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Abstract

We study an optimal execution problem in a market model which considers market
impact. First we study a discrete-time model and describe a value function. Then,
by shortening the intervals of the execution times, we derive the value function of a
continuous-time model and study some of its properties (continuity, semi-group property
and viscosity property). We show that these vary with the strength of the market impact.
We introduce some examples which show that the forms of the optimal strategies change
completely, depending on the amount of the trader’s security holdings.

Keywords : Optimal execution, Market impact, Liquidity problems, Hamilton-Jacobi-
Bellman equation (HJB), Viscosity solutions

1 Introduction

An optimal portfolio management problem has been developed in [22], [23] and in other
papers. These classical financial theories assumed that assets in the market are perfectly
liquid. But in the real market we face various liquidity risks. For instance, the problem of
transaction costs and the uncertainty of trading.

Another important problem of liquidity is market impact (MI), that is, the effect of the
investment behaviour of traders on security prices. Such problems are often discussed in the
framework of optimal execution problems, where a trader has a certain amount of a security
holdings (shares of a security held) and tries to execute until the time horizon. The optimal
execution problem considering MI was first studied in [7] as a minimization problem of an
expected execution cost in a discrete-time model, and the model of [7] was generalized as a
mean-variance model in [4] and [15]. A continuous-time model of the execution problem was
studied in [13], [28], and [29] as a singular/impulse stochastic control problem. In [10], the
author also studied the continuous-time model in the framework of mean-variance analyses
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and gave a viscosity characterization of the corresponding value functions. An infinite time
horizon case is treated in [27]. The optimal execution problem in the limit-order-book (LOB)
model is also studied in [1], [2], [3], [11], [12], [26], etc.

Recently there have been various studies about the optimization problem with MI, but
the standard framework has not been fixed yet. In this paper, we try to construct such a
framework. We formulate the optimal execution problem in discrete-time, and then derive a
continuous-time model by taking the limit.

We mainly consider the case when the MI function is convex with respect to the execution
volume of a trader. Although some empirical studies tell us that the MI function is concave (see
[5] etc.), considering the effect of a convex MI is interesting and important in a theoretical
viewpoint. From the examples given later, we can observe the way MI affects a trader’s
execution policy.

This paper is organized as follows. In Section 2 we introduce our model. We formulate
mathematically a trader’s optimization problem in a discrete-time model, and give some as-
sumptions to derive the continuous-time model. In Section 3 we give our main results. We show
that the value functions in the discrete-time model converge to the one in the continuous-time
model. Then we study some properties of the continuous-time value function: continuity, the
semi-group property, and a characterization of it as a viscosity solution of a certain Hamilton-
Jacobi-Bellman (HJB) equation. Moreover we have the uniqueness result of the viscosity
solution of HJB when MI is strong (in a meaning to be discussed later). In Section 4 we also
consider a case where the trader needs to sell up their entire holdings of the security. We
show that such a sell-out condition does not influence the form of the continuous-time value
function in our model. In Section 5 we treat some examples of our model. We conclude this
paper in Section 6. In Section 7, we give the proofs of our results.

2 The Model

In this section we present the details of the model. Let (Ω,F , (Ft)0≤t≤T , P ) be a filtered
space which satisfies the usual condition (that is, (Ft)t is right-continuous and F0 contains all
P -null sets) and let (Bt)0≤t≤T be a standard one-dimensional (Ft)t-Brownian motion. Here
T > 0 means a time horizon. For simplicity we assume T = 1.

We suppose that the market consists of one risk-free asset (namely cash) and one risky
asset (namely security). The price of cash is always equal to 1, which means that a risk-free
rate is equal to zero. The price of a security fluctuates according to a certain stochastic flow,
and is influenced by the sales of a trader.

First we consider a discrete-time model with time interval 1/n. We consider a single trader
who has an endowment Φ0 > 0 shares of a security. This trader executes the shares Φ0 over a
time interval [0, 1], but his/her sales affect the price of a security. We assume that the trader
executes only at time 0, 1/n, . . . , (n− 1)/n for n ∈ N = {1, 2, 3, . . .}.

Now we describe the effect of the trader’s execution. For l = 0, . . . , n, we denote by Snl the
price of the security at time l/n and Xn

l = log Snl . Let s0 > 0 be an initial price (i.e., Sn0 = s0)
and Xn

0 = log s0. If the trader sells the amount ψnl at time l/n, the log-price changes to
Xn
l − gn(ψ

n
l ), where gn : [0,∞) −→ [0,∞) is a non-decreasing and continuously differentiable

function which satisfies gn(0) = 0, and he/she gets the amount of cash ψnl S
n
l exp(−gn(ψnl )) as

proceeds of the execution.
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After trading at time l/n, Xn
l+1 and Snl+1 are given by

Xn
l+1 = Y

( l + 1

n
;
l

n
,Xn

l − gn(ψ
n
l )
)
, Snl+1 = exp(Xn

l+1), (2.1)

where Y (t; r, x) is the solution of the following stochastic differential equation (SDE){
dY (t; r, x) = σ(Y (t; r, x))dBt + b(Y (t; r, x))dt, t ≥ r,
Y (r; r, x) = x

(2.2)

and b, σ : R −→ R are Borel functions. We assume that b and σ are bounded and Lipschitz
continuous. Then for each r ≥ 0 and x ∈ R there exists a unique solution of (2.2).

At the end of the time interval [0, 1], the trader has the amount of cashW n
n and the amount

of the security φnn, where

W n
l+1 = W n

l + ψnl S
n
l exp(−gn(ψnl )), φnl+1 = φnl − ψnl (2.3)

for l = 0, . . . , n − 1 and W n
0 = 0, φn0 = Φ0. We say that an execution strategy (ψnl )

n−1
l=0 is

admissible if (ψnl )l ∈ An
n(Φ0), where An

k(φ) is the set of strategies (ψnl )
k−1
l=0 such that ψnl is

Fl/n-measurable, ψnl ≥ 0 for each l = 0, . . . , k − 1, and
k−1∑
l=0

ψnl ≤ φ.

A trader whose execution strategy is in An
n(Φ0) is permitted to leave the unsold shares of

the security, and there will be no penalty if he/she cannot finish the liquidation until the time
horizon. In Section 4, we consider a case when the trader must finish the liquidation.

The trader’s problem is to choose an admissible strategy to maximize the expected utility

E[u(W
n
n , φ

n
n, S

n
n)], where u ∈ C is his/her utility function and C is the set of non-decreasing

continuous functions on D = R× [0,Φ0]× [0,∞) such that

u(w,φ, s) ≤ Cu(1 + w2 + s2)mu , (w,φ, s) ∈ D (2.4)

for some constants Cu > 0 and mu ∈ N (i.e., u has polynomial growth rate).
For k = 1, . . . , n, (w,φ, s) ∈ D and u ∈ C, we define the (discrete-time) value function

V n
k (w,φ, s;u) by

V n
k (w,φ, s;u) = sup

(ψn
l )

k−1
l=0 ∈An

k (φ)

E[u(W
n
k , φ

n
k , S

n
k )]

subject to (2.1) and (2.3) for l = 0, . . . , k− 1 and (W n
0 , φ

n
0 , S

n
0 ) = (w,φ, s). (For s = 0, we set

Snl ≡ 0). We denote such a triplet (W n
l , φ

n
l , S

n
l )
k
l=0 by Ξnk(w,φ, s; (ψ

n
l )l). For k = 0, we denote

V n
0 (w,φ, s;u) = u(w,φ, s). Then our problem is the same as V n

n (0,Φ0, s0;u). We consider the
limit of the value function V n

k (w,φ, s;u) as n→ ∞.
Let h : [0,∞) −→ [0,∞) be a non-decreasing continuous function. We introduce the

following condition.

[A] lim
n→∞

sup
ψ∈[0,Φ0]

∣∣∣ d
dψ

gn(ψ)− h(nψ)
∣∣∣ = 0.

Throughout this paper we always assume the above condition. Let g(ζ) =

∫ ζ

0

h(ζ ′)dζ ′ for

ζ ∈ [0,∞). Under condition [A], we see that εn −→ 0, where

εn = sup
ψ∈(0,Φ0]

∣∣∣gn(ψ)
ψ

− g(nψ)

nψ

∣∣∣. (2.5)
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Now we define the function which gives the limit of the discrete-time value functions. For
t ∈ [0, 1] and φ ∈ [0,Φ0] we denote by At(φ) the set of (Fr)0≤r≤t-progressively measurable

process (ζr)0≤r≤t such that ζr ≥ 0 for each r ∈ [0, t],

∫ t

0

ζrdr ≤ φ almost surely and sup
r,ω

ζr(ω) <

∞. For t ∈ [0, 1], (w,φ, s) ∈ D and u ∈ C, we define Vt(w,φ, s;u) by

Vt(w,φ, s;u) = sup
(ζr)r∈At(φ)

E[u(Wt, φt, St)]

subject to

dWr = ζrSrdr, dφr = −ζrdr, dSr = σ̂(Sr)dBr + b̂(Sr)dr − g(ζr)Srdr (2.6)

and (W0, φ0, S0) = (w,φ, s), where σ̂(s) = sσ(log s), b̂(s) = s{b(log s) + σ(log s)2/2}. When
s > 0, we obviously see that the process of the log-price of the security Xr = log Sr satisfies

dXr = σ(Xr)dBr + b(Xr)dr − g(ζr)dr. (2.7)

We denote such a triplet (Wr, φr, Sr)0≤r≤t by Ξt(w,φ, s; (ζr)r), and (Wr, φr, Xr)0≤r≤t by ΞXt (w,
φ, s; (ζr)r), respectively. We remark that V0(w,φ, s;u) = u(w,φ, s). We notice that Vt(w,φ, s;u)
<∞ for each t ∈ [0, 1] and (w,φ, s) ∈ D (see Lemma 6 in Section 7.1).

3 Main Results

In this section we present the main results of this paper. First we give the convergence
theorem for value functions.

Theorem 1. For each (w,φ, s) ∈ D, t ∈ [0, 1] and u ∈ C,

lim
n→∞

V n
[nt](w,φ, s;u) = Vt(w,φ, s;u), (3.1)

where [nt] is the greatest integer less than or equal to nt.

The proof is given in Section 7.2. Theorem 1 implies that an optimal execution problem
in a continuous-time model is derived as the limit of the ones in the discrete-time model. We
call Vt(w,φ, s;u) a continuous-time value function. We regard the stochastic processes (ζr)r
as the trader’s execution strategies. The value of ζr is the instantaneous sales (in other words,
execution speed) at time r.

As for the continuity of Vt(w,φ, s;u), we have the following theorem.

Theorem 2. Let u ∈ C.
(i) If h(∞) = ∞, then Vt(w,φ, s;u) is continuous in (t, w, φ, s) ∈ [0, 1]×D.
(ii) If h(∞) <∞, then Vt(w,φ, s;u) is continuous in (t, w, φ, s) ∈ (0, 1]×D and Vt(w,φ, s;u)
converges to Ju(w,φ, s) uniformly on any compact subset of D as t ↓ 0, where

Ju(w,φ, s) =


sup
ψ∈[0,φ]

u
(
w +

1− e−h(∞)ψ

h(∞)
s, φ− ψ, se−h(∞)ψ

)
(h(∞) > 0)

sup
ψ∈[0,φ]

u(w + ψs, φ− ψ, s) (h(∞) = 0).
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We will show Theorem 2 in Section 7.5. As we can see, continuity in t at the origin depends
on the state of the function h at infinity. When h(ζ) = ∞, MI is strong (g diverges rapidly)
enough to make a trader avoid to liquidate instantaneously: An optimal policy is “no-trading”
in an infinitesimal time, thus Vt converges to u as t ↓ 0. When h(∞) <∞, the value function
is not always continuous at t = 0 and has the right limit Ju(w,φ, s). In this case, MI is not
so strong and there is room for sucseeding liquidation in the infinitesimal time. The function
Ju(w,φ, s) corresponds the utility of the execution of the trader who sells a part of the shares
of a security ψ by dividing infinitely within an infinitely short time (enough to neglect the
fluctuation of the price of a security) and makes the amount φ− ψ remain i.e.

ζδr =
ψ

δ
1[0,δ](r), r ∈ [0, t] (δ ↓ 0). (3.2)

Such a strategy is also discussed in [21]. We remark that the form of Ju is strongly related to
Theorem 3 in [21] (see Theorem 8 Section 4 for more details). Also note that the condition
h(∞) = 0 corresponds to the classical case i.e. no MI model.

Next we study the semi-group property (Bellman principle) of the family of non-linear
operators corresponding with the continuous-time value function. We define an operator
Qt : C −→ C by Qtu(w,φ, s) = Vt(w,φ, s;u). Using Theorem 2 and Lemma 6 in Section 7.1,
we easily see that Qt is well-defined. Then we have the following.

Theorem 3. For each r, t ∈ [0, 1] with t + r ≤ 1, (w,φ, s) ∈ D and u ∈ C it holds that
Qt+ru(w,φ, s) = QtQru(w,φ, s).

The proof is in Section 7.4. Using Theorem 3, we can characterize the continuous-time
value function as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation
(HJB). Since the value functions are defined in a way that does not depend on Φ0, we can take it
that they are defined on an extended domain D̂ = R×[0,∞)×[0,∞). Let u(w,φ, s) : D̂ −→ R
be such that u is a non-decreasing continuous function which has polynomial growth rate with
respect to w,φ and s. We define a function F : S −→ [−∞,∞) by

F (z, p,X) = − sup
ζ≥0

{
1

2
σ̂(zs)

2Xss + b̂(zs)ps + ζ (zspw − pφ)− g(ζ)zsps

}
,

where S = U ×R3 × S3, U = D̂ \ ∂D̂, S3 is the space of symmetric matrices in R3 ⊗R3 and

z =

 zw
zφ
zs

 ∈ D, p =

 pw
pφ
ps

 ∈ R3, X =

 Xww Xwφ Xws

Xφw Xφφ Xφs

Xsw Xsφ Xss

 ∈ S3.

Although the function F may take the value −∞, we can define a viscosity solution of
the following Hamilton-Jacobi-Bellman equation (HJB) as usual (see [9], [19] and [24] for
instance):

∂

∂t
v + F (z,Dv,D2v) = 0 on (0, 1]× U, (3.3)

where D denotes the differential operator with respect to z = (w,φ, s). Here we remark that
(3.3) can be rewritten as

∂

∂t
v(t, w, φ, s)− sup

ζ≥0
L ζv(t, w, φ, s) = 0, (t, w, φ, s) ∈ (0, 1]× U, (3.4)
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where

L ζv(t, w, φ, s) =
1

2
σ̂(s)2

∂2

∂s2
v(t, w, φ, s) + b̂(s)

∂

∂s
v(t, w, φ, s)

+ζ
(
s
∂

∂w
v(t, w, φ, s)− ∂

∂φ
v(t, w, φ, s)

)
− g(ζ)s

∂

∂s
v(t, w, φ, s).

Now we state the following theorem which will be proved in Section 7.6.

Theorem 4. Assume that h is strictly increasing and h(∞) = ∞. Moreover we assume

lim inf
ε↓0

Vt(w,φ, s+ ε;u)− Vt(w,φ, s;u)

ε
> 0 (3.5)

for any t ∈ (0, 1] and (w,φ, s) ∈ U . Then Vt(w,φ, s;u) is a viscosity solution of (3.3).

Finally we give the uniqueness result of viscosity solutions of (3.4).

Theorem 5. Assume that σ̂ and b̂ are both Lipschitz continuous. Moreover we assume the
conditions in Theorem 4 and the growth condition lim inf

ζ→∞
(h(ζ)/ζ) = 0. If a polynomial growth

function v : [0, 1]×D̂ −→ R is a viscosity solution of (3.4) and satisfies the following boundary
conditions

v(0, w, φ, s) = u(w,φ, s), (w,φ, s) ∈ D̂,
v(t, w, 0, s) = E [u (w, 0, Z (t; 0, s))] , (t, w, s) ∈ [0, 1]× R× [0,∞),

v(t, w, φ, 0) = u(w,φ, 0), (t, w, φ) ∈ [0, 1]× R× [0,∞),
(3.6)

then Vt(w,φ, s;u) = v(t, w, φ, s), where

Z (t; r, s) = exp (Y (t; r, log s)) (s > 0), 0 (s = 0). (3.7)

The proof is in Section 7.7. In Section 5.2, we will present an example where the assump-
tions in Theorem 4 and Theorem 5 are fulfilled.

4 Sell-Out Condition

In this section we consider the optimal execution problem under the “sell-out condition.”
A trader has certain shares of a security at the initial time, and he/she must liquidate all
of them until the time horizon. Then the spaces of admissible strategies are reduced to the
following:

An,SO
k (φ) =

{
(ψnl )l ∈ An

k(φ) ;
k−1∑
l=0

ψnl = φ

}
,

ASO
t (φ) =

{
(ζr)r ∈ At(φ) ;

∫ t

0

ζrdr = φ

}
.
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Now we define value functions with the sell-out condition by

V n,SO
k (w,φ, s;U) = sup

(ψn
l )l∈A

n,SO
k (φ)

E[U(W
n
k )],

V SO
t (w,φ, s;U) = sup

(ζr)r∈ASO
t (φ)

E[U(Wt)]

for a continuous, non-decreasing and polynomial growth function U : R −→ R. Then we have
the following theorem.

Theorem 6. V SO
t (w,φ, s;U) = Vt(w,φ, s;u), where u(w,φ, s) = U(w).

Proof. The relation V SO
t (w,φ, s;U) ≤ Vt(w,φ, s;u) is trivial, so we will show only the as-

sertion V SO
t (w,φ, s;U) ≥ Vt(w,φ, s;u). Take any (ζr)r ∈ At(φ) and let (Wr, φr, Sr)r =

Ξ1(w,φ, s; (ζr)r). Moreover take any δ ∈ (0, t). We define an execution strategy (ζδr )r ∈
ASO
t (φ) by ζδr = ζr (r ∈ [0, t−δ]), φt−δ/δ (r ∈ (t−δ, t]). Let (W δ

r , φ
δ
r, S

δ
r )r = Ξ1(w,φ, s; (ζ

δ
r )r).

Then we have Wt−δ = W δ
t−δ ≤ W δ

t . Thus we get E[U(Wt−δ)] ≤ E[U(W
δ
t )] ≤ V SO

t (w,φ, s;U).
Letting δ ↓ 0, we have E[U(Wt)] ≤ V SO

t (w,φ, s;U) by using the monotone convergence theo-
rem. Since (ζr)r ∈ At(φ) is arbitrary, we obtain the assertion. ■

By Theorem 6, we see that the sell-out condition

∫ t

0

ζrdr = φ makes no change in the

(value of the) value function in a continuous-time model. Thus, although the value function
in a discrete-time model may depend on whether the sell-out condition is imposed or not, in
the continuous-time model we need not worry about such a condition.

Moreover we obtain the following theorem which is a similar result to Theorem 1.

Theorem 7. For each (w,φ, s) ∈ D

lim
n→∞

V n,SO
[nt] (w,φ, s;U) = V SO

t (w,φ, s;U) (= Vt(w,φ, s;U).)

Proof. We may assume t > 0. Wee see that for large n

V n
[nt]−1(w,φ, s;u) ≤ V n,SO

[nt] (w,φ, s;U) ≤ V n
[nt](w,φ, s;u). (4.1)

We notice that the first inequality of (4.1) is obtained since any strategy in An
[nt]−1(φ) can

always be extended to the one in ASO
[nt](φ) by liquidating all remaining inventory at the last

period. By similar arguments as in the proof of Theorem 1, we get

lim
n→∞

V n
[nt]−1(w,φ, s;u) = Vt−(w,φ, s;u), lim

n→∞
V n
[nt](w,φ, s;u) = Vt(w,φ, s;u).

(4.2)

By (4.1), (4.2) and Theorem 2, we get the assertion. ■

When g(ζ) is linear, we can apply the variable reduction method (9’)–(12’) in [21] (The
author thanks to Professor N.Touzi to point out this reference) to get the following.
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Theorem 8. Assume g(ζ) = αζ for α > 0.

(i) V SO
t (w,φ, s;U) = V

φ

t

(
w +

1− e−αφ

α
s, e−αφs;U

)
, where

V
φ

t (w̄, s̄;U) = sup
(φ̄r)r∈At(φ)

E[U(W̄t)]

s.t. dS̄r = S̄rb̄(S̄r + αφ̄r)dr + S̄rσ(S̄r + αφ̄r)dBr,

dW̄r =
eαφ̄r − 1

α
dS̄r,

S̄0 = s, W̄0 = w,

At(φ) =

{(
φ−

∫ r

0

ζvdv

)
0≤r≤t

; (ζr)0≤r≤t ∈ ASO
t (φ)

}

and b̄(x) = b(x) + σ(x)2/2.
(ii) If U is concave and b̄ ≤ 0, then

V SO
t (w,φ, s;U) = U

(
w +

1− e−αφ

α
s

)
. (4.3)

The proof is in Section 7.9. We notice that the assertion (ii) is the same as Theorem 3
in [21] and in this case we can get the explicit form of the value function. The right-hand
side of (4.3) is equal to Ju(w,φ, s) for u(w,φ, s) = U(w) and the nearly optimal strategy for
V SO
t (w,φ, s;U) = Vt(w,φ, s;u) is given by (3.2).

5 Examples

In this section we consider two examples of our model. Let b(x) ≡ −µ and σ(x) ≡ σ for
some constants µ, σ ≥ 0 and suppose µ̃ = µ − σ2/2 > 0. We assume that a trader has a
risk-neutral utility function u(w,φ, s) = uRN(w,φ, s) = w. We remark that we can replace
the stochastic control problem Vt(w,φ, s;uRN) with the deterministic control problem f(t, φ),
where

f(t, φ) = sup
(ζr)r∈Adet

t (φ)

f̃(t, φ; (ζr)r),

f̃(t, φ; (ζr)r) =

∫ t

0

ζr exp

(
−µ̃r −

∫ r

0

g(ζv)dv

)
dr,

Adet
t (φ) = {(ζr)r ∈ At(φ) ; (ζr)r is deterministic}.

Indeed we have the following.

Proposition 1. Vt(w,φ, s;uRN) = w + sf(t, φ).

This is proved in Section 7.8. By Proposition 1, we see that

∂

∂s
Vt(w,φ, s;uRN) = f(t, φ) > 0, t, φ > 0.
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5.1 Log-Linear Impact

Set g(ζ) = αζ for α > 0. The following theorem is a direct consequence of Theorem 8(ii).

Theorem 9. It holds that

Vt(w,φ, s;uRN) = w +
1− e−αφ

α
s (5.1)

for each t ∈ (0, 1] and (w,φ, s) ∈ D.

The right-hand side of (9) converges to w + φs as α ↓ 0, which is the profit gained by
choosing the execution strategy of so-called block liquidation such that the trader sells all
shares φ at t = 0 when there is no market impact. Theorem 9 implies that the optimal
strategy in this case is to execute all shares dividing infinitely within an infinitely short time
at t = 0. This is almost the same as a block liquidation at the initial time, and the trader
does not delay the execution time (although MI lowers the profit of the execution). Therefore
we cannot see the essential influence of the MI in this example.

5.2 Log-Quadratic Impact

In this subsection we consider the case of a strictly convex MI function. Set g(ζ) = αζ2

for α > 0. We remark that the continuous-time value function in this example is the unique
viscosity solution of (3.3) with boundary conditions (3.6).

As we will see, we can derive the explicit form of an optimal strategy. However, when φ
is not so small, such a strategy has in fact unbounded execution speed and is not subject to
At(φ). Thus we extend the set of admissible strategies such that

Ãt(φ) =
{
(ζr)0≤r≤t ; (Fr)r-adapted, ζr ≥ 0,

∫ t

0

ζrdr ≤ φ

and sup
(r,ω)∈[0,t−ε]×Ω

ζr(ω) <∞ for all ε ∈ (0, t)
}
,

Ãdet
t (φ) = {(ζr)r ∈ Ãt(φ) ; (ζr)r is deterministic}.

to allow unbounded execution speed at t. We see that the values of Vt(w,φ, s;uRN) and f(t, φ)
do not change by replacing At(φ) with Ãdet

t (φ). Indeed, for each (ζr)r ∈ Ãdet
t (φ), we have

f̃(t, φ; (ζr)r) = lim
ε→0

f̃(t− ε, φ; (ζr)r)

≤ lim
ε→0

f(t− ε, φ) = f(t, φ) (5.2)

by virtue of the dominated convergence theorem, so we get

f(t, φ) = sup
(ζr)r∈Ãdet

t (φ)

f̃(t, φ; (ζr)r).

We define functions v̂i(t, w, φ, s) and ζ̂ it , i = 1, 2, by

v̂1(t, w, φ, s) = w +
s
√
1− e−2µ̃t

2
√
αµ̃

, ζ̂1t =

√
µ̃

α(1− e−2µ̃(t−r))

9



and

v̂2(t, w, φ, s) = w +
s

2
√
αµ̃

(1− e−2
√
αµ̃φ), ζ̂2t =

√
µ̃

α
1
[0,φ

√
α/µ̃]

(r).

Moreover we set

Φ̂1(t) =
arctanh

√
1− e−2µ̃t

√
αµ̃

, Φ̂2(t) =

√
µ̃

α
t.

Then we have the following.

Theorem 10.
(i) If φ ≥ Φ̂1(t), then Vt(w,φ, s;uRN) = v̂1(t, w, φ, s) and (ζ̂1r )r is an optimal strategy.
(ii) If φ ≤ Φ̂2(t), then Vt(w,φ, s;uRN) = v̂2(t, w, φ, s) and (ζ̂2r )r is an optimal strategy.

Proof. Let (Ŵ i
r , φ̂

i
r, Ŝ

i
r)r = Ξt(w,φ, s; (ζ̂

i
r)r) for i = 1, 2. A straight calculation shows that

E[Ŵ
i
t ] = v̂i(t, w, φ, s). Then we have v̂i(t, w, φ, s) ≤ Vt(w,φ, s;uRN). Since v̂

i satisfies (3.4) at
(t, w, φ, s), we see that v̂i(t, w, φ, s) ≥ Vt(w,φ, s;uRN) by Theorem 5.2.1 in [24]. Then we have
the assertions. ■

This theorem implies that the form of optimal strategies and value functions vary depending
on the amount of the security holdings φ. If a trader has a small amount of securities, then
we have case (ii) and the optimal strategy is to sell the entire holdings of the security until

the time φ
√
α/µ̃. If he/she has a large amount, then we have case (i) and the trader cannot

finish the selling.
We have not had an explicit form for Vt(w,φ, s;uRN) on a whole space. So we try to solve

this example numerically. V1(w,φ, s;uRN) is approximated by V n
n (w,φ, s;uRN) for enough

large n, and we can assume that the optimal strategy is deterministic. We can get the value of
V n
n (w,φ, s;uRN) numerically for finite n. Figure 1 describes the form of the execution strategies

and Figure 2 describes the form of the corresponding processes of the amount of a security
when we set n = 500, w = 0, s = 1, α = 0.01, µ̃ = 0.05, σ = 0 and φ = 1, 10 and 100. We also
get the form of the function f(t, φ) of Proposition 1 numerically, which is described in Figure

3. If a pair (t, φ) is in the range (a) of Figure 4, then we have f(t, φ) =
√

1− e−2µ̃t/(2
√
αµ̃),

and if (t, φ) is in the range (c), we have f(t, φ) = (1 − e−2
√
αµ̃φ)/(2

√
αµ̃). We have not had

the form of f(t, φ) analytically when (t, φ) is in the range (b).
We remark that in case (i) we can also construct a nearly optimal strategy with the sell-out

condition. Let ζ̂1,δr = ζ̂1r (r ≤ t− δ), (φ− φ̂t−δ)/δ (t− δ < r ≤ t), where

φ̂t−δ =
arctanh

√
1− e−2µ̃t − arctanh

√
1− e−2µ̃δ

√
αµ̃

.

Then (ζ ,δr )r ∈ ASO
t (φ) and the corresponding expected profit E[Ŵ

δ
t ] converges to Vt(w,φ, s;uRN)

as δ → 0.

10
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Figure 1: The forms of optimal execution strategies (ζr)r. Horizontal axis is time r. The left
graph: φ = 1. The middle graph: φ = 10. The right graph: φ = 100. In the middle graph we
calculate (ζr)r numerically.
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Figure 2: The forms of the amount of security holdings (φr)r corresponding with optimal
strategies. Horizontal axis is time r. The left graph: φ = 1. The middle graph: φ = 10. The
right graph: φ = 100. In the middle graph we calculate (φr)r numerically.

6 Concluding Remarks

In this paper we studied the optimal execution problem when MI is considered. First we
formulated the discrete-time model and then took the limit. We showed that the discrete-time
value functions converge to the continuous-time value function.

We mainly treated the case when the MI function is convex. This is not only for mathemat-
ical reasons, but also from a financial viewpoint. In a Black-Scholes type market, an optimal
execution strategy of a risk-neutral trader is a block liquidation when there is no MI. As we
saw in Section 5, the form of the optimal strategy entirely changes when MI is (log-)quadratic.
In contrast, when MI is not convex, especially (log-)linear, then a trader’s optimal strategy is
almost block liquidation.

However, in the real market, many traders execute the selling in taking time in spite of
recognizing that the MI is concave. One of the reasons is that the trader may have a risk-averse
utility function. As another reason, we surmise that MI can be divided into two parts: perma-
nent impact and temporary impact (see [4] and [14]). As time passes, the temporary impact
disappears and the price once pushed down transitorily, recovers. Our examples treat perma-
nent impact only, but we can also consider temporary impact and price recovery effects. If the
process of security prices follows some mean-reverting process, such as an Ornstein-Uhlenbeck
process, then we may deal with the optimization problem with MI and price recovery. We
study such a case in [18].

It is also meaningful to characterize the continuous-time value function as the solution of
the corresponding HJB. We have shown that the value function is a viscosity solution under
some strong assumptions. Such assumptions would not be necessary if we considered only
bounded strategies, but the control region of our model is unbounded. We avoid this difficulty
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Figure 4: The region of pairs (t, φ). The region (a) (resp., (c)) corresponds to Theorem 10 (i)
(resp., (ii)).

by supposing (3.5).
In trading operations, a trader should execute while considering the fluctuation of the price

of other assets (e.g., rebalancing an index fund). In [16], a multi-dimensional version of this
model was studied to consider such a case. However, in the case of rebalancing, it is necessary
to consider not only selling but also buying securities. We should formulate such a model of
an optimal execution problem carefully to avoid the opportunity of a free-lunch when MI is
large.

The complete solution of our example in Section 5.2 is another remaining task. This is
a representative example where a trading policy is influenced vastly by MI, and it would be
interesting to solve this completely in future research.
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7 Proofs

7.1 Preliminaries

We introduce some lemmas which we use to prove our main results.

Lemma 1. For each m ∈ N there is a constant C > 0 depending only on b, σ and m such that

E[Ẑ(s)
m] ≤ Csm, where Ẑ(s) = sup

0≤t≤1
Z(t; 0, s).

Proof. We may assume s > 0. By the definition of Ẑ(s), we have

E[Ẑ(s)
m] ≤ sm E[ sup

t∈[0,1]
exp(Ỹt)],

where (Ỹt)t is given by

dỸt = mσ(Y (t; 0, log s))dBt +mb(Y (t; 0, log s))dt, Ỹ0 = 0.

Using Corollary 2.5.10 in [20] for the process (exp(Ỹt))t, we have the assertion. ■

Lemma 2. Let Γk, k ∈ N, be sets, u ∈ C and (W i
k,γ, φ

i
k,γ , S

i
k,γ) ∈ D, γ ∈ Γk, k ∈ N, i = 1, 2,

be random variables. Let mu ∈ N be as in (2.4). Suppose

lim
k→∞

sup
γ∈Γk

E[|W 1
k,γ −W 2

k,γ|+ |φ1
k,γ − φ2

k,γ|+ |S1
k,γ − S2

k,γ|] = 0

and
2∑
i=1

sup
k∈N

sup
γ∈Γk

E[(W
i
k,γ)

4mu + (Sik,γ)
4mu ] <∞. Then

lim
k→∞

sup
γ∈Γk

∣∣E[u(W 1
k,γ, φ

1
k,γ, S

1
k,γ)]− E[u(W

2
k,γ, φ

2
k,γ, S

2
k,γ)]

∣∣ = 0.

This lemma is obtained by standard arguments using the Chebyshev inequality and the
uniform continuity of u(w,φ, s) on DR for any R > 0, where DR = [−R,R]× [0,Φ0]× [0, R].

Lemma 3. Let 0 ≤ t0 ≤ · · · ≤ tk ≤ 1 and f : [0, 1] −→ [0,∞) be a Borel measurable function.
Suppose that f is continuous on [0, 1] \ {t0, . . . tk} and there is a Borel measurable function
γ : [0, 1] −→ [0,∞) and a constant β > 0 such that

f(t) ≤ γ(t) + β

∫ t

0

f(r)dr, t ∈ [0, 1].

Then

f(t) ≤ γ(t) + β

∫ t

0

γ(r)eβ(t−r)dr, t ∈ [0, 1].

Lemma 3 is obtained by applying the same arguments as in the proof of the Gronwall
inequality to f(t) on [0, tl], inductively in l.

Using the Burkholder-Davis-Gundy inequality and the Hölder inequality, we have the fol-
lowing lemma.
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Lemma 4. Let t ∈ [0, 1], φ ≥ 0, x ∈ R, (ζr)0≤r≤t ∈ At(φ) and let (Xr)0≤r≤t be given by (2.7)
with X0 = x. Then there is a constant C > 0 depending only on b and σ such that

E
[

sup
r∈[r0,r1]

∣∣∣Xr −Xr0 +

∫ r

r0

g(ζv)dv
∣∣∣4] ≤ C(r1 − r0)

2

for each 0 ≤ r0 ≤ r1 ≤ t.

Lemma 5. Let t ∈ [0, 1], φ ≥ 0, x ∈ R, (ζr)0≤r≤t, (ζ ′r)0≤r≤t ∈ At(φ) and let (Xr)0≤r≤t (resp.,
(X ′

r)0≤r≤t) be given by (2.7) with (ζr)r (resp., (ζ ′r)r) and X0 = x ≤ X ′
0. Suppose ζr ≤ ζ ′r for

each r ∈ [0, t] almost surely. Then Xr ≥ X ′
r for each r ∈ [0, t] almost surely. In particular we

have exp(Xr) ≤ Ẑ(ex).

This lemma is obtained by the same arguments as in the proof of Proposition 5.2.18 in
[17].

Lemma 1 and Lemma 5 imply the following.

Lemma 6. For n ∈ R, k = 0, . . . , n, t ∈ [0, 1] and u ∈ C, V n
k (w,φ, s;u) and Vt(w,φ, s;u)

are non-decreasing in w,φ and s, and have polynomial growth rate with respect to w and s.

By standard arguments, we obtain the next lemma.

Lemma 7. Let

qn(w,φ, s, ψ;u)

= E[u(w + (ψ ∧ φ)e−gn(ψ∧φ), φ− (ψ ∧ φ), Z(1/n; 0, se−gn(ψ∧φ)))]

for u ∈ C, where a ∧ b = min{a, b}. Then qn is continuous on D × [0,Φ0].

We remark that V n
1 (w,φ, s;u) = sup

ψ∈[0,Φ0]

qn(w,φ, s, ψ;u). By Lemma 6, Lemma 7 and the

arguments of the Bellman equation in discrete-time dynamic programming theory (see [6]),
V n
k (·;u) ∈ C.

7.2 Proof of Theorem 1

We divide the proof of Theorem 1 into the following two propositions.

Proposition 2. lim sup
n→∞

V n
[nt](w,φ, s;u) ≤ Vt(w,φ, s;u).

Proposition 3. lim inf
n→∞

V n
[nt](w,φ, s;u) ≥ Vt(w,φ, s;u).

Proof of Proposition 2. For brevity, we suppose t = 1. For u′ ∈ C and (w′, φ′, s′) ∈ D, let
ψ̂n(w

′, φ′, s′;u′) be an optimal strategy for the value function V n
1 (w

′, φ′, s′;u′). By Proposition
7.33 in [6], we can take ψ̂n(w

′, φ′, s′;u′) as a measurable function with respect to (w′, φ′, s′).
We define (ψnl )

n−1
l=0 ∈ An

n(φ) and (W n
l , φ

n
l , S

n
l )
n
l=0 by (W n

0 , φ
n
0 , S

n
0 ) = (w,φ, s), ψnl =

ψ̂n(W
n
l , φ

n
l , S

n
l ;V

n
n−l−1(·;u)) ∧ φnl , (2.1)–(2.3) inductively in l and let Xn

l = logSnl . We also
define a strategy (ζr)0≤r≤1 by ζr = nψn[nr]. Then (ζr)r ∈ A1(φ). Let (Wr, φr, Xr)0≤r≤1 =

ΞX1 (w,φ, s; (ζr)r).
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Step 1. First we show that there is a constant C∗ > 0 and a sequence (c∗n)n∈N ⊂ (0,∞)
with c∗n/n −→ 0 as n→ ∞ such that

gn(ψ
n
l ) ≤ C∗ ∧ (c∗nψ

n
l ), l = 0, . . . , n− 1.

If lim
ζ→∞

h(ζ) < ∞, the assertion is obvious. So we may assume h(∞) = ∞. Let fn(ψ) =

ψ
d

dψ
gn(ψ) and pn(ψ) = ψe−gn(ψ) for ψ ∈ [0,Φ0]. Then we have

d

dψ
pn(ψ) = e−gn(ψ)(1− fn(ψ)).

Put An = {ψ ∈ (0,Φ0] ; fn(ψ) = 1}. By [A] and the assumption h(∞) = ∞, we see that
An is not empty and the function pn(ψ) has a maximum at one of the points in An for large
enough n. We denote by ψ∗

n a point at which pn(ψ) has a maximum.
We see that pn(ψ) ≤ pn(ψ

∗
n) for ψ ∈ (ψ∗

n,Φ0] and that Lemma 5 implies that Y (t; r, x −
gn(ψ)) is non-increasing with respect to ψ. Moreover the function u(w,φ, s) is non-decreasing
in (w,φ, s). Thus ψ̂n(w,φ, s;u) ≤ ψ∗

n holds for large n. Then, by the definition of ψnl , we get

ψnl ≤ ψ∗
n, l = 0, . . . , n− 1 and n > n0 (7.1)

for some n0 ∈ N. Moreover [A] implies

nψ∗
n −→ ∞, n→ ∞. (7.2)

Indeed, if (7.2) does not hold, there is a constant M > 0 and a subsequence (nk)k ⊂ N such
that nkψ

∗
nk

≤M . Then we have

nk = nkfnk
(ψ∗

nk
) ≤ nkψ

∗
nk
(h(nkψ

∗
nk
) + ε′nk

) ≤M(h(M) + ε′nk
)

for each k, where ε′n = sup
ψ

∣∣∣∣dgndψ (ψ)− h(nψ)

∣∣∣∣. This is a contradiction.

Since h(ζ) is non-decreasing, we have

gn(ψ) ≤
∫ ψ

0

(h(nψ′) + ε′n)dψ
′ ≤

∫ ψ

0

(h(nψ∗
n) + ε′n)dψ

′

≤
( d

dψ
gn(ψ

∗
n) + 2ε′n

)
ψ =

( 1

ψ∗
n

+ 2ε′n

)
ψ, ψ ∈ [0, ψ∗

n] (7.3)

for each n ∈ N. Thus

gn(ψ) ≤ 1 + 2Φ0 sup
n′
ε′n′ , ψ ∈ [0, ψ∗

n]. (7.4)

By (7.1)–(7.4), we have the assertion by letting

C∗ = max
n≤n0

gn(Φ0) + 1 + 2Φ0 sup
n
ε′n, c∗n =

1

ψ∗
n

+ 2ε′n.
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Step 2. In this step we will show that

lim
n→∞

E[ max
k=0,...,n

|Xn
k −Xk/n|2] = 0. (7.5)

We define X̃n
r , r ∈ [0, 1], by

X̃n
r = Y

(
r;
k

n
,Xn

k − gn(ψ
n
k )
)
, r ∈

(k
n
,
k + 1

n

]
(7.6)

and X̃n
0 = log s. Then we see that X̃n

k/n = Xn
k for each k = 0, . . . , n and that X̃n

r satisfies

X̃n
r = log s+

∫ r

0

σ(X̃n
v )dBv +

∫ r

0

b(X̃n
v )dv −

cn(r)∑
k=0

gn(ψ
n
k ),

where cn(r) = [nr]− 1Z+(nr) and
−1∑
k=0

gn(ψ
n
k ) = 0.

Let ∆n
r = E

[
max

{
|X̃n

r′ −Xr′|2 ; r′ = 0,
1

n
, . . . ,

[nr]

n
, r
}]

. We have

∣∣∣ cn(r′)∑
k=0

gn(ψ
n
k )−

∫ r′

0

g(ζv)dv
∣∣∣ ≤

n−1∑
k=0

∣∣∣gn(ψnk )− 1

n
g(nψnk )

∣∣∣+ dn(r)gn(ψ
n
[nr])

for r′ = 0,
1

n
, . . . ,

[nr]

n
, r, where dn(r) = cn(r) + 1− nr. Then Step 1 implies

|X̃n
r′ −Xr′|2 ≤ 4

{∣∣∣ ∫ r′

0

(σ(Xv)− σ(X̃n
v ))dBv

∣∣∣2 + ∣∣∣ ∫ r′

0

(b(Xv)− b(X̃n
v ))dv

∣∣∣2
+
( n−1∑
k=0

∣∣∣gn(ψnk )− 1

n
g(nψnk )

∣∣∣)2

+ dn(r)
2gn(ψ

n
[nr])

2
}

≤ 4
{

sup
0≤v≤r

∣∣∣ ∫ v

0

(σ(Xv′)− σ(X̃n
v′))dBv′

∣∣∣2 + sup
0≤v≤r

∣∣∣ ∫ v

0

(b(Xv′)− b(X̃n
v′))dv

′
∣∣∣2

+Φ2
0ε

2
n + C∗c∗ndn(r)

2ψn[nr]

}
for r′ = 0,

1

n
, . . . ,

[nr]

n
, r, where εn is defined by (2.5). Thus, using the Burkholder-Davis-

Gundy inequality and the Hölder inequality, we get

∆n
r ≤ C0

{
γn(r) + E

[ ∫ r

0

|X̃v −Xv|2dv
]}

≤ C0

{
γn(r) +

∫ r

0

∆n
vdv

}
for some constant C0 > 0, where γn(r) = Φ2

0ε
2
n + C∗c∗ndn(r)

2
E[ψ

n
[nr]]. Then Lemma 3 implies

∆n
r ≤ C0γn(r) + C2

0

∫ r

0

γn(v)e
C0(r−v)dv.
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Since 0 ≤ dn(v) ≤ 1 for v ∈ [0, 1] and dn(1) = 0, we have

E[ max
k=0,...,n

|Xn
k −Xk/n|2] = ∆n

1 ≤ C1

{
Φ2

0ε
2
n +

∫ 1

0

γn(v)dv
}

≤ C1

{
2Φ2

0ε
2
n +

C∗c∗n
n

n−1∑
l=0

E[ψ
n
l ]
}
≤ C1

{
2Φ2

0ε
2
n +

Φ0C
∗c∗n
n

}
(7.7)

for some C1 > 0. By (2.5) and the assertion of Step 1, the right-hand side of (7.7) tends to
zero as n→ ∞. Then we have (7.5).

Step 3. Let W̃ n
n = w +

n−1∑
l=0

∫ (l+1)/n

l/n

nψnl exp(X
n
l − (nr − l)gn(ψ

n
l ))dr. From

|ex − ey| ≤
∫ 1

0

erxe(1−r)ydv|x− y| ≤ (ex + 1)(ey + 1)|x− y|, (7.8)

it follows that

|W̃ n
n −W1| ≤ Φ0(Ẑ(s) + 1)2 max

l=0,...,n−1
sup

r∈[l/n,(l+1)/n]

|Xn
l − (nr − l)gn(ψ

n
l )−Xr|.

Since

|Xn
l − (nr − l)gn(ψ

n
l )−Xr|

≤
∣∣∣Xr −Xl/n +

∫ r

l/n

g(ζv)dv
∣∣∣+ |Xn

l −Xl/n|+ (nr − l)εnψ
n
l

for each l = 0, . . . , n− 1 and r ∈ [l/n, (l + 1)/n], by virtue of Lemma 4, we have

E[ max
l=0,...,n−1

sup
r∈[l/n,(l+1)/n]

|Xn
l − (nr − l)gn(ψ

n
l )−Xr|2]1/2

≤
{ n−1∑

l=0

E
[

sup
r∈[l/n,(l+1)/n]

∣∣∣Xr −Xl/n +

∫ r

l/n

g(ζv)dv
∣∣∣4]}1/4

+ δn + Φ0εn

≤ C0 ×
1

n1/4
+ δn + Φ0εn (7.9)

for some C0 > 0, where δn = E[ max
k=0,...,n

|Xn
k −Xk/n|2]1/2. Thus

E[|W̃ n
n −W1|] ≤ Φ0 E[(Ẑ(s) + 1)4]1/2δ̃n ≤ C1δ̃n (7.10)

for some C1 > 0, where δ̃n is a right-hand side of (7.9).
On the other hand we have

E[|Snn − exp(X1)|] ≤ E[(Ẑ(s) + 1)4]1/2 E[|Xn
n −X1|2]1/2 ≤ C2δn (7.11)

for some C2 > 0. Since Step 2 implies that δn and δ̃n converge to zero as n → ∞, by (7.10),
(7.11) and Lemma 1, we can apply Lemma 2 and then we obtain

lim
n→∞

∣∣E[u(W̃ n
n , φ

n
n, S

n
n)]− E[u(W1, φ1, exp(X1))]

∣∣ = 0. (7.12)
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Since u is non-decreasing in w and W̃ n
n ≥ W n

n , we have

V n
n (w,φ, s;u)− V1(w,φ, s;u) ≤ E[u(W

n
n , φ

n
n, S

n
n)]− E[u(W1, φ1, exp(X1))]

≤ E[u(W̃
n
n , φ

n
n, S

n
n)]− E[u(W1, φ1, exp(X1))]. (7.13)

Now the assertion of Proposition 2 is given by (7.12) and (7.13).

Proof of Proposition 3. Again we suppose t = 1. Take any (ζr)0≤r≤1 ∈ A1(φ) and

let ψnl =

∫ l/n

((l−1)/n)∨0
ζrdr, where a ∨ b = max{a, b}. Then we have (ψnl )l ∈ An

n(φ). Let

(Wr, φr, Xr)0≤r≤1 = ΞX1 (w,φ, s; (ζr)r) and (W n
l , φ

n
l , S

n
l )
n
l=0 = Ξnn(w,φ, s; (ψ

n
l )l) and Xn

l =
logSnl .

Step 1. First we will show that

E[ max
k=0,...,n

|Xn
k −Xk/n|2] −→ 0, n→ ∞. (7.14)

Define X̃n
r by (7.6) and let ∆̃n

r = E[ sup
0≤r′≤r

|X̃n
r′ −Xr′ |2]. By a similar calculation as in the

proof of Step 2 of Proposition 2, we get

E[ max
k=0,...,n

|Xn
k −Xk/n|2] ≤ ∆̃n

1 ≤ C0zn

for some C0 > 0 depending only on b and σ, where

zn = Φ2
0ε

2
n +

M2

n2
+ E

[ ∫ 1

0

|Gn(v)|2dv
]
, M = g

(
sup
r,ω

ζr(ω)
)
,

Gn(v) = g
(
n

∫ ([nv]+1)/n

[nv]/n

ζv′dv
′
)
− g(ζv).

Here |Gn(r, ω)| ≤ 2M and Lebesgue’s differentiation theorem impliesGn(v, ω) −→ 0 as n→ ∞
for almost all (v, ω) ∈ [0, 1] × Ω. Then, using the dominated convergence theorem, we have
zn −→ 0 as n→ ∞. Then we obtain (7.14).

Step 2. Let Ŵ n
1 = w +

n−1∑
l=0

ψnl n

∫ (l+1)/n

l/n

exp(Xr)dr. Then we have

E[|Ŵ n
1 −W1|]

≤ E
[ n−2∑
l=0

∫ (l+1)/n

l/n

∣∣∣ exp(Xr+1/n)n

∫ (l+1)/n

l/n

ζvdv − exp(Xr)ζr

∣∣∣dr]
+E

[ ∫ 1

(n−1)/n

exp(Xr)ζrdr
]

≤ C0

{
Φ0 E[ sup

v∈[0,1−1/n]

|Xv+1/n −Xv|2]1/2 +Kn +
1

n

}
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for some C0 > 0 depending only on b, σ, (ζr)r and s, where

Kn =
(∫ 1

0
E[|Hn(r)|2]dr

)1/2

, Hn(r) = n

∫ ([nr]+1)/n

[nr]/n

ζvdv − ζr.

By Lemma 4, we have

E[ sup
v∈[0,1−1/n]

|Xv+1/n −Xv|2]1/2 ≤ C2 ×
1√
n
+
M

n

for some C2 > 0. Lebesgue’s differentiation theorem and the dominated convergence theorem
imply Kn −→ 0. Then we obtain E[|Ŵ n

1 −W1|] −→ 0. On the other hand, a similar calculation
to Step 2 of the proof of Proposition 2 implies E[|W n

n −Ŵ n
1 |] −→ 0. Thus E[|W n

n −W n
1 |] −→ 0

converges. Moreover, by (7.14), we have E[|Snn − exp(X1)|] −→ 0. Then we can apply Lemma
2 and we get

E[u(W1, φ1, exp(X1))] = lim
n→∞

E[u(W
n
n , φ

n
n, S

n
n)] ≤ lim inf

n→∞
V n
n (w,φ, s;u).

Since (ζr)r ∈ A1(φ) is arbitrary, we obtain the assertion. ■
By Proposition 2 and Proposition 3, we obtain Theorem 1.

7.3 Strategy-Restricted Value Functions

In this subsection we prepare strategy-restricted value functions to prove Theorem 2 and
Theorem 3. For L > 0, we define

An,L
k (φ) = {(ψl)k−1

l=0 ∈ An
k(φ) ; ψl ≤ L/n, l = 0, . . . , k − 1},

AL
t (φ) = {(ζr)0≤r≤t ∈ At(φ) ; sup

r,ω
|ζr(ω)| ≤ L},

V n,L
k (w,φ, s;u) = sup

(ψl)
k−1
l=0 ∈An,L

k (φ)

E[u(W
n
k , φ

n
k , S

n
k )],

V L
t (w,φ, s;u) = sup

(ζr)r≤t∈AL
t (φ)

E[u(Wt, φt, St)].

We see easily that V n
k (w,φ, s;u) = sup

L>0
V n,L
k (w,φ, s;u) and Vt(w,φ, s;u) = sup

L>0
V L
t (w,φ, s;u).

By similar arguments as in Section 7.2, we see that for each L > 0, (w,φ, s) ∈ D, t ∈ [0, 1]
and u ∈ C

lim
n→∞

V n,L
[nt] (w,φ, s;u) = V L

t (w,φ, s;u). (7.15)

Now we consider the continuity of V L
t (w,φ, s;u). Our purpose in this section is to prove

the following proposition.

Proposition 4. V L
t (w,φ, s;u) is continuous with respect to (t, w, φ, s) ∈ [0, 1]×D.

To prove Proposition 4, we will prove the following lemmas.
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Lemma 8. For each (w,φ, s) ∈ D and t ∈ [0, 1]

lim
(w′,φ′,s′)→(w,φ,s)

sup
L>0

|V L
t (w

′, φ′, s′;u)− V L
t (w,φ, s;u)| = 0.

Proof. Let R > 0 and (w,φ, s), (w′, φ′, s′) ∈ DR. We may assume s′ > 0. Take any (ζr)r≤t ∈

AL
t (φ). Let ρ = inf{r > 0 ;

∫ r

0

ζvdv > φ ∧ φ′} ∧ t and ζ ′r = ζr1{r≤ρ}. Then (ζ ′r)r≤t ∈ AL
t (φ

′).

Let (Wr, φr, Sr)r≤t = Ξt(w,φ, s; (ζr)r) and (W ′
r, φ

′
r, S

′
r)r≤t = Ξt(w

′, φ′, s′; (ζ ′r)r). Moreover let
us define (S̃ ′

r)r≤t by

dS̃ ′
r = σ̂(S̃ ′

r)dBr + b̂(S̃ ′
r)dr − g(ζr)S̃

′
rdr, S̃ ′

0 = s′.

Then Lemma 5 implies S ′
r ≥ S̃ ′

r for each r ∈ [0, t] almost surely. Thus

E[u(Wt, φt, St)]− Vt(w
′, φ′, s′;u) ≤ E[|u(Wt, φt, St)− u(W ′

t , φ
′
t, S̃

′
t)|]. (7.16)

By a simple calculation we get

|Wt −W ′
t | ≤ |w − w′|+ Ẑ(s)|φ− φ′|+ Φ0 sup

r∈[0,t]
|Sr − S̃ ′

r|

and |φt − φ′
t| ≤ |φ− φ′|. Moreover Theorem 3.2.7 in [24] and Lemma 1 imply

E[ sup
r∈[0,t]

|Sr − S̃ ′
r|] ≤

{
C0s

′ (s = 0)
C0| log s− log s′| (s > 0)

for some C0 > 0 depending only on b, σ and R. Then we obtain

sup
L>0

sup
(ζr)r∈AL

t (φ)

E[|u(Wt, φt, St)− u(W ′
t , φ

′
t, S̃

′
t)|] −→ 0 (7.17)

as (w′, φ′, s′) → (w,φ, s) by using Lemma 2. Then (7.16) and (7.17) imply

lim
(w′,φ′,s′)→(w,φ,s)

sup
L>0

(V L
t (w,φ, s;u)− V L

t (w′, φ′, s′;u)) ≤ 0.

A similar argument gives us

lim
(w′,φ′,s′)→(w,φ,s)

sup
L>0

(V L
t (w′, φ′, s′;u)− V L

t (w,φ, s;u)) ≤ 0.

So we get the assertions. ■

By Proposition 4, it follows that the convergence of (7.15) is uniform on any compact subset
of D for each fixed t (we remark that V n,L

k (w,φ, s;u) and V L
t (w,φ, s;u) are non-decreasing in

w,φ and s).

Lemma 9. For each compact set E ⊂ D,

lim sup
r↑t

sup
L>0

sup
(w,φ,s)∈E

(V L
r (w,φ, s;u)− V L

t (w,φ, s;u)) ≤ 0, t ∈ (0, 1],

lim sup
t↓r

sup
L>0

sup
(w,φ,s)∈E

(V L
r (w,φ, s;u)− V L

t (w,φ, s;u)) ≤ 0, r ∈ [0, 1).
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Proof. Let r, t ∈ [0, 1] with r < t. Lemma 2 and Lemma 4 imply

sup
L>0

sup
(w,φ,s)∈E

sup
(ζv)v∈AL

r (φ)
E[|u(Wr, φr, exp(Xr))]− u(W̃t, φ̃t, exp(X̃t))|] −→ 0

as r ↑ t and t ↓ r, where (Wv, φv, Xv)0≤v≤r = ΞXt (w,φ, s; (ζr)r),
(W̃v, φ̃v, X̃v)0≤v≤t = ΞXt (w,φ, s; (ζ̃r)r) and ζ̃v = ζv1[0,r](v). This implies the assertions. ■

Similar arguments give us the following lemma.

Lemma 10. For each L > 0 and compact set E ⊂ D,

lim sup
r↑t

sup
(w,φ,s)∈E

(V L
t (w,φ, s;u)− V L

r (w,φ, s;u)) ≤ 0, t ∈ (0, 1],

lim sup
t↓r

sup
(w,φ,s)∈E

(V L
t (w,φ, s;u)− V L

r (w,φ, s;u)) ≤ 0, r ∈ [0, 1).

By Lemmas 8–10, we obtain Proposition 4. We remark that Lemma 6 and Proposition 4
imply V L

t (·;u), Vt(·;u) ∈ C.

7.4 Proof of Theorem 3

In order to show Theorem 3, we define the operators QL
t : C −→ C and Qn,L

t : C −→ C by

QL
t u(w,φ, s) = V L

t (w,φ, s;u) and Qn,L
t u(w,φ, s) = V 2n,L

[2nt] u(w,φ, s). We see that QL
t and Qn,L

t

are also well-defined. First we will show

QL
t+ru(w,φ, s) = QL

t Q
L
r u(w,φ, s) (7.18)

for each t, r ∈ I with t + r ≤ 1, where I = {k/2l ; k, l ∈ Z+} ∩ [0, 1]. Let n ∈ N be large
enough so that 2nt, 2nr ∈ Z+. By the Bellman equation of the discrete-time case ([6]), we
have

Qn,L
t+ru(w,φ, s) = Qn,L

t Qn,L
r u(w,φ, s). (7.19)

By (7.15), we see that the left-hand side of (7.19) converges to that of (7.18) as n→ ∞ for each
t, r ∈ I. To see the convergence of the right-hand side, we prove the following proposition.

Proposition 5. Let un, u ∈ C be utility functions satisfying (2.4) for some Cu and mu.
Assume that un is converges to u uniformly on any compact subset of D as n→ ∞. Then

lim
n→∞

sup
k=0,...,n

|V n,L
k (w,φ, s;un)− V n,L

k (w,φ, s;u)| = 0, (w,φ, s) ∈ D.

Proof. Take any R > 0. Then we have

|V n,L
k (w,φ, s;un)− V n,L

k (w,φ, s;u)|
≤ sup

(ψn
l )l∈A

n,L
k (φ)

E [|un(W n
k , φ

n
k , S

n
k )− u(W n

k , φ
n
k , S

n
k )|]

≤ sup
(w′,φ′,s′)∈DR

|un(w′, φ′, s′)− u(w′, φ′, s′)|+ C0

R

by virtue of Lemma 1 and the Chebyshev inequality, where C0 > 0 depends only on b, σ, Cu,
mu and (w,φ, s). Now we easily see the assertion. ■
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Using Proposition 5 and the uniform convergence of (7.15) on any compact set, we see
that the right-hand side of (7.19) converges to that of (7.18). Moreover Proposition 4 implies
that (7.18) also holds for each t, r ∈ [0, 1]. Theorem 3 is obtained by (7.18), the relation
Qtu(w,φ, s) = sup

L>0
QL
t u(w,φ, s) and similar calculation to the proof of Proposition 4 in [25].

7.5 Proof of Theorem 2

In this section we give the proof of Theorem 2. First we consider the right-continuity at
t = 0 when h(∞) = ∞.

Lemma 11. Assume h(∞) = ∞. Then for each t ∈ [0, 1] and (ζr)0≤r≤t ∈ At(φ),∫ r

0

exp
(
−

∫ v

0

g(ζv′)dv
′
)
ζvdv ≤ ϕ(r), r ∈ [0, t],

where ϕ(r), r ∈ (0, 1], is a continuous function depending only on the function h(ζ) and Φ0

such that lim
r→0

ϕ(r) = 0.

Proof. Let πr =

∫ r

0

g(ζv)dv and τR = inf{v ∈ [r/2, r] ; πv > R} ∧ r for r ∈ (0, t] and R > 0.

Then we have∫ r

0

exp(−πv)ζvdv ≤
∫ τR

0

ζvdv +

∫ r

τR

e−Rζvdv ≤
∫ τR

0

ζvdv + Φ0e
−R

for r ∈ (0, t] and R > 0. Since g(ζ) is convex, the Jensen inequality implies∫ τR

0

ζvdv ≤ τRg
−1
(∫ 1

0

g(ζτRv)dv
)
≤ rg−1

(2
r

∫ τR

0

g(ζv)dv
)
≤ rg−1(2R/r),

where g−1(y) = inf{ζ ∈ [0,∞) ; g(ζ) = y}, y ≥ 0. The function g−1(y) is well-defined at any
y ≥ 0 and continuous for large y.

Let us define a function f(ζ), ζ ≥ 0, by f(ζ) = ζ
√
h(ζ/2). Then f(ζ) is continuous, strictly

increasing for large y and satisfies f(0) = 0 and lim
ζ→∞

f(ζ) = ∞. Thus f(ζ) has an inverse

function f−1(y) on [0,∞) such that f−1(0) = 0, lim
y→∞

f−1(y) = ∞ and f−1(y) is continuous for

large y. So we can define M(r) = f−1(1/r) and R(r) = rg(M(r))/2 for r ∈ (0, 1]. Then we
see that M(r), R(r) −→ ∞ as r → 0 and that

R(r) ≥ r

2

∫ M(r)

M(r)/2

h(ζ)dζ ≥ rM(r)h(M(r)/2)

4
=

√
h(M(r)/2)

4
−→ ∞

as r → 0. Moreover we have

rg−1(2R(r)/r) = rM(r) =
1√

h(M(r)/2)
−→ 0, r → 0.

Then the assertion holds by letting ϕ(r) = rg−1(2R(r)/r) + Φ0 exp(−R(r)). ■
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Proposition 6. Assume h(∞) = ∞. Then for each compact set E ⊂ D

lim
t↓0

sup
(w,φ,s)∈E

|Vt(w,φ, s;u)− u(w,φ, s)| = 0.

Proof. Take any t ∈ (0, 1). Let Ŝt = s exp
(
−
∫ t

0

g(ζv)dv
)
and (Wr, φr, Sr)0≤r≤t = Ξt(w,φ, s; (ζr)r).

Then we have

Vt(w,φ, s;u)− u(w,φ, s) ≤ sup
(ζr)r∈At(φ)

∣∣∣E[u(Wt, φt, St)]− E[u(w,φt, Ŝt)]
∣∣∣ (7.20)

by virtue of the relations φt ≤ φ and Ŝt ≤ s. Using Lemma 11, the Burkholder-Davis-Gundy
inequality and the Hölder inequality, we have E[|St − Ŝt|] ≤ C0st

1/2 and

E[|Wt − w|] ≤ sE
[ ∫ t

0

exp
(
−

∫ r

0

g(ζv)dv
)
ζrdr

]
+ E

[ ∫ t

0

|Sr − Ŝr|ζrdr
]

≤ sϕ(t) + C0Φ0st
1/2

for some C0 > 0 which is independent of t, w, φ, s and (ζr)r. Then, by (7.20) and Lemma 2, we
get lim sup

t↓0
sup

(w,φ,s)∈E
(Vt(w,φ, s;u)−u(w,φ, s)) ≤ 0. The inequality lim sup

t↓0
sup

(w,φ,s)∈E
(u(w,φ, s)−

Vt(w,φ, s;u)) ≤ 0 is obtained by Lemma 9. Then we have the assertion. ■

Next we consider the case of h(∞) <∞.

Proposition 7. Assume h(∞) <∞. Then for each compact set E ⊂ D

lim sup
t↓0

sup
(w,φ,s)∈E

(Vt(w,φ, s;u)− Ju(w,φ, s)) ≤ 0.

Proof. Take any t ∈ (0, 1) and (ζr)0≤r≤t ∈ At(φ). Let (Wr, φr, Xr)0≤r≤t = ΞXt (w,φ, s; (ζr)r).
Easily we have

lim
t↓0

sup
(w,φ,s)∈E

sup
(ζr)r∈At(φ)

∣∣∣E[u(Wt, φt, St)]

−E
[
u
(
w + s

∫ t

0

e−η̃rζrdr, φ− ηt, se
−η̃t

)]∣∣∣ = 0 (7.21)

by virtue of Lemma 2, where ηr =

∫ r

0

ζvdv and η̃r =

∫ r

0

g(ζv)dv.

Now we define

η̂r = 1(0,t](r)

∫ ηr

0

h(ζ ′/r)dζ ′, ŵt =

∫ ηt

0

exp

(
−
∫ p

0

h(ζ ′/t)dζ ′
)
dp.

Since g(ζ) is convex, the Jensen inequality implies η̃r ≥ rg(ηr/r) = η̂r and

ŵt ≥
∫ t

0

exp

(
−
∫ ηr

0

h(ζ ′/r)dζ ′
)
ζrdr ≥

∫ t

0

e−η̃rζrdr
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for r ∈ (0, t]. Moreover h(ζ) is non-decreasing in ζ and so is u(w,φ, s) in w. Thus we get

E
[
u
(
w + s

∫ t

0

e−η̃rζrdr, φ− ηt, se
−η̃t

)]
≤ E[u(w + sŵt, φ− ηt, se

−η̂t)]

for each (ζr)r ∈ At(φ). By this inequality and (7.21), we get

lim sup
t↓0

sup
(w,φ,s)∈E

(
Vt(w,φ, s;u)

− sup
(ζr)r∈At(φ)

E[u(w + sŵt, φ− ηt, se
−η̂t)]

)
≤ 0. (7.22)

Next let us define

ε̃t =

∫ Φ0

0

(h(∞)− h(ζ/t))dζ, F (ψ) =

∫ ψ

0

e−h(∞)pdp. (7.23)

Then we have |e−η̂t−e−h(∞)ηt | ≤ 4ε̃t and |ŵt−F (ηt)| ≤ 4Φ0ε̃t. Since the dominated convergence
theorem implies ε̃t −→ 0 as t ↓ 0, using Lemma 2, we get

lim
t↓0

sup
(w,φ,s)∈E

sup
(ζr)r∈At(φ)

∣∣E[u(w + sŵt, φ− ηt, s exp(−η̂t))]

−E[u(w + F (ηt)s, φ− ηt, se
−h(∞)ηt)]

∣∣ = 0.

By this and (7.22), we get the assertion. ■

Proposition 8. Assume h(∞) <∞. Then for each compact set E ⊂ D,

lim sup
t↓0

sup
(w,φ,s)∈E

(Ju(w,φ, s)− Vt(w,φ, s;u)) ≤ 0.

Proof. Let t ∈ (0, 1). For each (w,φ, s) ∈ E, take any ψ ∈ [0, φ] and define (ζr)0≤r≤t ∈ At(φ)
by ζr = ψ/t and (Wr, φr, Sr)0≤r≤t = Ξt(w,φ, s; (ζr)r). Similarly to the proof of Proposition 7,
we get

lim
t↓0

sup
(w,φ,s)∈E

sup
ψ∈[0,φ]

∣∣u(w + F (ψ)s, φ− ψ, se−h(∞)ψ)− E[u(Wt, φt, St)]
∣∣ = 0,

which implies our assertion. ■

Finally we consider the continuity with respect to t ∈ (0, 1].

Proposition 9. For each compact set E ⊂ D we have
(i) lim

t′↑t
sup

(w,φ,s)∈E
|Vt′(w,φ, s;u)− Vt(w,φ, s;u)| = 0, t ∈ (0, 1],

(ii) lim
t′↓t

sup
(w,φ,s)∈E

|Vt′(w,φ, s;u)− Vt(w,φ, s;u)| = 0, t ∈ (0, 1).

Proof. Lemma 9 implies

lim sup
t′↑t

sup
(w,φ,s)∈E

(Vt′(w,φ, s;u)− Vt(w,φ, s;u)) ≤ 0.
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By the following uniform convergence (which is given by Dini’s theorem)

lim
L→∞

sup
(w,φ,s)∈E

|V L
t (w,φ, s;u)− Vt(w,φ, s;u)| = 0

and Lemma 10, we have

lim sup
t′↑t

sup
(w,φ,s)∈E

(Vt(w,φ, s;u)− Vt′(w,φ, s;u)) ≤ 0.

Then we get the assertion (i).
Next we will check (ii). If h(∞) = ∞, this assertion holds by Proposition 6 and Theorem

3. So we may assume h(∞) <∞.
By Propositions 7–8 and Theorem 3, we get

lim
t′↓t

sup
(w,φ,s)∈E

|Vt′(w,φ, s;u)− JVt(w,φ, s;u)| = 0,

and obviously Vt(w,φ, s;u) ≤ JVt(w,φ, s;u). So it suffices to show

JVt(w,φ, s;u) ≤ Vt(w,φ, s;u), t > 0. (7.24)

Take any ψ ∈ [0, φ] and (ζr)0≤r≤t ∈ At(φ− ψ). Let δ ∈ (0, t) and define (ζ̃r)0≤r≤t ∈ At(φ)
by ζ̃r = (ψ/δ)1[0,δ](r) + ζr. Let (Wr, φr, Xr)0≤r≤t = ΞXt (w + F (ψ)s, φ − ψ, se−h(∞)ψ; (ζr)r)

and (W̃r, φ̃r, X̃r)0≤r≤t = ΞXt (w,φ, s; (ζ̃r)r), where F (x) is given by (7.23). Then we have for
r ∈ [δ, t]

X̃r −Xr =

∫ r

0

(σ(X̃v)− σ(Xv))dBv +

∫ r

0

(b(X̃v)− b(Xv))dv + eδ,

where

eδ = h(∞)ψ −
∫ δ

0

(g(ζ̃v)− g(ζv))dv =
1

δ

∫ δ

0

∫ ψ

0

(
h(∞)− h

(
ζ ′

δ
+ ζv

))
dζ ′dv.

Using the Burkholder-Davis-Gundy inequality and the Hölder inequality, we get

E[ sup
v∈[δ,r]

|X̃v −Xv|2] ≤ C0

{∫ r

0
E[|X̃v −Xv|2]dv + E[eδ]

}
≤ C0

{∫ r

δ
E[|X̃v −Xv|2]dv + 2

∫ δ

0
E[|X̃v|2 + |Xv|2]dv + E[eδ]

}
≤ C1

{∫ r

δ
E[ sup

v′∈[δ,v]
|X̃v′ −Xv′|2]dv + δ + E[eδ]

}
, r ∈ [δ, t]

for some C0, C1 > 0 depending only on b, σ and E. So the Gronwall inequality implies

E[ sup
r∈[δ,t]

|X̃r −Xr|2] ≤ C1

{
δ + E[eδ] + (δ + E[eδ])

∫ t

δ

eC1(t−r)dr

}
≤ C2(δ + E[eδ])
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for some C2 > 0. Since E[eδ] ≤ ε̃δ −→ 0 as δ → 0, where ε̃δ is given by (7.23), we get

E[ sup
r∈[δ,t]

|X̃r −Xr|2], E[ sup
r∈[0,t]

| exp(X̃r)− exp(Xr)|] −→ 0, δ → 0. Moreover we have

E[|W̃t −Wt|]

≤ E[|
ψ

δ

∫ δ

0

exp(X̃r)dr − F (ψ)s|] + E[

∫ t

0

| exp(X̃r)− exp(Xr)|ζrdr]

≤ E[
ψ

δ

∫ δ

0

∣∣∣exp(X̃r)− se−h(∞)ψr/δ
∣∣∣ dr] + Φ0 E[ sup

r∈[0,t]
| exp(X̃r)− exp(Xr)|]

≤ Φ0(s+ 1)E[(Ẑ(s) + 1)2]1/2
{
E[ sup

r∈[0,δ]
|X̃r − log s+

∫ r

0

g(ζv)dv|2]1/2

+

∫ 1

0

ε̃δrdr + δg

(
sup
r,ω

ζr(ω)

)}
+ Φ0 E[ sup

r∈[0,t]
| exp(X̃r)− exp(Xr)|],

thus E[|W̃t −Wt|] −→ 0, δ → 0 by virtue of Lemma 4. Then Lemma 2 implies

lim
δ→0

∣∣E[u(Wt, φt, exp(Xt))]− E[u(W̃t, φ̃t, exp(X̃t))]
∣∣ = 0. (7.25)

By (7.25), we easily get E[(Wt, φt, exp(Xt))] ≤ Vt(w,φ, s;u). Since (ζr)r ∈ At(φ − ψ) is
arbitrary, we have

Vt(w + F (ψ)s, φ− ψ, se−h(∞)ψ;u) ≤ Vt(w,φ, s;u).

Moreover, since ψ ∈ [0, φ] is arbitrary, we get (7.24). ■

By Propositions 6–9 and the relation Vt(· ;u) ∈ C, we complete the proof of Theorem 2.

7.6 Proof of Theorem 4

In Section 7.6 and Section 7.7 we always assume that h is strictly increasing and h(∞) =
∞. First we consider the characterization of V L

t (w,φ, s;u) as the viscosity solution of the
corresponding HJB. We define a function FL : S −→ R by

FL(z, p,X) = − sup
0≤ζ≤L

{
1

2
σ̂(zs)

2Xss + b̂(zs)ps + ζ (zspw − pφ)− g(ζ)zsps

}
.

Then we have the following.

Proposition 10. Assume h(∞) = ∞. Then, for each u ∈ C, the function V L
t (w,φ, s;u) is

the viscosity solution of

∂

∂t
v + FL(z,Dv,D2v) = 0 on (0, 1]× U. (7.26)

Since the control region [0, L] is compact, we obtain Proposition 10 by using (7.18) and
the standard arguments of the Bellman principle (see Theorem 5.4.1 in [24]).

Next we treat HJB (3.3). Let U = {(z, p,X) ∈ S ; F (z, p,X) > −∞}. A direct
calculation gives the following.
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Proposition 11. For (z, p,X) ∈ U ,

F (z, p,X) = −1

2
σ̂(zs)

2Xss − b̂(zs)ps

−max {ζ∗(z, p) (zspw − pφ)− g(ζ∗(z, p))zsps, 0} ,

where ζ∗(z, p) = h−1

(
zspw − pφ
zsps

∨ h(0)
)
1{ps>0}. In particular F is continuous on U .

Now we prove Theorem 4. We define an open set R = U × (R2× (0,∞))×S3 ⊂ U . Since
F is continuous on R and FL converges to F monotonuously, we see that this convergence is
uniform on any compact set in R by Dini’s theorem. Similarly, using Dini’s theorem again,
we see that V L converges to V uniformly on any compact set in [0, 1]× D̂. Moreover we notice
that if we take v̂ ∈ C1,2((0, 1] × U) such that V − v̂ has a local maximum 0 at (t, z), then
(3.5) implies (∂v̂/∂zs)(t, z) > 0 and (z,Dv̂(t, z),D2v̂(t, z)) ∈ R. Then the same arguments as
in the proof of Lemma 5.7.1 in [24] lead us to the assertion. ■

7.7 Proof of Theorem 5

First we remark that Lemmas 1 and 5 also imply that Vt(w,φ, s;u) has polynomial growth
in w,φ and s.

Let Ũ ⊂ U be open and bounded. Let P2,±
(0,1]×Ũ be parabolic variants of semijets and

P
2,±
(0,1]×Ũ be their closures (see [8]). For λ > 0, we define Fλ(z, r, p,X) = λr + F (z, p,X). We

see that the following (a.) and (b.) are equivalent:

(a.) A function v is a viscosity subsolution (resp., supersolution) of (3.3),

(b.) A function vλ(t, z) = e−λtv(t, z) is a viscosity subsolution (resp., supersolution) of

∂

∂t
vλ + Fλ(z, t,Dv,D2v) = 0. (7.27)

By Proposition 11, we can easily prove the following lemma.

Lemma 12. Suppose v is a viscosity subsolution (resp., supersolution) of (7.27). Then

a+ Fλ(z, t, p,X) ≤ 0 (resp., ≥ 0)

for any (t, a, z, p,X) ∈ (0, 1]×R× Ũ×R3×S3 with (z, p,X) ∈ P
2,+

(0,1]×Ũv(z) (resp., (a, p,X) ∈
P

2,−
(0,1]×Ũv(z)).

Especially we note that P
2,−
(0,1]×Ũv(z) ⊂ U when v is a viscosity supersolution of (7.27).

Now we consider the comparison principle on a bounded domain.

Proposition 12. Suppose v (resp., v′) be a viscosity subsolution (resp., supersolution) of
(7.27) on (0, 1] × Ũ . Moreover suppose v(0, z) ≤ v′(0, z) for z ∈ Ũ and v ≤ 0 ≤ v′ on
(0, 1]× ∂Ũ . Then v ≤ v′ on [0, 1]× Ũ .
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By Lemma 12 and Theorem 8.12 in [8], we see that to prove Proposition 12 it suffices to
show the following Proposition 13.

Proposition 13. The function F satisfies the following structure condition

Fλ(z
′, r, α(z − z′), Y )− Fλ(z, r, α(z − z′), X) ≤ ρ

(
α|z − z′|2 + |z − z′|

)
for λ > 0, α > 1, ρ ∈ C([0,∞); [0,∞)) with ρ(0) = 0, z, z′ ∈ Ũ , X,Y ∈ S3 with F (z′, α(z −
z′), Y ) > −∞ and

−3α

(
I O
O I

)
≤

(
X O
O −Y

)
≤ 3α

(
I −I
−I I

)
, (7.28)

where I ∈ R3 ⊗ R3 denotes the unit matrix.

Proof. The condition Fλ(r, z
′, α(z−z′), Y ) > −∞ implies (z′, α(z−z′), Y ) ∈ U , thus either (i)

zs > z′s or (ii) zs = z′s and z
′
s(pw−p′w)−(pφ−p′φ) ≤ 0. In each case we have F (z, α(z−z′), X) >

−∞ and

Fλ(z
′, r, α(z − z′), Y )− Fλ(z, r, α(z − z′), X)

= F (z′, α(z − z′), Y )− F (z, α(z − z′), X)

≤ 1

2
(σ̂2(zs)Xss − σ̂2(z′s)Yss) + |b̂(zs)− b̂(z′s)|α|zs − z′s|

+α sup
ζ≥0

{
−(zs − z′s)

2g(ζ) + (zs − z′s)(zw − z′w)ζ
}
. (7.29)

Since (7.28) implies

σ̂2(zs)Xss − σ̂2(z′s)Yss ≤ 3α(σ̂(zs)− σ̂(z′s))
2

and, σ̂ and b̂ are both Lipschitz continuous and linear growth, we have

1

2
(σ̂2(zs)Xss − σ̂2(z′s)Yss) + |b̂(zs)− b̂(z′s)|α|zs − z′s| ≤ C0α|zs − z′s|2

for some C0 > 0.
Next we estimate the last term of the right-hand side of (7.29). If zs = z′s, it is obvious

that this term is equal to zero, so we consider the case zs > z′s. Since lim inf
ζ→∞

(h(ζ)/ζ) > 0, we

see that there exist β > 0 and ζ0 > 0 such that g(ζ) ≥ βζ2 for any ζ ≥ ζ0. Thus

sup
ζ≥0

{
−(zs − z′s)

2g(ζ) + (zs − z′s)(zw − z′w)ζ
}

≤ −(g(ζ0) + ζ0)|z − z′|2 + sup
ζ≥0

{
−(zs − z′s)

2βζ2 + (zs − z′s)(zw − z′w)ζ
}

≤ (g(ζ0) + ζ0)|z − z′|2 + |zw − z′w|
(
zw − z′w

2β
∨ 0

)
≤ C2|z − z′|2

for some C1, C2 > 0. Thus we obtain the assertion. ■

Now we present the following proposition which includes the assertion of Theorem 5.
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Proposition 14. Let v (resp., v′) be functions such that

|v(t, z)|+ |v′(t, z)| ≤ C(1 + z2w + z2φ + z2s)
m, (t, z) ∈ [0, 1]× D̂

for some C,m > 0. Suppose that v (resp., v′) is a viscosity subsolution (resp., supersolution)
of (3.3) on (0, 1]× D̂. Moreover suppose that v and v′ satisfy (3.6). Then v ≤ v′ on [0, 1]× D̂.

Proof. Let q(z) = (1+z2w+z
2
φ+z

2
s)
m+1. By the similar arguments as in the proof of Proposition

13, we have

|F (z, q(z),Dq(z),D2q(z))| ≤ C0q(z), z ∈ D̂

for some C0 > 0. Let λ > C0 and take any ε > 0. We define v̄(t, z) = e−λtv(t, z) − εq(z)
and v̄′(t, z) = e−λtv′(t, z) + εq(z). Then there is some Rε > 0 such that v̄ < 0 < v̄′ holds on
[0, 1] × {|z| ≥ Rε}. By a straightforward calculation, we see that v̄ (resp., v̄′) is a viscosity
subsolution (resp., supersolution) of (7.27). Thus Proposition 12 implies v̄ ≤ v̄′ on [0, 1]× D̂.
Since ε > 0 is arbitrary, we obtain the assertion. ■

7.8 Proof of Proposition 1

First we prove the following lemma.

Lemma 13. Under the assumptions of Section 5, V n
k (w,φ, s;u) is equal to the discrete-time

value function with b(x) = −µ̃ and σ(x) = 0.

This lemma is easily proved by mathematical induction. Then we see that the optimal
strategy in the discrete-time model is deterministic. By the proof of Theorem 1, the optimal
strategy in continuous-time model is also deterministic. For (ζr)r ∈ Adet

t (φ), we have

E[St] = s exp

(
−µ̃t−

∫ t

0

g(ζr)dr

)
and

E[Wt] = w +

∫ t

0

ζr E[Sr]dr = w + s

∫ t

0

ζr exp

(
−µ̃r −

∫ r

0

g(ζv)dv

)
dr.

This implies the assertion.

7.9 Proof of Theorem 8

The assertion (i) is directly obtained by (9’)–(12’) in [21]. We can show the inequality

V SO
t (w,φ, s;U) ≥ U

(
w +

1− e−αφ

α
s

)
by considering the strategy (3.2) and letting δ ↓ 0. To see the opposite inequality, it suffices
to show that

V
φ

t (w̄, s̄) ≤ U(w̄). (7.30)

Since U is concave and non-decreasing and b̄ is non-positive, the Jensen inequality implies

E[U(W̄t)] ≤ U(E[W̄t]) = U

(
w̄ +

∫ t

0

eαφ̄r − 1

α
S̄rb̄(log S̄r + αφr)dr

)
≤ U(w̄)

for each (φr)r ∈ At(φ), hence (7.30) holds. ■
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