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Abstract

We derive the power spectrum of photons generated by charged particle
moving in parallel direction to the graphene-like structure with index of
refraction n. Some graphene-like structures, for instance graphene with
implanted ions, or, also 2D-glasses, are dielectric media, and it means that
it enables the experimental realization of the Vavilov-Cerenkov radiation. We
calculate it from the viewpoint of the Schwinger theory of sources.

The fast moving charged particle in a medium when its speed is faster than the speed
of light in this medium produces electromagnetic radiation which is called the Vavilov-
Cerenkov radiation.

The prediction of Cerenkov radiation came long ago. Heaviside (1889) investigated the
possibility of a charged object moving in a medium faster than electromagnetic waves in
the same medium becomes a source of directed electromagnetic radiation. Kelvin (1901)
presented an idea that the emission of particles is possible at a speed greater than that
of light. Somewhat later, Sommerfeld (1904) proposed the hypothetical radiation with
a sharp angular distribution. However, in fact, from experimental point of view, the
electromagnetic Cerenkov radiation was first observed in the early 1900’s by experiments
developed by Marie and Pierre Curie when studying radioactivity emission. In essence
they observed the emission of a bluish-white light from transparent substances in the
neighborhood of strong radioactive source. But the first attempt to understand the origin



of this was made by Mallet (1926, 1929a, 1929b) who observed that the light emitted
by a variety of transparent bodies placed close to a radioactive source always had the
same bluish-white quality, and that the spectrum was continuous, with no line or band
structure characteristic of fluorescence.

Unfortunately, these investigations were forgotten for many years. Cerenkov experi-
ments (Cerenkov, 1934) was performed at the suggestion of Vavilov who opened a door
to the true physical nature of the this effect! (Bolotovskii, 2009).

This radiation was first theoretically interpreted by Tamm and Frank (1937) in the
framework of the classical electrodynamics. The source theoretical description of this
effect was given by Schwinger et al. (1976) at the zero temperature regime and the
classical spectral formula was generalized to the finite temperature situation and for the
massive photons by autor (Pardy, 1989; 2002). The Vavilov-Cerenkov effect was also used
by author (Pardy, 1997) to possible measurement of the Lorentz contraction.

Let us start with the three dimensional source theory formulation of the problem.
Source theory (Schwinger et al., 1976) is the theoretical construction which uses quantum-
mechanical particle language. Initially it was constructed for description of the particle
physics situations occurring in the high-energy physics experiments. However, it was
found that the original formulation simplifies the calculations in the electrodynamics and
gravity where the interactions are mediated by photon or graviton respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude:
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where the minus and plus tags on the vacuum symbol are causal labels, referring to any
time before and after space-time region where sources are manipulated. The exponential
form is introduced with regard to the existence of the physically independent experimental
arrangements which has a simple consequence that the associated probability amplitudes
multiply and corresponding W expressions add.

The electromagnetic field is described by the amplitude (1) with the action
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where the dimensionality of W (.J) is the same as the dimensionality of the Planck constant
h. J, is the charge and current densities, where quantity .J, is conserved. The symbol
D, (x — '), is the photon propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by
the following formula (Schwinger et al., 1976):
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where we have introduced the so called power spectral function P(w,t) (Schwinger et al.,
1976). In order to extract this spectral function from Im W, it is necessary to know the
explicit form of the photon propagator D, (x — z').

S0, the adequate name of this effect is the Vavilov-Cerenkov effect. In the English literature, however, it is
usually called the Cerenkov effect.



The electromagnetic field is described by the four-potentials A*(p, A) and it is
generated, including a particular choice of gauge, by the four-current J*(cp,J) according
to the differential equation, (Schwinger et al., 1976):
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with the corresponding Green function D,
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where n* = (1,0), p is the magnetic permeablhty of the dielectric medium with the
dielectric constant €, c is the velocity of light in vacuum, n is the index of refraction of
this medium, and D, (x — z’) was derived by Schwinger et al. (1976) in the following
form:
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Using formulas (2), (3), (5) and (6), we get for the power spectral formula the following
expression (Schwinger et al., 1976):
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Now, we are prepared to apply the last formula to the situations of the two dimensional
dielectric medium. We derive here the power spectrum of photons generated by charged
particle moving in parallel direction to the graphene-like structure with index of refraction
n. While the graphene sheet is conductive, some graphene-like structures, for instance
graphene with implanted ions, or, also 2D-glasses, are dielectric media, and it means that
it enables the experimental realization of the Vavilov-Cerenkov radiation. Some graphene-
like structure can be represented by graphene-based polaritonic crystal sheet (Bludov et
al., 2012) which can be used to study the Vavilov-Cerenkov effect. We calculate it from
the viewpoint of the Schwinger theory of sources.

The charge and current density of electron moving with the velocity v and charge e is
as it is well known:
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In case of the the two dimensional Vavilov-Cerenkov radiation by source theory
formulation, the form of equations (2) and (3) is the same with the difference that
n* = (1,0) has two space components, or n* = (1,0,0), and the Green function D,
as the propagator must be determined by the two dimensional procedure. In other words,
the Fourier form of this propagator is with (dk) = dk%dk = dk°dk*dk? = dk°kdkdd
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where J,,(z) are the Bessel functions (Kuznetsov, 1962), we get after integration over 0:
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and it is pedagogically useful to say that the Bessel functlon Jo(z) has the following
expansion (Kuznetsov, 1962):
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which is convergent for all z with regard to the d’Alembert convergence criterion.

The w-integral in (14) can be performed using the residuum theorem after integration
in the complex half w-plane.

The result of such integration is the propagator D, in the following form:
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The initial terms of the expansion of the Bessel function with zero index is as follows:
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The spectral formula for the two dimensional Vavilov-Cerenkov radiation is the
analogue of the formula (7), or,
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where the charge density and current involves only two dimensional velocities and
integration is also only two dimensional.



The difference is in the replacing mathematical formulas as follows:

sin ¢ |x — x/| nw
W — J0<c|x—x’|> (19)

So, After insertion the quantities (8) and (9) into (18), we get:
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where the t’-integration must be performed. Putting 7 =t — ¢, we get the final formula:
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The integral in formula (21) is involved in the tables of integrals (Gradshteyn et al.
1962) on page 745, no. 8. Or,
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In our case we have a = nfw and b = w. So, the power spectrum in eq. (21) is as
follows with Jo(—z) = Jo(2):
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and
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which means that the physical meaning of the quantity P is really the Vavilov-Cerenkov
radiation. And it is in our case the two dimensional form of this radiation.

While the formula for the three dimensional (3D) Vavilov-Cerenkov radiation is well
known from textbooks and monographs, the two dimensional (2D) form of the Vavilov-
Cerenkov radiation was derived here. Let us remember, in conclusion, the fundamental
features of the 3D Vavilov-Cerenkov radiation:

1) The radiation arises only for particle velocity greater than the velocity of light in the
dielectric medium.

2) It depends only on the charge and not on mass of the moving particles

3) The radiation is produced in the visible interval of the light frequencies and partly in
the ultraviolet part of the frequency spectrum. The radiation does not exists for very
short waves because from the theory of index of refraction n it follows that n < 1 in a
such situation.

4) The spectral dependency on the frequency is linear for the 3D homogeneous medium.
5) The radiation generated in the given point of the trajectory spreads on the surface of
cone with the vertex in this point and with the axis identical with the direction of motion



of the particle. The vertex angle of the cone is given by the relation cos © = ¢/nv. There
is no cone in the 2D dielectric medium

Let us remark that the energy loss of a particle caused by the Vavilov-Cerenkov
radiation are approximately equal to 1% of all energy losses in the condensed matter such
as the bremsstrahlung and so on. The fundamental importance of the Vavilov-Cerenkov
radiation is in its use for the modern detectors of very speed charged particles in the high
energy physics. The detection of the Vavilov-Cerenkov radiation enables to detect not
only the existence of the particle, however, also the direction of motion and its velocity
and according also its charge. The two-dimensional Vavilov-Cerenkov radiation was still
not applied, nevertheless it is promising.
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