
1

Efficient Parallel-Pipelined GHASH
Ilia Kalistru

ilia.kalistru@infotecs.ru

Abstract—Galois/Counter Mode (GCM) is a widely used mode
for authenticated encryption. Galois Hash (GHASH) is an impor-
tant component of it. Two efficient hardware implementations of
GHASH are presented in the paper. The first implementation uses
several pipeline stages for Galois Field multiplication. The second
implementation uses several pipelines similar to the pipeline
of the first implementation. Unlike previously known parallel-
pipelined implementations of GHASH, the proposed ones have
improved data flow. They efficiently use all pipeline stages of
the GF multiplier in each clock cycle. Therefore, performance is
improved.

Index Terms—GHASH, Message authentication, Pipeline pro-
cessing, Data flow computing, Parallel architectures, Parallel
algorithms.

I. INTRODUCTION

GALOIS-HASH (GHASH) is widely used for message
authentication [1] [2] [3]. For example, it is an impor-

tant part of Galois/Counter Mode (GCM) of operation for
symmetric key block ciphers [4]. In order to design a high
speed low latency encryption unit which uses GCM for data
encryption and authentication, one must find an efficient way
to calculate GHASH. For a low latency encryption unit it
can be impossible to employ parallel processing of several
data frames for speed-up because it requires accumulation of
many frames. It is needed n frames to be accumulated for
efficient use of n GHASH calculation modules if each module
calculates GHASH for its own frame. Such accumulation of
many frames can take too much time. This work focuses on a
design of a device for fast calculation of GHASH without
such accumulation. The device is implemented on a field-
programmable gate array (FPGA) integrated circuit.

GHASH has properties that make possible speed improve-
ments. It can be represented as

GHASH(S,H) = Xl,

Xi =

{
0, if i = 0

(Xi−1 ⊕ Si)H, if 1 ≤ i ≤ l
,

where l is a number of blocks of the frame to be processed,
Si - blocks of the frame, H - key polynomial, k - number of
bits in each block, ⊕ - addition in GF(2k), and multiplication
is also performed in GF(2k). By blocks we call the blocks
of the additional authenticated data (AAD), the blocks of the
encrypted data (ED), and the additional block, containing the
length of the AAD field and the length of the ED field.

Parallel-pipelined device was proposed in [5]. It uses several
multipliers for GHASH calculation while each multiplier is

I. Kalistru is with Infotecs JSC, Moscow, Russia.
This work is a part of a research project of Infotecs JSC.

implemented with several pipeline stages. Pipelined multi-
plier allows higher clock frequency while parallel pipelines
increases number of data blocks processed in each clock cycle.
This design has suboptimal flow control because half of clock
cycles multiplier does not perform any useful work.

Two devices proposed in this paper have better flow control.
Each stage of multiplier pipeline is fully used in each clock
cycle if there are enough incoming data blocks. That gives
twice as much data blocks per clock cycle.

II. METHOD OF CALCULATING GHASH

Xl can be calculated using L parallel threads of calculation
if l ≥ L. Equation for Xl can be rewritten as

Xl = ((. . . (S0H ⊕ S1)H ⊕ . . .)H ⊕ Sl)H

After expansion of this formula we can make L groups of
products collecting all products containing SiL+j with the
same j in one group, 0 ≤ j < L. After applying Horners
method to each group

Xl =(((. . .)HL ⊕ Sl−L)H
L ⊕ Sl)H

1

⊕ (((. . .)HL ⊕ Sl−L−1)H
L ⊕ Sl−1)H

2

⊕ (((. . .)HL ⊕ Sl−L−2)H
L ⊕ Sl−2)H

3

...

⊕ (((. . .)HL ⊕ Sl−L−(L−1))H
L ⊕ Sl−(L−1))H

L.

(1)

Or

Xl =

L−1∑
i=0

Ai (2)

where

Ai = (((. . .)HL ⊕ Sl−L−i)H
L ⊕ Sl−i)H

i+1, (3)

0 ≤ i < L

We call Ai a partial sum.
The equations (2) (3) clearly demonstrate the main idea used

to improve speed - calculate L partial sums independently by
adding succeeding blocks with step L to the previous result
and multiplying it by HL. The only exceptions are the last
multiplications of each partial sum Ai, where the result of
previous addition must be multiplied by Hi+1, 0 ≥ i ≥ L−1.

To get the GHASH value, all partial sums must be added
after they are calculated.

GHASH =

L−1∑
i=0

Ai

The method of calculating GHASH value through calcu-
lation of partial sums can be used to increase number of



2

calculation modules or to increase maximum clock frequency
of the device using pipelining. In the next two sections of the
paper we discuss a device which takes advantage of increased
clock frequency and a modified device which additionally uses
several pipelines to calculate GHASH.

III. SINGLE-PIPELINE IMPLEMENTATION

Only addition in GF(2k) and multiplication in GF(2k) are
needed for GHASH calculation. It is reasonable to optimize
multiplication in GF(2k) because addition in GF(2k) corre-
sponds to simple bitwise XOR operation. The multiplication
module can be implemented with several pipeline stages. It
reduces the critical path of the circuit, and thus clocking fre-
quency of the circuit can be increased. This technique allows
frequency increase up to C times with critical path split into C
parts. The multiplication module with C pipeline stages takes
C clock cycles to calculate each product, but as it is possible
to load a new pair of values to the pipeline in each clock cycle,
and to have C products calculated simultaneously on different
pipeline stages, there is no loss of performance on per cycle
basis. This fact together with clocking frequency increased by
a factor of C gives overall increase of performance by a factor
of C.

The multiplication module with C pipeline stages can be
used to calculate L ≥ C partial sums of GHASH. The new
block of the frame is added to an output of the multiplication
module and fed back to the first input of the multiplication
module with an appropriate power of H sent to the second
input of the multiplication module. The feedback circuit and
the adder can take additional B cycles, so the full feedback
loop has L = C + B cycles. With L stages of calculation in
complete feedback loop it is possible to calculate L partial
sums simultaneously.

The device for GHASH calculation consists of pre-
processing module and processing module.

Pre-processing module is used to associate a number to each
block of a data frame. These numbers of the blocks are used
in processing module to choose precalculated Hi, 1 ≤ i ≤ L
and to distinguish blocks of partial sums from intermediate
values after multiplication module. We call these numbers
labels. Details on how to distinguish the partial sums from
the intermediate results are given later in the description of
accumulation module.

The labels are assigned to the blocks from the end of each
frame starting from 0 up to L. The last block of each frame
is labeled by 0, the block before it is labeled by 1 and so on
until label L. All other blocks are labeled L. To perform this
function pre-processing module contains a FIFO and writes
each incoming block of data to the FIFO. Pre-processing
module reads a block from the FIFO if there is L blocks of
data in the FIFO, or if there is the last block of at least one
frame in the FIFO. Each time pre-processing module reads a
block of data from the FIFO it associates a label to it according
to the following rule: it associates label L to the block being
read if there is no last blocks of frames in the FIFO, and it
associates n + 1 to the block being read if there is the last
block of at least one frame in the FIFO. Here n is a number

Fig. 1. Structure of processing module.

of blocks contained in the FIFO between block being read
and the last block of the frame. It is possible to have more
than one frame in the FIFO if there are frames shorter than
L blocks. The last block of the frame which is closer to the
output of the FIFO is used to calculate n in this case.

The pre-processing module numerates blocks of frames
without collecting whole frames. It collects no more than L
blocks of each frame and it has latency no more than L clock
cycles.

Numerated blocks of data are passed to processing module.
Processing module is shown on Fig. 1. It contains mem-

ory module, adder, multiplication module, feedback module,
feedback interruption module and accumulation module.

Memory module contains precalculated powers Hi, 1 ≤
i ≤ L of a key polynomial H . Memory module contains Hi

at the address location i − 1 for 1 ≤ i ≤ L. It also contains
HL at the address location L of memory module. The label of
each incoming block of data to processing module is treated
as an address for memory module and corresponding Hi is
extracted from memory module. Extracted Hi is sent to the
second input of multiplication module.

A block of data coming to processing module is sent to
the first input of adder. The second input of adder receives
the result of the previous iteration of Horner scheme from
the output of feedback interruption module in the same clock
cycle. Addition is performed in GF(2k). The resulting block
is labeled with the label of the block from the first input of
adder and is sent to the first input of multiplication module.

Latency of memory module is matched with latency of
adder in order to have the result from adder and corresponding
Hi from memory module at inputs of multiplication module
in the same clock cycle.

Multiplication module has several pipeline stages and per-
forms multiplication in GF(2k) (with reduction). It can be



3

designed in different ways. For example, it can be designed
using multi-step Karatsuba-Ofman algorithm [6] with pipeline
registers after each step of the algorithm.

Multiplication module produces a block of data from two
blocks taken from its two inputs and labels the resulting block
of data with the label of the block taken from the first input
of the module. The resulting block is sent to feedback module
and accumulation module.

Feedback module is needed if stream of data blocks coming
to the device is not continuous. For example, as for each
frame of data there is an additional block of data containing
lengths of AAD and ED fields to be processed. To keep up
with incoming data, a device performing GHASH computation
needs to operate on a frequency which is high enough to
process this additional block of data for each frame. The
worst case scenario is a stream of frames of minimal possible
lengths. If the device’s operating frequency is high enough to
be able to process short data frames and the device does not
accumulate the whole frame before its processing, then for
longer frames it’s possible to have clock cycles when there is
still no next block of the frame to process. Data blocks from
multiplication module need to be stored for later use when
there is a clock cycle with no next data block coming from
pre-processing module.

Feedback module contains a FIFO register and each incom-
ing block is written to the FIFO. A data block is read from
the FIFO to the input of feedback interruption module if there
is incoming block of data to processing module. The block of
data from feedback module must come to adder in the same
cycle as data block which caused the block from feedback
module to be read from the FIFO of feedback module. So,
additional registers must be added before first input of adder
if there is additional latency in feedback interruption module.

Feedback interruption module counts blocks of data in-
coming to processing module and outputs a block of data
containing 0 in each bit of the block for the first L blocks of
each incoming frame. For other blocks incoming to processing
module feedback interruption module copies blocks of data
from its input. Feedback interruption module is needed to
prevent irrelevant data blocks from adding to the first L blocks
of each frame.

With L pipeline stages in the full feedback loop (adder -
multiplication module - feedback module - feedback inter-
ruption module - adder) and with L threads of calculation
distributed among different pipeline stages of the loop a result
of previous iteration of Horner scheme comes to the second
input of adder just in time to be added to the next block of
data of the same partial sum, coming to the first input of adder
from pre-calculation module.

Accumulation module is used to add L partial sums to get
the final result. The module has a register for one block of
data, which is used to store intermediate results. As it can be
seen from the description of adder and multiplication module,
each data block coming to accumulation module has a label
associated with it. This label is equal to a label of the last
data block used to calculate the block coming to accumulation
module. If this label is less than L then the block is the
value of a partial sum. For each incoming block of data with

Fig. 2. Multi-pipeline implementation.

an associated label less than L, accumulation module adds
content of the incoming block to the register. After addition
of a block with associated label 0 (the last partial sum) the
module sends content of the register to the output and resets
the register to 0. Output of accumulation block is a GHASH
value.

The device presented here does not require that number of
blocks in frames is a multiple of L. Number of blocks also
does not have to be bigger than L. There is also no need to
wait until the pipeline of the device is fully emptied before
loading data blocks of the next data frame. The first block of
the next data frame can be loaded to the device in the clock
cycle after the cycle with the last block of the previous frame.
As a result, multiplier’s pipeline is fully loaded all the time if
there are enough incoming data blocks.

IV. MULTI-PIPELINE IMPLEMENTATION

Decomposition of a module on several stages of computa-
tion gives good results only up to some number of pipeline
stages. After that number of stages, factors other than simple
amount of combinatorial logic between two flip-flops become
significant and prevent further increase of maximum clocking
frequency. Techniques other than spreading workload between
different pipeline stages of the same multiplication block are
needed to overcome this limitation. In this section of the article
a device that uses several pipelines to calculate one GHASH
value is discussed. Each of the pipelines of the device uses
multiple pipeline stages to calculate different partial sums as
it has been discussed earlier.

With M parallel pipelines, each having L pipeline stages in
the feedback loop, calculation process of GHASH function is
split into ML calculations of ML partial sums.

Multi-pipeline implementation is shown on Fig. 2. It con-
sists of pre-processing module, M processing modules and
merging module.

Pre-processing module splits the incoming stream of data
blocks between M lanes numbered 0 to M −1 in a following
manner. If one block of data of the frame is sent to the lane
n then the next block is sent to the lane n+1 and so on in a
round-robin principle until the end of the frame. Each clock
cycle M blocks of data are distributed among M lanes. Blocks
of the next frame cannot be distributed among the lanes in the



4

same cycle with blocks of the previous frame. If the last block
of the frame happens to be in the lane s < M − 1 then lanes
from s+1 to M − 1 are filled with blocks which are marked
as invalid.

Pre-processing module is also associate a label to each
block of the data frame similar to pre-processing module of
the single-pipeline implementation, discussed in the previous
section of the paper. For this purpose it contains M FIFO
modules, and data blocks of each lane are stored in corre-
sponding FIFOs. Pre-processing module monitors number of
data blocks stored in the FIFOs and also monitors if there
are last blocks of frames in FIFOs. Pre-processing module
simultaneously reads a block of data from each FIFO if there
is at least one last block of some frame in any of the FIFOs.
In this case it assigns to each of M blocks being read the label
q

q =

{
x if x < ML

ML if x ≥ ML
,

where x is equal to a number of the block counting from the
last block of the frame and starting with 0. Pre-processing
module also simultaneously reads a block of data from each
FIFO if there is L + 1 blocks in each FIFO even if there is
no last block in the FIFOs. Label ML is associated with each
block of data being read from the FIFOs in this case, because
absence of any last block in the FIFOs guarantees that there
are more than ML blocks to the end of the frame from any
block being read.

The labels will be used in processing module for selection
of correct powers of H for multiplication and to distinguish
blocks of partial sums from intermediate values after multipli-
cation module. Labeled blocks from the FIFOs are sent to M
outputs of the pre-processing module.

Blocks of data from pre-processing module are sent to
corresponding M independent processing modules. Processing
modules have some differences from processing modules
discussed in the previous section of the paper.

The first difference is that memory modules now contain
precalculated powers Hi, 1 ≤ i ≤ LM at address i− 1. They
also contain HLM at address LM .

The second difference from the processing module de-
scribed in the previous section of the paper is that accumula-
tion module adds content of the incoming block to the register
for each incoming block of data with associated label less than
LM . Reception by accumulation module of a block with a
label less than M means that there will not be more blocks
of the same frame coming to this accumulation module. For
example, if M = 3 and accumulation module of processing
module 1 receives a block with label 2, that means that the
next block with label 1 is processed by processing module 2
and the last block of a frame with label 0 will be processed
by processing module 0. It can be seen that the block with
label 2 is the last block of the frame processed by processing
module 1. This distribution of blocks is shown on TABLE I.

After addition of a block with a label less than M the
module sends content of the register to the output and resets
the register to 0. The resulting value is a sum of L partial
sums. This value is sent to merging module.

TABLE I
EXAMPLE OF DISTRIBUTION OF BLOCKS AMONG PROCESSING MODULES

Module name cycle 1 cycle 2 cycle 3
Processing module 0 label=3 label=3 label=0
Processing module 1 label=3 label=2 invalid
Processing module 2 label=3 label=1 invalid

TABLE II
PROCESSING MODULE RESOURCE CONSUMPTION

Module name × LUT types Total Reg.LUT SRL MLUT LUT
Mult. module 1 3028 4 0 3032 10324
Memory module 2 0 0 160 160 128
Others – 397 0 160 557 465
Total – 3425 4 480 3909 11045

Merging module receives blocks from all M processing
modules and adds them together to get the final result of the
computation process - the GHASH value.

The device presented here does not require that number of
blocks in frames is a multiple of M . There is also no need
to wait until the pipeline of the device is fully emptied before
loading data blocks of the next data frame. The first block of
the next data frame can be loaded to the device in the next
clock cycle after the last block of the previous frame. The
device is designed to have fully loaded multiplier except for
the border of two frames when there can be a clock cycle
when not every pipeline is able to receive a new data block.

The device described here has been implemented on Virtex
UltraScale+ FPGA with C = 3 stages of multiplication
pipeline, L = 6, and only M = 2 parallel pipelines, achieving
maximum speed 102.4 Gbit/s (400 MHz with block size
128 bit). The device contains two memory modules in each
processing module to be able to load new Hi while processing
data with old ones. TABLE II shows resource consumption by
processing module with 2 memory modules for on-the-fly key
replacement. TABLE III shows resource consumption by the
device.

TABLE III
RESOURCE CONSUMPTION

Module name × LUT types Total Reg.LUT SRL MLUT LUT
Pre-proc. mod. 1 85 740 0 825 467
Proc. module 2 3425 4 480 3909 11045
Merging module 1 41 12 0 53 471
Total – 6976 760 960 8696 23028

V. CONCLUSION

Accumulation of multiple frames of data can significantly
increase latency of a device because of time needed to
accumulate several frames. The proposed devices allow fast
low latency GHASH calculation without such accumulation.
The devices efficiently utilize multiplication module’s pipeline
by using all the stages of the pipeline in each clock cycle,
except for the boundaries of frames in case of multi-pipeline
implementation.



5

The first proposed device allows efficient use of multi-
plication module with several pipeline stages. The device
has improved performance because pipelined multiplication
module can work at a higher frequency. Another important
feature of the device is that the first block of the next frame
can be sent to the device in the next clock cycle after the last
block of the previous frame. This prevents performance losses
in case of short data frames. The device also can be used when
there can be clock cycles without incoming data blocks, which
can be useful if the source of data frames can produce such
idle clock cycles and a target latency of the device does not
allow full frame accumulation before the GHASH calculation
module. The device is designed to have multiplier’s pipeline
fully loaded all the time if there are enough incoming data
blocks. Therefore, performance is improved.

If further increase in the number of pipeline stages gives
little improvement in speed, the second device can be used
to achieve higher speeds. It uses several modified processing
modules of the first device to form parallel pipelines which
are used to calculate GHASH values of frames. The second
device with M processing modules has up to M times
higher performance than the first device and don’t require
accumulation of several frames of data.

REFERENCES

[1] IEEE Standard for Local and metropolitan area networks - Media Ac-
cess Control (MAC) Security - Amendment 1: Galois Counter Mode-
Advanced Encryption Standard-256 (GCM-AES-256) Cipher Suite.

[2] RFC 4106, IETF Request for Comments, The Use of Galois/Counter
Mode (GCM) in IPsec Encapsulating Security Payload (ESP), J. Viega,
D. McGrew, June 2005.

[3] RFC 5288, IETF Request for Comments, ”AES Galois Counter Mode
(GCM) Cipher Suites for TLS” J. Salowey, A. Choudhury, and D.
McGrew, August 2008.

[4] ”NIST SP 800-3 8D”, Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, Nov 2007.

[5] Abdellatif, Karim M. & Chotin-Avot, Roselyne & Mehrez, Habib. (2012).
Efficient Parallel-Pipelined GHASH for Message Authentication. 2012
International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2012. 10.1109/ReConFig.2012.6416742.

[6] A. Karatsuba and Yu. Ofman (1962). ”Multiplication of Many-Digital
Numbers by Automatic Computers”. Proceedings of the USSR Academy
of Sciences. 145: 293-294. Translation in the academic journal Physics -
Doklady, 7 (1963), pp. 595-596.

Ilia Kalistru was born in Michurinsk, Tambov
Oblast, Russia, in 1985. He received the B.S. and
M.S. degrees in radiophysics from Voronezh State
University, Voronezh, Russia, in 2006 and 2008,
respectively.

He is an FPGA design engineer since 2009. Since
May 2014, he has been an FPGA design engineer at
Infotecs JSC. His current research interests include
high speed low latency data processing, high speed
interfaces, practical aspects of digital electronic cir-
cuit design and design of cryptographic hardware.

Mr. Kalistru is a counselor of Russian Academy of Natural History and a
member of International Association of Engineers (IAENG)


