
Paraphrase Detection Using Machine
Translation and Textual Similarity Algorithms

Dmitry Kravchenko(B)

Department of Computer Science, Ben-Gurion University of the Negev,
Beer Sheva, Israel

to.dmitry.kravchenko@gmail.com

Abstract. I present experiments on the task of paraphrase detection for
Russian text using Machine Translation (MT) into English and applying
existing sentence similarity algorithms in English on the translated sen-
tences. But since I use translation engines - my method to detect para-
phrases can be applied to any other languages, which translation into
English is available on translation engines. Specifically, I consider two
tasks: given pair of sentences in Russian – classify them into two (non-
paraphrases, paraphrases) or three (non-paraphrases, near-paraphrases,
precise-paraphrases) classes. I compare five different well-established
sentence similarity methods developed in English and three different
Machine Translation engines (Google, Microsoft and Yandex). I perform
detailed ablation tests to identify the contribution of each component of
the five methods, and identify the best combination of Machine Transla-
tion and sentence similarity method, including ensembles, on the Russian
Paraphrase data set. My best results on the Russian data set are an
Accuracy of 81.4% and F1 score of 78.5% for an ensemble method with
the translation using three MT engines (Google, Microsoft and Yandex).
This compares favorably with state of the art methods in English on
data sets of a similar size which are in the range of Accuracy 80.41%
and F1-score of 85.96%. This demonstrates that, with the current level
of performance of public MT engines, the simple approach of translat-
ing/classifying in English has become a feasible strategy to address the
task. I perform detailed error analysis to indicate potential for further
improvements.

Keywords: Paraphrase detection · Semantic similarity algorithms
Machine translation · Supervised classification

1 Introduction

1.1 Motivation

Paraphrase identification is useful in many natural language applications such as
search engines (to calculate relevance of one sentence to the other), in plagiarism
detection systems, authorship identification, patents and copyright detection sys-
tems, question-answering bots (to compute the semantic similarity between a
c© Springer International Publishing AG 2018
A. Filchenkov et al. (Eds.): AINL 2017, CCIS 789, pp. 277–292, 2018.
https://doi.org/10.1007/978-3-319-71746-3_22



278 D. Kravchenko

sentence given by a human and sentences stored in a corpus database), and text
summarization. This task consists of determining whether two sentences convey
similar content to the extent that one can held as a re-statement of the other.

The task has been well studied in English, and methods have been developed
that reach pretty good results. These methods are not easily applicable directly
to other languages, because they rely on rich lexical resources such as thesauri
and large-scale word embedding which are not available in many other languages.

In this paper, I report on experiments to assess the feasibility of a simple
strategy to adapt existing techniques in English to a Russian data set of para-
phrase sentences: I first translate the Russian sentences into English sentences
using publicly available Machine Translation (MT) engines (I test Google Trans-
late, Microsoft Bing and Yandex) and then apply a variety of English techniques
on the translated sentences to establish their paraphrase relation.

I find that this simple strategy provides “good enough” results on the data
set for little effort, especially when compared with the complexity of acquiring
large coverage thesauri in Russian and/or training statistical models on large
amounts of Russian text.

1.2 Objective

My objective is to establish the feasibility of applying the strategy of MT as
a preprocessing step to address the paraphrase detection task. Clearly, using a
translation engine introduces noise because existing MT engines have limited
accuracy. I compare three different MT engines to control for this aspect.

1.3 Task Description

Given the Russian paraphrases data set – the goal is to compute sentence simi-
larity. The task is cast as two distinct classification tasks: (1) separate the list of
sentence pairs into three classes: non-paraphrases, near-paraphrases and precise-
paraphrases; (2) classify the pairs into two classes: non-paraphrases and para-
phrases. Results are measured by two scores: F1 score and Accuracy. I use the
shared task data set distributed at the Workshop of the International conference
in Artificial Intelligence and Natural Language - AINL 2016.

2 Related Work

For English - there are two main paraphrase data sets: the Microsoft Research
Paraphrase Corpus (MSRP) [12] and PPDB: the Paraphrase Database [11].
MSRP contains 5801 pairs of sentences (4076 are in the training set, and 1725
are in the test set), which are classified by humans into two classes: paraphrases
and non-paraphrases. The highest achievement on MSRP is recorded by Ji and
Eisenstein (2013), who used a method of matrix factorization with supervised
reweighting, and which achieved an Accuracy of 80.41% and an F1 score of
85.96%. Another notable result was achieved by Socher et al. (2011), which



Paraphrase Detection Using Machine Translation 279

achieved an Accuracy of 76.8% and an F1 score of 83.6%. Recent application
of deep learning to the task is reported in Yin and Schutze (2015), where they
applied convolutional neural networks and achieved an Accuracy of 78.4% and
an F1 score of 84.6%.

For Russian corpus in one of the recent publications [10] Pronoza et al. (2015)
achieved F1 score of 82.46% on binary classification task in paraphrase detection.

Madnani et al. (2012) [19] in their paper Re-examining Machine Translation
Metrics for Paraphrase Identification, for solving the task of this paper used
only Machine Translation metrics like BLEU(1-4), MAXSIM, BADGER, SEPIA,
TER, NIST(1-5), METEOR, TERp, and has achieved on MSRP corpus 77.4%
in Accuracy and 84.1% in F1 score, proving by this the effectiveness of these
metrics. In my paper I will use only BLEU scores, and all rest would be semantic
similarity algorithms scores. And machine translation I would use to prepare
input data for these similarity algorithms.

Paraphrase detection is closely related to the task of textual entailment (TE)
identification [17]. TE is a directed relationship between text and hypothesis.
Bidirectional TE have not reached the same level of performance as direct para-
phrase detection in English.

3 Data Set

Input data is a list of pairs of sentences in Russian which are collected from news
headlines. The training set includes 7,227 pairs of sentences, which are classified
by humans into three classes: 2,582 non-paraphrases, 2,957 near-paraphrases,
and 1,688 precise-paraphrases.

Experimental settings: 14,454 sentences with approximately 117,000 words,
in which approximately 23,000 words have unique forms. Sentence length is 8
words on average.

Output data is the list of predicted classes for each one of two tasks (described
above), which is assigned to each pair of the sentences of the test part of cross-
validation test.

4 Baseline

4.1 Algorithm

As a baseline algorithm I use the standard BLEU sentence similarity metric
which can get input in Russian, and doesn’t require translation into English.

BLEU scores with smoothing methods are from [2] with word n-grams. It is
mentioned in [2] that original BLUE scores required no smoothing, as they were
developed for document-level classification. But for the sentence-level classifica-
tion they used these smoothing techniques.

These two smoothing techniques work as follows: assume that I match word
n-grams for n = 1...N (usually, N= 4). Let mn be the count of the matching
words in both sentences, and let m̂n be the modified n-gram match count.



280 D. Kravchenko

Smoothing 1 is defined as follows: if there are no matched words in n-grams,
then I use a small positive value ε to replace the 0 for n ∈ [1..N]. if mn = 0 then
m̂n = ε.

Smoothing 2 (proposed by Lin and Och, 2004) is defined as follows: I add
1 to the matched n-gram count and the total n-gram count for n ranging from
2 to N.

Formally: for n ∈ [2..N ] I calculate: m̂n = mn + 1, and ̂ln = ln + 1

4.2 Results

Table 1 contains execution results of BLEU algorithms on First Task (3-way
classification) and Second task (2-way classification) with word n-grams.

Table 1. BLEU of two smoothing types

BLEU smoothing type First task Second task

Accuracy F1 score Accuracy F1 score

Type 1 (1-g) 57.43 55.07 76.64 71.33

Type 1 (2-g) 55.76 52.83 73.72 70.76

Type 1 (3-g) 55.27 51.54 73.66 70.10

Type 1 (4-g) 49.50 45.50 64.28 41.70

Type 2 (1-g) 57.43 55.07 76.64 71.33

Type 2 (2-g) 56.81 53.44 76.54 70.57

Type 2 (3-g) 56.45 52.71 76.26 70.57

Type 2 (4-g) 56.33 52.20 76.17 70.67

5 Algorithm

5.1 Brief Explanation

In AppendixA, you can see the figure of algorithm data-flow.
Many sentences in the data set (which are news feeds) contain acronyms.

I substitute acronyms to their full names using acronyms list derived from www.
wiktionary.org. Acronym expansion is performed on the Russian sentences before
they are translated.

I then translate the sentences with expanded acronyms from Russian to
English. I used translation engines APIs to do so.

Finally, I construct a feature vector for the classifier - using a variety of sen-
tence similarity algorithms which compute similarity scores on pairs of sentences.

These feature vectors I use as an input to GradientBoosting classifier and
after computation it gives the class prediction for each pair of sentences.

www.wiktionary.org
www.wiktionary.org


Paraphrase Detection Using Machine Translation 281

5.2 Detailed Description

Step 1: Preprocessing I substitute all of the acronyms in the sentences to their full
names. This step is very important because all of the toolkits which I use do not
recognize Russian acronyms, particularly after they are translated to English.
Expanding acronyms helps the MT engine and the sentence similarity methods
process all words with better access to the meaning as opposed to the acronym.
I used as an acronyms dictionary - online thesaurus https://www.wiktionary.
org/. On the training set it had coverage of 47% of the acronyms.

Step 2: After substituting acronyms, I translate Russian to English. I used 3
online translation engines: Google, Microsoft and Yandex. Each of these MT
engines has it’s own APIs to receive an original sentences, and and send back a
translated ones. Each of the MT engines gave its own translation, most of the
time slightly different from one another. Each of the translations gave different
score results when passed to the sentence similarity toolkits. On the given cor-
pus of sentences, Yandex and Google showed the most accurate translation as
measured by the classification performance downstream (higher F1 score and
Accuracy scores).

Step 3: Running sentence similarity toolkits on the pairs of sentences, translated
to English, and getting scores on each pair, saving them into a json data set file.
I use six distinct semantic similarity toolkits for first task, and five - for second
task, which are described below.

Step 4: Train a classifier: I train a Gradient Booster classifier algorithm, fed
with the vectors of sentence similarity measures. This classifier is comparable
to Support Vector Machines in its method, and it gives better results both in
F1 measure and Accuracy on our corpus. This method consists of learning an
ensemble classifier which combines the similarity scores of five English sentence
similarity methods.

I use the Scikit-learn implementation of Gradient Boosting. The following
Python code shows the specific parameters I used:

import sklearn.ensemble
clf=sklearn.ensemble.GradientBoostingClassifier(n estimators=100,
max depth=3)

I chose Gradient Boosting classifier, since it gave more accurate classification
than either SVM with Gaussian Kernel, or Random Forest. In both cases it gave
more then 1 percent to F1 score and Accuracy, then two mentioned classifiers.

My feature vector includes 77 features (which would be described in detail
further) for the First Task (3-way classification: 77 features = 23 features * 3
translate engines + 8 BLEU features) and 69 features (described in detail further)
for the Second Task (2-way classification: 69 features = 23 features * 3 transla-
tions).

The difference between the number of features used in the two tasks is because
I did not include BLEU scores to solve the Second Task since these scores

https://www.wiktionary.org/
https://www.wiktionary.org/


282 D. Kravchenko

worsened class recognition and led to lower F1 score and Accuracy. BLEU scores
did help on the First Task, and improved classification.

5.3 Feature Vector Structure for Each One of the Three
Translations

Toolkits:

1. SEMILAR [4–7]
– Number of used features: 6
– Feature names: bleuComparer, cmComparer, dependencyComparerWn-

LeskTanim, greedyComparerWNLin, lsaComparer, optimumComparerL-
SATasa

2. DKPro Similarity [9]
– Number of used features: 13
– Feature names: CosineSimilarity, ExactStringMatchComparator,

GreedyStringTiling 2-g, GreedyStringTiling 4-g, JaroSecondStringCom-
parator, JaroWinklerSecondStringComparator, normalized Levenshtein-
Comparator, LongestCommonSubsequenceNormComparator, Substring-
MatchComparator, WordNGramContainmentMeasure, WordNGram
JaccardMeasure 2-g, WordNGramJaccardMeasure 3-g, WordNGramJac-
cardMeasure 4-g

3. Python difflib
– Number of used features: 1
– Feature name: difflib SequenceMatcher comparator

Example of code using it:
import difflib
sm = difflib.SequenceMatcher(None)
sm.set seq1(‘sentence one’)
sm.set seq2(‘sentence two’)
print sm.ratio()

4. Algorithm of [1]
– Number of used features: 2
– Feature names: Sentence similarity scores

5. Swoogle [3]
– Number of used features: 1
– Swoogle comparator

6. BLEU scores (on the Russian version of the sentences, no need for English
translation) [2]

– Number of used features: 8
– Feature names: BLEU with smoothing method number 1 (described in

[2]) (1/2/3/4-g), BLEU with smoothing method number 2 (described in
[2]) (1/2/3/4-g)



Paraphrase Detection Using Machine Translation 283

6 Comparison of Toolkits on First Task (3-Way
Classification)

6.1 Results

To understand which of the scores separately gave more recognition rate - I
did 5-fold cross-validation for First Task (3 class classification) on the training
set, on all three translations (Google, Microsoft, Yandex) and the results are in
Table 2.

Table 2. Toolkits results

Toolkit Accuracy F1 score

SEMILAR 62.26 60.15

DKPro Similarity 61.14 59.30

Python difflib 57.07 53.51

Algorithm of [1] 60.02 57.66

Swoogle 59.15 55.52

BLEU 57.34 54.96

All six toolkits together 64.14 62.46

6.2 Confusion Matrix

In Table 3 is a confusion matrix, which I got by running First Task using all six
toolkits together:

Table 3. Confusion matrix

Non-paraphrases Near-paraphrases Precise-paraphrases

Non-paraphrases 1751 798 33

Near-paraphrases 444 2164 349

Precise-paraphrases 74 893 721

As it can be seen from the matrix that two major mistakes in classification
are:

– of non-paraphrases, which were incorrectly classified as near-paraphrases (798
pairs), which is 30.9% of total amount. Cases for such an errors are described
in ‘error analysis’ section;



284 D. Kravchenko

– of precise-paraphrases, which were incorrectly classified as near-paraphrases
(893 pairs). Also can be noticed that only 721 precise-paraphrases were
classified correctly, which is only 42.71% of total amount. This shows us
that for semantic similarity algorithm it is hard to distinguish between
near-paraphrases and precise-paraphrases, which could be explained that
in fact precise-paraphrases have just a light semantic difference from near-
paraphrases.

7 Ablation Test and Its Analysis on Second Task (2-Way
Classification)

7.1 Results

To understand which of the scores gave more effect to the result - I did 5-fold
cross-validation for Second Task (2 class classification) on the training set, on
all three translations (Google, Microsoft, Yandex).

For each on the following experiments I combined feature vectors for the
classifier as a concatenation of feature vectors of relevant toolkits.

Since it is the Second task I did not include BLEU scores (because they are
not improving the results).

The following result are random combinations of toolkits, chosen in such a
way - to cover most of the cases Tables 10, 11, 12 and 13 in AppendixB.

It can be seen from the Table 10 (appendix) that all of the toolkits give
Accuracy between 75.92% and 80.13% and F1 score between 71.36% and 77.02%.
By combining scores (Tables 11, 12 and 13) of these toolkits together I achieve
maximum of 81.41% in Accuracy and 78.51% in F1 score. If I take as the
basis scores from SEMILAR toolkit - by adding other scores to feature vector
I achieve improvement of 1.28% in Accuracy and 1.49% in F1 score. Note that
each time by adding more scores from one more toolkit to the feature vector - I
improve the result, hence I chose optimal scores.

7.2 Confusion Matrix

In Table 4 is a confusion matrix, which I got by running Second Task using all
five toolkits together:

Table 4. Confusion matrix

Non-paraphrases Paraphrases

Non-paraphrases 1612 970

Paraphrases 373 4272

The matrix indicates that the major source of error is the classification of
non-paraphrases, which were mistakenly classified as paraphrases (970 pairs),
which is 37.57%. The sources for such an errors are described in ‘error analysis’
section.



Paraphrase Detection Using Machine Translation 285

7.3 Identifying Best SEMILAR Toolkit Score

To detect the best SEMILAR toolkit score, I ran each of them separately, with
the following results (Table 5):

Table 5. Score from SEMILAR toolkit

Score name Accuracy F1 score

bleuComparer 66.30 65.50

cmComparer 78.42 74.53

dependencyComparerWnLeskTanim 75.77 70.57

greedyComparerWNLin 79.18 75.74

lsaComparer 70.11 64.82

optimumComparerLSATasa 78.87 75.06

It can be seen that the highest results both in Accuracy and F1 score gave
greedyComparerWNLin score. Let’s recall that all 13 scores from DKPro Sim-
ilarity toolkit gave us approximately the same result: Accuracy of 79.52 and
F1 score of 75.78. So on the given corpus this one SEMILAR score alone gives
approximately the same recognition rate as 13 scores from DKPro, which is
impressive.

GreedyComparerWNLin score refers to a sentence to sentence similarity
method which greedily aligns words between two sentences. The word align-
ment method used is WordNet based method proposed by Lin (1998) [16]. The
method is described in [4].

8 Comparison of Translation Engines for Second Task
(2-Way Classification)

In this section, I compare all three translation engines (Google, Microsoft and
Yandex), and conclude which of them gave better F1 score and Accuracy
(Table 6):

Table 6. Translation engines comparison

Toolkits Google Microsoft Yandex

Accuracy F1 score Accuracy F1 score Accuracy F1 score

SEMILAR 78.95 75.19 78.41 74.71 78.40 74.67

DKPro Similarity 78.38 74.30 77.84 73.83 78.74 74.79

Python difflib 74.88 70.04 74.05 68.70 75.05 71.40

Algorithm of [1] 76.72 72.15 76.32 72.39 77.05 72.82

Swoogle 77.94 73.12 77.95 72.80 77.69 73.02

All five toolkits together 79.90 76.52 79.25 75.76 79.93 76.53



286 D. Kravchenko

Google and Yandex give similar results in translating from Russian to English
on our corpus, both better than Microsoft’s MT.

9 Error Analysis

Let’s examine common mistakes our scores (algorithms) make in giving
higher/lower values, causing the classifier to mistakenly predict the wrong class.
Provided below sentences in Russian are from AINL 2016 paraphrase shared
task corpus (available on http://www.paraphraser.ru/download/).

9.1 False Positive: Mistakenly Predicted as ‘Paraphrase’

Such pairs of sentences typically contain for the most part the same words (or
similar in the meaning), except for a few words which make all the difference,
changing the meaning of the sentence completely.

The following tables are different cases of such a words (Tables 7 and 8):

Table 7. Different words are antonyms or different in the meaning words

Idea How to Solve Such Cases

(1) Difference feature: Different words are antonyms or different in the meaning
words.
Idea for solution: Create a score (algorithm) which checks to which objects
(or concepts) are related those antonyms (or different in meaning words),
and if they are related to the same objects (or concepts) - this is a sign that
different meaning in the pair of sentences exists, so the algorithm should
take them into account in our score, so that afterwards classifier can pick
such a cases.

(2) Difference feature: Different words make the subject of each sentence differ-
ent.
Idea for solution: create a score (algorithm) which gets the main subject of
the sentence, and checks if both of the sentences are of the same subject, so
that afterwards classifier can pick such a cases.

http://www.paraphraser.ru/download/


Paraphrase Detection Using Machine Translation 287

Table 8. Different words make the subject of each sentence different

9.2 False Negatives: Mistakenly Predicted as ‘Non-paraphrase’

Rule for Such Pairs, with Corresponding Examples. Such pairs of sen-
tences typically contain for the most part different words but the meaning of the
whole sentence is the the same or closely related (since I have only one paraphrase
class for second task, I can combine closely related sentences to paraphrase class):
Table 9.

Table 9. Sentence pairs

Idea How to Solve Such Cases. Pay attention that the word Apakan in the
first pair is the name of the current Chief Monitor of the OSCE Special Moni-
toring Mission to Ukraine. So if I would have knowledge base, which associated
Apakan with OSCE - and gave that knowledge base to those scores (algorithms),
that would have helped to identify the similarity of these two sentences.



288 D. Kravchenko

The same goes with the second pair since Pentagon is United States state
level organization.

In the third pair I need sophisticated understanding since ‘clothes of Demi
Moore’ mentioned in first sentence can be expensive enough, since she is a
celebrity, and can afford to buy something expensive. So because in the second
sentence is mentioned the price of the clothes, and due to this amount of money
(‘200 thousand dollars’) - we understand that is being talked about expensive
clothes - we can conclude that the subject of both sentences in this pair is the
same (e.g. it is about ‘expensive clothes that were stolen’).

Such a sophisticated AI can be created, but it remains an open challenge.

10 Conclusions and Future Work

In this work I address the paraphrase classification problem by combining
Machine Translation and using an ensemble of semantic similarity algorithms.
The resulting F1 score and Accuracy metrics have shown the effectiveness of
such an algorithm. I achieved recognition of 64.14% in Accuracy and 62.46%
in F1 score for the First Task (3-way classification), and 81.41% in Accuracy
and 78.51% in F1 score for the Second Task (two-way classification). Results
on both tasks are significantly better than the baseline BLEU algorithm (ran on
Russian source, without translation).

I completed ablation test to detect which of those algorithms gave more
effect in gaining the correct answer. I observe that the best toolkit is SEMILAR.
Interesting enough, python difflib showed pretty good result for just a regular
python library, which results in only about 5% less than our winner - SEMILAR.
The best score of all used, for given corpus, is greedyComparerWNLin, which is
a part of the SEMILAR toolkit. The best translation engines, for our corpus in
Russian, are Yandex and Google.

I used most popular semantic similarity algorithms (toolkits) however more
algorithms are available. In future work I intend to use additional algorithms
to improve paraphrase recognition. Additionally I plan to develop scores which
will allow us to cover the cases mentioned in the error analysis section, to let the
classifier to include these cases into the correct classes.

Although the corpus was in Russian and I translated it to English using
automated translation engines (Google, Microsoft and Yandex), and semantic
similarity algorithms I launched on translations which were not 100% correct in
the suitability of translated words and syntactic structure, since these transla-
tions engines can give only approximation to the most fitted translation. So F1
score and Accuracy could be higher if the corpus was originally in English.

11 Repository

Python code sources are available on:
https://github.com/dmikrav/paraphraser.ainlconf.2016
Web-site is: https://dmikrav.github.io/paraphraser.ainlconf.2016/.

https://github.com/dmikrav/paraphraser.ainlconf.2016
https://dmikrav.github.io/paraphraser.ainlconf.2016/


Paraphrase Detection Using Machine Translation 289

A Appendix: Algorithm Data-Flow

B Appendix: Ablation Test Tables

Table 10. Each toolkit launched separately

Toolkit Accuracy F1 score

SEMILAR 80.13 77.02

DKPro Similarity 79.52 75.78

Python difflib 75.92 71.36

Algorithm of [1] 78.76 75.02

Swoogle 78.94 75.03



290 D. Kravchenko

Table 11. Combinations by two toolkits

Toolkits Accuracy F1 score

SEMILAR+ DKPro similarity 80.86 77.89

SEMILAR+ Python difflib 80.37 77.34

SEMILAR+ Algorithm of [1] 80.18 77.10

SEMILAR+ Swoogle 80.17 77.05

DKPro similarity + Python difflib 79.59 75.95

DKPro similarity + Algorithm of [1] 80.04 76.62

DKPro similarity + Swoogle 80.26 76.87

Python difflib + Algorithm of [1] 79.09 75.44

Python difflib + Swoogle 79.42 75.69

Algorithm of [1] + Swoogle 80.10 76.66

Table 12. Combinations by three toolkits

Toolkits Accuracy F1 score

SEMILAR+ DKPro similarity + Python difflib 80.66 77.66

SEMILAR+ DKPro similarity + Algorithm of [1] 80.55 77.59

SEMILAR+ DKPro similarity + Swoogle 80.89 77.89

SEMILAR+ Python difflib + Algorithm of [1] 80.43 77.45

SEMILAR+ Python difflib + Swoogle 80.61 77.66

SEMILAR+ Algorithm of [1] + Swoogle 80.73 77.77

DKPro similarity + Python difflib + Algorithm of [1] 80.37 77.14

DKPro similarity + Python difflib + Swoogle 79.93 76.55

Python difflib + Algorithm of [1] + Swoogle 80.03 76.60

Table 13. Combinations by four and five toolkits

Toolkits Accuracy F1 score

SEMILAR+ DKPro similarity + Python difflib + Algorithm of [1] 80.94 77.99

SEMILAR+ DKPro similarity + Python difflib + Swoogle 81.36 78.39

SEMILAR+ Python difflib + Algorithm of [1] + Swoogle 80.75 77.79

DKPro similarity + Python difflib + Algorithm of [1] + Swoogle 80.72 77.56

All five toolkits together 81.41 78.51



Paraphrase Detection Using Machine Translation 291

References

1. Li, Y., McLean, D., Bandar, Z., O’Shea, J., Crockett, K.: Sentence similarity based
on semantic nets and corpus statistics. IEEE Trans. Knowl. Data Eng. 18, 1138–
1150 (2006)

2. Chen, B., Cherry, C.: A systematic comparison of smoothing techniques for
sentence-level BLEU. In: WMT@ACL, pp. 362–367 (2014)

3. Ding, L., Finin, T., Joshi A., Peng, Y., Cost, S., Sachs, J., Pan, R., Reddivari, P.,
Doshi, V.: Swoogle: a semantic web search and metadata engine. In: CIKM, pp.
652–659 (2004)

4. Rus, V., Lintean, M.: A comparison of greedy and optimal assessment of natural
language student input using word-to-word similarity metrics. In: BEA@NAACL-
HLT, pp. 157–162 (2012)

5. Ştefănescu, D., Banjade, R., Rus, V.: Latent semantic analysis models on
Wikipedia and TASA. In: LREC, pp. 1417–1422 (2014)

6. Lintean, M., Rus, V.: Paraphrase identification using weighted dependencies and
word semantics. Informatica (Slovenia) 34, 19–28 (2010)

7. Rus, V., Lintean, M., Banjade, R., Niraula, N., Stefanescu, D.: SEMILAR: the
semantic similarity toolkit. In: ACL (Conference System Demonstrations), pp. 163–
168 (2013)

8. Banjade, R., Niraula, N., Maharjan, N., Rus, V., Stefanescu, D., Lintean, M.,
Gautam, D.: NeRoSim: a system for measuring and interpreting semantic textual
similarity. In: Proceedings of the 9th International Workshop on Semantic Evalu-
ation, SemEval@NAACL-HLT, pp. 164–171 (2015)

9. Bar, D., Zesch, T., Gurevych, I.: DKPro similarity: an open source framework for
text similarity. In: ACL (Conference System Demonstrations), pp. 121–126 (2013)

10. Pronoza, E., Yagunova, E.: Low-level features for paraphrase identification. In:
Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp.
59–71. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27060-9 5

11. Ganitkevitch, J., Van Durme, B., Callison-Burch, C.: PPDB: the paraphrase data-
base. In: HLT-NAACL, The Association for Computational Linguistics, pp. 758–
764 (2013)

12. Dolan, B., Brockett, C., Quirk, C.: Microsoft Research Paraphrase Corpus (2005)
13. Ji, Y., Eisenstein, J.: Discriminative improvements to distributional sentence sim-

ilarity. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP, pp. 891–896 (2013)

14. Socher, R., Huang, E., Pennington, J., Ng, A., Manning, C.: Dynamic pooling and
unfolding recursive autoencoders for paraphrase detection. In: Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Information
Processing Systems, pp. 801–809 (2011)

15. Yin, W., Schutze, H.: Convolutional neural network for paraphrase identification.
In: Proceedings of the 2015 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, HLT-
NAACL, pp. 901–911 (2015)

16. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the
Fifteenth International Conference on Machine Learning (ICML), pp. 296–304
(1998)

17. Dagan, I., Dolan, B., Magnini, B., Roth, D.: Recognizing textual entailment: ratio-
nal, evaluation and approaches - Erratum, In: Natural Language Engineering, vol.
16 (2010)

https://doi.org/10.1007/978-3-319-27060-9_5


292 D. Kravchenko

18. Madnani, N., Tetreault, J., Chodorow, M.: Re-examining machine translation met-
rics for paraphrase identification. In: Human Language Technologies: Conference
of the North American Chapter of the Association of Computational Linguistics,
Proceedings, pp. 182–190 (2012)

19. Chitra, A., Rajkumar, A.: Plagiarism detection using machine learning-based para-
phrase recognizer. J. Intell. Syst. 25, 351–359 (2016)

20. Dey, K., Shrivastava, R., Kaushik, S.: A paraphrase and semantic similarity detec-
tion system for user generated short-text content on Microblogs. In: COLING,
26th International Conference on Computational Linguistics, Proceedings of the
Conference, pp. 2880–2890 (2016)

21. Pivovarova, L., Pronoza, P., Yagunova, E., Pronoza, A.: ParaPhraser: Russian para-
phrase corpus and shared task. In: Filchenkov, A., et al. (eds.) AINL 2017. CCIS,
vol. 789, pp. 211–225. Springer, Cham (2018)


	Paraphrase Detection Using Machine Translation and Textual Similarity Algorithms
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Task Description

	2 Related Work
	3 Data Set
	4 Baseline
	4.1 Algorithm
	4.2 Results

	5 Algorithm
	5.1 Brief Explanation
	5.2 Detailed Description
	5.3 Feature Vector Structure for Each One of the Three Translations

	6 Comparison of Toolkits on First Task (3-Way Classification)
	6.1 Results
	6.2 Confusion Matrix

	7 Ablation Test and Its Analysis on Second Task (2-Way Classification)
	7.1 Results
	7.2 Confusion Matrix
	7.3 Identifying Best SEMILAR Toolkit Score

	8 Comparison of Translation Engines for Second Task (2-Way Classification)
	9 Error Analysis
	9.1 False Positive: Mistakenly Predicted as `Paraphrase'
	9.2 False Negatives: Mistakenly Predicted as `Non-paraphrase'

	10 Conclusions and Future Work
	11 Repository
	A Appendix: Algorithm Data-Flow
	B Appendix: Ablation Test Tables
	References


