partitioned the graph into, say two parts at
the end. Lastly when we color a vertex in the spiral chain we are sure that we
will consider another vertex later on that adjacent to the previously colored
vertex. That is the main idea that prevents us to fall into the troubles like
one of the most elegant ”proof” in mathematics [14].

The next question about the use of spiral chains is the following:
How one can apply spiral chains to the coloring problems for non-planar

graphs? I think a well-defined spiral chains decomposition of a complete graph
may help to devise algorithmic solution to the Hadwiger’s conjecture [15]
which asserts that that every loopless graph not contractible to the complete
graph on t+1 vertices is t-colorable. When t = 3 this is easy, and when t = 4,
Wagner’s theorem of 1937 shows the conjecture to be equivalent to the four-
color conjecture (the 4CC)[42]. The case t = 5 it is also equivalent to the 4CC.
Without assuming the 4CC Robertson, Seymour and Thomas have shown that
every minimal counterexample to Hadwiger’s conjecture when t = 5 is apex,
that is, it consists of a planar graph with one additional vertex. Consequently,
the 4CC implies Hadwiger’s conjecture when t = 5, because it implies that
apex graphs are 5-colorable [43].
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