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Abstract

The present paper continues a study of a quantum field theory
in terms of the measurability notion introduced in the previous
author’s works. It should be noted that, without detriment to the
consideration and results, we can lift some initial restrictions (lim-
iting conditions) imposed in the above-mentioned papers. Specifi-
cally, it is not supposed initially that a theory involves some minimal
length. Starting from some maximal momentum, we can use it sub-
sequently together with a specific formula to derive the quantity with
a dimension of length that is called the primary length. The first
part of this paper is devoted to analysis of the applicability limit
of Einstein’s Equivalence Principle (EP). It is noted that a natural
applicability limit of this Principle, associated with the development
of quantum-gravitational effects at Planck’s scales, is absolute, its
more accurate estimation being dependent on the processes under
study and on the sizes of the corresponding particles. It is shown
that, neglecting the applicability limit of EP, one can obtain sense-
less results on estimation of the relevant quantities within the scope
of the well-known Quantum Field Theory (QFT). Besides, such a
neglect may be responsible for ultraviolet divergences in this theory.
In the second part of the work the author presents the general prin-
ciples and mathematical apparatus for framing QFT in terms of the
measurability notion introduced by the author earlier, considering
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the above-mentioned remark concerning replacement of a minimal
length by the primary length. Next the author studies QFT in the
measurable form for free quantum fields at low energies E ≪ Ep.
In such QFT in the general case it is expedient to indicate the energy
regions, where EP is valid and where it loses its force, in an effort to
find a natural solution of the ultraviolet divergences problem.

1 Introduction

This paper is a continuation of previous works by the author [1]–[6]. The
first part is devoted to analysis of the applicability limit of Einstein’s Equiv-
alence Principle (EP). It is noted that a natural applicability limit of this
Principle, associated with the development of quantum-gravitational effects
at Planck’s scales, is absolute, its more accurate estimation being depen-
dent on the processes under study and on the sizes of the corresponding
particles. It is shown that, neglecting the applicability limit of EP, one can
obtain senseless results on estimation of the relevant quantities within the
scope of the well-known Quantum Field Theory (QFT), in particular, of
the cosmological term λ in General Relativity (GR). Besides, neglect of the
applicability limit of EP may be responsible for ultraviolet divergences in
OFT.
The idea that all the processes studied in QFT should be considered sepa-
rately in two different energy ranges

E ≪ Ep

and

E ≈ Ep (1)

is substantiated. Then the results earlier obtained by the author [1]–[6]
are used. However now the author lifts some initial restrictions (limiting
conditions) imposed in the above-mentioned papers. Specifically, it is not
supposed initially that a theory involves some minimal length lmin; we start
from the maximal momentum p = pmax,formula (10) in Section 3 (a certain
maximal bound for the measured momenta), and then from this formula we
can derive the length ℓ and the corresponding time τ = ℓ/c. ℓ is called the
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primary length, whereas τ is called the primary time. The whole formalism
developed in [1]–[6] on condition that ℓ is a minimal length is fully valid for
the case when ℓ is the primary length. It is important that there is a pos-
sibility to lift the formal requirement for involvement of lmin in the theory
just from the start. The need for replacement of the minimal length lmin by
the primary length ℓ according to the proposed approach is substantiated
in the following section, see the paragraph titled Explanation.
The principal idea of the above-mentioned works is as follows. Proceeding
from the measurability notion, initially defined in [2] and also in Section
3 of this paper, we can reformulate quantum theory and gravity, removing
from them the abstract infinitesimal variations dt, dxi, dpi, dE, i = 1, ..., 3
and replacing them by the quantities depending on the existent energies
expressed in terms of the quantity ℓ. Within the scope of these terms, at
low energies a theory becomes discrete, it is very close to the initial theory
formulated in the continuous space-time. Actually, discreteness is revealed
at high energies only.
At the present time these theories are defined in the continuous space-time
paradigm but are associated with serious problems, in particular with the
(ultraviolet and infrared) divergences in QFT.
It is obvious that, when ℓ exists, all variations in a physical system, irre-
spective of the energies, should be expressed in terms of ℓ. Though with
the use of new terms, at low energies a theory becomes discrete, it is very
close to the initial theory formulated in the continuous space-time. Actu-
ally, discreteness is revealed at high energies only. The main instrument for
realization of the idea put forward by the author is the notion of measur-
ability, initially defined in [2] and further developed in [5],[6].
The principal results obtained are presented in Section 4, where the ini-
tial mathematical apparatus is extended for studies of QFT in terms of the
measurability notion (or simpler, in the ”measurable” format) for free
fields, with regard to the results of Section 2 concerning the applicability
boundary of EP.
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2 Equivalence Principle Applicability Bound-

ary and QFT Ultraviolet Behavior in Canon-

ical Theory

The Einstein’s Equivalence Principle (EP) is a basic principle not only in
the General Relativity (GR) [7]–[9], but also in the fundamental physics as
a whole. In the standard formulation it is as follows: ([9],p.68):
¡¡at every space-time point in an arbitrary gravitational field it is possible
to choose a locally inertial coordinate system such that, within a suf-
ficiently small region of the point in question, the laws of nature take the
same form as in unaccelerated Cartesian coordinate systems in the absence
of gravitation¿¿.
Then in ([9],p.68) ¡¡...There is also a question, how small is ”sufficiently
small”. Roughly speaking, we mean that the region must be small enough
so that gravitational field in sensible constant throughout it...¿¿.
However, the statement ”sufficiently small” is associated with another
problem. Indeed, let x be a certain point of the space-time manifold M
(i.e. x ∈ M) with the geometry given by the metric gµν(x). Next, in accor-
dance with EP, there is some sufficiently small region V of the point x so
that, within V , we have

gµν(x) ≡ ηµν(x), (2)

where ηµν(x) is Minkowskian metric.
In essence, sufficiently small V means that the region V ′

, for which x ∈
V ′ ⊂ V , satisfies (2) as well. In this way we can construct the sequence

... ⊂ V ′′ ⊂ V ′ ⊂ V . (3)

The problem arises, is there any lower limit for the sequence in formula (3)?
The answer is positive. Currently, there is no doubt that at very high en-
ergies (on the order of Planck’s energies E ≈ Ep), i.e. on Planck’s scales,
l ≈ lp quantum fluctuations of any metric gµν(x) are so high that in this case
the geometry determined by gµν(x) is replaced by the ”geometry” following
from space-time foam that is defined by great quantum fluctuations of
gµν(x),i.e. by the characteristic dimensions of the quantum-gravitational
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region (for example, [10]–[15]). The above-mentioned geometry is drasti-
cally differing from the locally smooth geometry of continuous space-time
and EP in it is no longer valid [16]–[23].
From this it follows that the region Vr,t with the characteristic spatial di-
mension r ≈ lp (and hence with the temporal dimension t ≈ tp) is the lower
(approximate) limit for the sequence in (3).
It is difficult to find the exact lower limit for the sequence in formula (3)–it
seems to be dependent on the processes under study. Specifically, when
the involved particles are considered to be point, their dimensions may be
neglected in a definition of the EP applicability limit. When the charac-
teristic spatial dimension of a particle is r, the lower limit of the sequence
from formula (3) seems to be given by the region Vr′ containing the above-
mentioned particle with the characteristic dimensions r′ > r, i.e. the space
EP applicability limit should always be greater than dimensions of the par-
ticles considered in this region. By the present time, it is known that spatial
dimensions of gauge bosons, quarks, and leptons within the limiting accu-
racy of the conducted measurements < 10−18m. Because of this, the con-
dition r′ ≥ 10−18m must be fulfilled. In addition, the radius of interaction
of particles rint must be taken into account in quantum theory. And this
fact also imposes a restriction on considering concrete processes in quantum
theory. However, the interactions radii of all known processes lie in the en-
ergy scales E ≪ Ep.
Therefore, it is assumed that the Equivalence Principle is valid for the lo-
cally smooth space-time and this suggests that all the energies E of the
particles in the most general form meet the necessary condition

E ≪ Ep. (4)

Then, if not stipulated otherwise, we can assume that the condition (4) is
valid.
The canonical quantum field theory (QFT) [24]– [26] is a local theory consid-
ered in continuous space-time with a plane geometry, i.e with the Minkowskian
metric ηµν(x) . In addition, it is assumed that all objects in QFT are point-
like. However, as noted above, this assumption will be true to a certain
limit: the assumptions that (a) even local space-time geometry is plane and
(b) all objects in QFT are point-like have natural applicability boundaries
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directly specifying the EP applicability boundary.
In reality, any interaction introduces some disturbances, introducing an ad-
ditional local (little) curvature into the initially flat Minkowskian space M.
Then the metric ηµν(x) is replaced by the metric ηµν(x) + oµν(x), where
the increment oµν(x) is small. But, when it is assumed that EP is valid,
the increment oµν(x) in the local theory has no important role and, in a
fairly small neighborhood of the point x, formula (2)is valid and we have
ηµν(x) + oµν(x) ≡ ηµν(x).
Within the scope of the canonical QFT, the process of passage to more
higher energies without a change in the local curvature has no limits [24]–
[26], just this fact is the reason for ultraviolet divergences in QFT. But as
follows from the previous section, this is not the case. Actually, on passage
to the Planck energies E ≈ Ep (Planck scales l ≈ lp), the space in the Planck
neighborhood Vr,t of the point x one cannot consider flat even locally and
in this case (as noted above) EP is not valid.
Then we introduce the following assumption:

Assumption 2.1
In the canonical QFT in calculations of the quantities it is wrong to sum
(or same consider within a single sum) the contributions corresponding to
space-time manifolds with locally nonzero or zero curvatures since these con-
tributions are associated with different processes: (1) with the existence of
a gravitational field that, in principle, can hardly be excluded; (2) in the
absence of a gravitational field.

From the start, we can isolate the case when EP is valid (at sufficiently
low energies, specifically satisfying the condition (4)) from the cases when
EP becomes invalid (for example, Planck energies E ≈ Ep).
Let us consider a widely known example when Assumption 2.1 is not ful-
filled leading to the senseless results.
In his well-known lectures [27] at the Cornell University Steven Weinberg
considered an example of calculating, within the scope of QFT, the expected
value for the vacuum energy density < ρ > that is proportional to the cos-
mological term λ. To this end, zero-point energies of all normal modes
of some field with the mass m are summed up to the wave number cutoff
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Λ ≫ m for the selected normalization ~ = c = 1 (formula (3.5) in [27]):

< ρ >=

∫ Λ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ Λ4

16π2
. (5)

Assuming, similar to [27], that GR is valid at all the energy scales up to
the Planck’s, we have the cutoff Λ ≃ (8πG)−1/2 and hence (formula (3.6) in
[27]) leads to the following result:

< ρ >≈ 2 · 1071GeV 4, (6)

that by 10118 orders of magnitude differs from the well-known experimental
value for the vacuum energy density

< ρexp >≼ 10−29g/cm3 ≈ 10−47GeV 4. (7)

Here G is a gravitational constant.
It is clear that in this case Assumption 2.1 fails as Planck’s scales and
those close to them at lower energies are included into consideration. By
the author’s opinion, this is impermissible because for Planck’s scales the
quantum rather than classical gravity is true and the space even in a small
neighborhood of the point is hardly flat. But in formula (5) for the cutoff
Λ ≃ (8πG)−1/2 this fact is not included because all calculations in the
canonical QFT [26] are valid for the locally flat space and hence (5) in this
case leads to senseless results.
Of particular interest is the inverse problem: if the experimental value of
the vacuum energy density < ρexp > is known from (7), substituting it into
formula (5), we can estimate Λexp at the upper limit of integration by the
above formula

< ρexp >=

∫ Λexp

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ 10−47GeV 4. (8)

Note that Λexp may be found in other way. Denoting by ΛUV the quantity
≃ (8πG)−1/2 from formula (5), corresponding to the cutoff at Planck’s scale
≈ 1, 6 ·10−33cm that is taken as the ultraviolet cutoff, denoting the required
quantity < ρ > by < ρUV >, by ΛIF denoting the quantity from the same
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formula, that corresponds to the cutoff at the scale of a visible part of the
Universe ≈ 1028cm, and the corresponding quantity < ρ > denoting as
< ρIF > (infrared limit), in accordance with [28],[29], we obtain

< ρexp >=
√
< ρUV >< ρIF >. (9)

Obviously, Λexp derived from formulae (8), (9) satisfies the condition (4)
and in this case Assumption 2.1 is fulfilled.

Remark 2.2
In this work we, in fact, consider two extremes:
a)low energies E ≪ Ep and
b)very high (essentially maximal) energies E ≈ Ep.
Then it should be noted that, as all the experimentally involved energies E
are low, they satisfy condition a). Specifically, for LHC maximal energies
are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower than the
Planck energy ≈ 1019GeV .
Moreover, the characteristic energy scales of all fundamental interactions
also satisfy condition a). Indeed, in the case of strong interactions this
scale is ΛQCD ∼ 200MeV ; for electroweak interactions this scale is deter-
mined by the vacuum average of a Higgs boson and equals υ ≈ 246GeV ;
finally, the scale of the (Grand Unification Theory (GUT)) MGUT lies in
the range of ∼ 1014GeV −−1016GeV . It is obvious that all the above figures
satisfy condition a).
Thus, only the expected characteristic energy scale of quantum gravity sat-
isfies condition b).

FromRemark 2.2 it directly follows that even very high energies arising on
unification of all the interaction typesMGUT ≈ 1014GeV− ∼ 1016GeV ,(except
of gravitational),satisfy the condition (4).
At the same time, it is clear that the requirement of the Lorentz-invariant
QFT, due to the action of Lorentz boost (or same hyperbolic rotations)
(formula (3) in [8]), results in however high momenta and energies. But it
has been demonstrated that unlimited growth of the momenta and energies
is impossible because in this case we fall within the energy region, where
the conventional quantum field theory [24]– [26] is invalid.
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Note that at the present time there are experimental indications that Lorentz-
invariance is violated in QFT on passage to higher energies (for example,
[30]). Besides, one should note important recent works associated with EP
applicability boundaries and violation in nuclei and atoms at low energies
(for example [31]). Proceeding from the above, the requirement for Lorentz-
invariance and EP is possible only within the scope of the condition (4).

3 Measurability Notion. A Brief Prelimi-

nary Information and Some Important Re-

finements

In this Section we briefly consider some of the results from [1]–[6] which
are essential for subsequent studies. Without detriment to further consid-
eration, in the initial definitions we lift some unnecessary restrictions and
make important specifications.
Presently, many researchers are of the opinion that at very high energies
(Plank’s or trans-Planck’s) the ultraviolet cutoff exists that is determined
by some maximal momentum.
Therefore, it is further assumed that there is a maximal bound for the
measurement momenta p = pmax represented as follows:

pmax
.
= pℓ = ~/ℓ, (10)

where ℓ is some small length and τ = ℓ/c is the corresponding time. Let us
call ℓ the primary length and τ the primary time.
Without loss of generality, we can consider ℓ and τ at Plank’s level, i.e.
ℓ ∝ lp, τ = κtp, where the numerical constant κ is on the order of 1. Con-
sequently, we have Eℓ ∝ Ep with the corresponding proportionality factor,
where Eℓ

.
= pℓc.

Explanation. In the theory under study it is not assumed from the start
that there exists some minimal length lmin and that ℓ is such. In fact, the
minimal length is defined with the use of Heisenberg’s Uncertainty Princi-
ple (HUP) ∆x ·∆p ≥ 1

2
~ or of its generalization to high (Planck) energies
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– Generalized Uncertainty Principle (GUP) [33]–[41], for example, of the
form [33]

∆x ≥ ~
∆p

+ α′l2p
∆p

~
, (11)

where α′ is a constant on the order of 1. Evidently this formula (11) initially

leads to the minimal length ℓ̃ on the order of the Planck length ℓ̃
.
= 2

√
α′lp.

Besides, other forms of GUP [41] also lead to the minimal length.
But, as is currently known, HUP has been verified and operates well only at
low energies E ≪ Ep. Moreover, there are some serious arguments against
GUP as demonstrated in Section IX of review [41]. Because of this, in the
present work validity of this principle is not implied from the start. GUP
it is given merely as an example. As pmax (10) is taken at Planck’s level, it
is clear that HUP is inapplicable. Taking this into consideration, the exis-
tence of a certain minimal length ℓ̃ is not mandatory. So, we start from the
primary length ℓ and the primary time τ . The whole formalism, developed
in [1]–[6] on condition that ℓ is the minimal length, is valid for the case
when ℓ is the primary length but now we can lift the formal requirement
for involvement of lmin in the theory from the start.

3.1. The primarily measurable space-time quantities (variations) are
understood as the quantities ∆xi and ∆t taking the form

∆xi = N∆xi
ℓ,∆t = N∆tτ, (12)

where N∆xi
, N∆t are integer numbers. Further in the text we use both

N∆xi
, N∆t and the equivalent Nxi

, Nt.

3.2. Similarly, the primarily measurable momenta are considered as
a subset of the momenta characterized by the property

pxi

.
= pNxi

=
~

Nxi
ℓ
, (13)

where Nxi
is a nonzero integer number and pxi

is the momentum corre-
sponding to the coordinate xi.
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3.3. Finally, let us define any physical quantity as primarily or ele-
mentary measurable when its value is consistent with point 3.1,3.2 and
formulae (12), (13).
Then we consider formula (13) with the addition of the momenta px0

.
=

pN0 = ~
Nx0ℓ

, where Nx0 is an integer number corresponding to the time co-

ordinate (N∆t in formula (12)).
For convenience, we denote Primarily Measurable Quantities satisfying
3.1–3.3 in the abbreviated form as PMQ. Also, for the Primarily Mea-
surable Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. E ≪ Eℓ (same E ≪ Ep.
It is obvious that all the nonzero integer numbers Nxi

, Nt (or same Nxµ ;µ =
0, ..., 3) from formulae (12),(13) should satisfy the condition |Nxµ| ≫ 1. It is
clear that all the momenta pi at low energies E ≪ Ep meet the condition
pi = ~/(Niℓ), where |Ni| ≫ 1 but is not necessarily an integer. With regard
for smallness of ℓ and for the condition |Ni| ≫ 1, we can easily show that
the difference 1/(Niℓ)− 1/([Ni]ℓ), (~/(Niℓ)− ~/([Ni]ℓ)) is negligible and in
this way all momenta in the region of low energies E ≪ Ep may be taken
as PMM with a high accuracy.
It is obviously that the case of Low Energies in this section is coincident
with the ”low energies” condition from Remark 2.2.
It is assumed that a theory we are trying to resolve is a deformation of the
initial continuous theory.

Remark 3.0
The deformation is understood as an extension of a particular theory by in-
clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [32].

Then it should be noted that PMQ is inadequate for studies of the physi-
cal processes. In fact, among PMQ, we have no quantities capable to give
the infinitesimal quantities dxµ, µ = 0, ..., 3 in the limiting transition in a
continuous theory.
Therefore, it is reasonable to use notion of Generalized Measurability

11



We define any physical quantity at all energy scales as generalized mea-
surable or, for simplicity, measurable if any of its values may be obtained
in terms of PMQ specified by points 3.1–3.3.
The generalized measurable quantities will be denoted as GMQ.
Note that the space-time quantities

τ

Nt

= pNtc
ℓ2

c~
ℓ

Ni

= pNi

ℓ2

~
, 1 = 1, ..., 3, (14)

where pNi
, pNtc are Primarily Measurable momenta, up to the funda-

mental constants, are coincident with pNi
, pNtc and they may be involved at

any stage of the calculations but, evidently, they are not PMQ, but they
are GMQ.
So, in the proposed paradigm at low energies E ≪ Ep a set of the PMM
is discrete, and in every measurement of µ = 0, ..., 3 there is the discrete
subset Pxµ ⊂ PMM:

Pxµ

.
= {..., pNxµ−1, pNxµ

, pNxµ+1, ...}. (15)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

∆pµ 7→ dpµ,∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∆

∆pµ

7→ ∂

∂pµ

;
∆F(pNxµ

)

∆pµ

=
F(pNxµ

)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

.(16)

And

ℓ

Nxµ

7→ dxµ;

∆

∆Nxµ

7→ ∂

∂xµ

,
∆F(xµ)

∆Nxµ

=
F(xµ + ℓ/Nxµ)− F(xµ)

ℓ/Nxµ

. (17)

It is clear that for sufficiently high integer values of |Nxµ|, formulae (16),(17)
reproduce a continuous paradigm in the momentum space to any preas-
signed accuracy. However, at low energies E ≪ Eℓ a set of PMM clearly is
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not a space. Considering this, the formulae at low energies offer the Cor-
respondence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 3.1.
In this way any point {xµ} ∈ M ⊂ R4 and any set of integer numbers high
in absolute values {Nxµ} are correlated with a system of the neighborhoods
for this point (xµ ± ℓ/Nxµ). It is clear that, with an increase in |Nxµ|, the
indicated system converges to the point {xµ}. In this case all the ingredi-
ents of the initial (continuous) theory the partial derivatives including are
replaced by the corresponding finite differences.

Remark 3.2.
It is further assumed that at low energies E ≪ Eℓ (same E ≪ Ep)
all the observable quantities are PMQ.
Because of this, values of the length ℓ/Ni and of the time ℓ/Nt from for-
mula (14) could not appear in expressions for observable quantities, being
involved only in intermediate calculations, especially at the summation for
replacement of the infinitesimal quantities dt, dxi; i = 1, 2, 3 on passage from
a continuous theory to its measurable variant.

Further it is assumed that at High Energies, E ≈ Ep, PMQ are in-
adequate to study the theory at these energies. This assumption is quite
natural. For example, if GUP (11) is valid and if ℓ = ℓ̃, then formula (11)
at high energies generates the momenta ∆p(N∆x, GUP ) which are not pri-
marily measurable [4] –[6].

Remark 3.3
When at low energies E ≪ Ep we lift restrictions on integrality of Nxµ , from
formulae (16),(17) it directly follows that in this case we have a continuous
analog of the well-known theory with the only difference: all the used small
quantities become dependent on the existent energies and we can correlate
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them. In this way formula (17) may be written as

dxµ ↔ ℓ

Nxµ

→ ℓ

[Nxµ ]
,

∂

∂xµ

↔ ∆

∆Nxµ

→ ∆

∆[Nxµ ]

(18)

where |Nxµ | ≫ 1 is a sufficiently large number that varies continuously. It
is clear that in formula (18) the first arrow corresponds to the continuous
theory with a specific selection of values of the infinitesimal quantities dxµ.
As noted above, the difference ℓ/Nxµ − ℓ/[Nxµ ] is negligible and hence the
second arrow corresponds to passage from the initial continuous theory to
a similar discrete theory. Of course, formula (16) may be rewritten in the
like manner. In what follows, formula (18) plays a crucial part in derivation
of the results and is greatly important for their understanding.
The main target of the author is to form a quantum theory and gravity only
in terms of PMQ.

Measurable form arbitrary metric and Minkowskian metric

According to the previous works, the measurable variants of quantum
theory and gravity at low energies E ≪ Ep should be formulated in terms
of the measurable space-time quantities ℓ/N∆xµ or primary measurable
momenta pN∆xµ

.
Let us consider the case of the random metric gµν = gµν(x) [7],[8], where
x ∈ R4 is some point of the four-dimensional space R4 defined in measur-
able terms. Now, any such point x

.
= {xχ} ∈ R4 and any set of integer

numbers {Nxχ} dependent on the point {xχ} with the property |Nxχ| ≫ 1
may be correlated to the ”bundle” with the base R4 as follows:

BNxχ

.
= {xχ,

ℓ

Nxχ

} 7→ {xχ}. (19)

It is clear that lim
|Nxχ |→∞

BNxχ
= R4.

As distinct from the normal one, the ”bundle” BNxχ
is distinguished only

by the fact that the mapping in formula (19) is not continuous (smooth)
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but discrete in fibers, being continuous in the limit |Nxχ| → ∞.
Then as a canonically measurable prototype of the infinitesimal space-time
interval square [7],[8]

ds2(x) = gµν(x)dx
µdxν (20)

we take the expression

∆s2Nxχ
(x)

.
= gµν(x,Nxχ)

ℓ2

NxµNxν

. (21)

Here gµν(x,Nxχ) – metric gµν(x) from formula (20) with the property that
minimal measurable variation of metric gµν(x) in point x has form

∆gµν(x,Nxχ)χ = gµν(x+ ℓ/Nxχ , Nxχ)− gµν(x,Nxχ). (22)

Let us denote by ∆χgµν(x,Nxχ) quantity

∆χgµν(x,Nxχ) =
∆gµν(x,Nxχ)χ

ℓ/Nxχ

. (23)

It is obvious that in the case under study the quantity ∆gµν(x,Nxχ)χ is a
measurable analog for the infinitesimal increment dgµν(x) of the χ-th com-
ponent (dgµν(x))χ in a continuous theory, whereas the quantity ∆χgµν(x,Nxχ)
is a measurable analog of the partial derivative ∂χgµν(x).
In this manner we obtain the (19)-formula induced bundle over the metric
manifold gµν(x):

Bg,Nxχ

.
= gµν(x,Nxχ) 7→ gµν(x). (24)

Referring to formula (14), we can see that (21) may be written in terms of
the primary measurable momenta (pNi

, pNt)
.
= pNµ as follows:

∆s2Nxµ
(x) =

ℓ4

~2
gµν(x,Nxχ)pNxµ

pNxν
. (25)

Considering that ℓ ∝ lP (i.e., ℓ = κlP ), where κ = const is on the order of
1, to within the constant ℓ4/~2, we have

∆s2Nxµ
(x) = gµν(x,Nxχ)pNxµ

pNxν
. (26)
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As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle Bg,Nxχ

.
Analogously, a canonically measurable prototype of the relativistic infinites-
imal space-time interval square

ds2 = ηµνdx
µdxν . (27)

is given by

∆s2Nxχ
(x)

.
= ηµν(x,Nxχ)

ℓ2

NxµNxν

, (28)

where ηµν is the Minkowskian metric

||ηµν || = ||ηµν || = Diag (1,−1,−1,−1) . (29)

Here the integers Nxχ naturally satisfy the condition |Nxχ| ≫ 1, compo-
nents of the measurable Minkowskian metric ||ηµν(x,Nxχ)|| are ”close” to
||ηµν ||,i.e. we have

lim
(|Nxχ |)→∞

ηµν(x,Nxχ) = ηµν . (30)

Without loss of generality, we can assume that ηµν(x,Nxχ) = 0, µ ≠ ν.
Thus ||ηµν(x,Nxχ)|| is the diagonal matrix too and ||ηµν(x,Nxχ)|| is its in-
verse matrix, i.e.

||ηµν(x,Nxχ)|| · ||ηµν(x,Nxχ)|| = 1 (31)

Further we assume that the integers Nxχ are sufficiently large in absolute
value and, due to formula (30), the metric ||ηµν(x,Nxχ)||, to a high accuracy,
is equal to ||ηµν ||; then formula (28) is as follows:

∆s2Nxχ
(x)

.
= ηµν

ℓ2

NxµNxν

, (32)

4 Quantum Field Theory in Measurable For-

mat

In what follows we suppose: E ≪ Eℓ (or same E ≪ Ep). Besides, some
integer numbers Nxχ , χ = 0, ..., 3 are selected on the condition that |Nxχ | ≫
1.

16



4.1 Main Notations and Theses

Generally, in canonical QFT [24] natural units ~ = c = 1 are used ev-
erywhere. Lorentz indices are always denoted by Greek symbols µ, ν, .. =
0, 1, 2, 3. Then four-vectors for space–time coordinates and particle mo-
menta have the following contravariant components:

x = (xµ) = (x0, x⃗), x0 = t (33)

p = (pµ) = (p0, p⃗ ), p0 = E =
√

p⃗ 2 +m2. (34)

The covariant 4-vector components are related to the contravariant compo-
nents according to

aµ = ηµν a
ν , (35)

were ||ηµν || is the Minkowskian metric from the formula (29) yielding the
4-dimensional squares (scalar products),

a2 = ηµν a
µaν = aµa

µ, a · b = aµb
µ = a0b0 − a⃗ · b⃗. (36)

What variations are associated with a measurable consideration?
In this case it is assumed that all the above-mentioned vectors should be
considered in the measurable form. Then x = (xµ) is a space–time point,
with the coordinates contravariant to the measurable components. Mea-
surability means that all variations of these coordinates are GMQ. On
the contrary, the coordinates pµ of the point p, due to the results from the
previous section and according to the condition E ≪ Ep, are PMQ. All
variations of these coordinates, because of Remark 3.3, may be considered
within the scope of PMQ.
Formulae (35) and (36) in the measurable consideration are retained as
the ordinary derivatives in this case are replaced by the covariant ones in
line with formula (17), and contravariant components of the ”measurable”
derivatives are as follows:

∆

∆Nxµ

= ηµν
∆

∆Nxν

, [
∆

∆Nx0

=
∆

∆Nx0

,
∆

∆Nxi

= − ∆

∆N
xi

];

�Nxµ
=

∆

∆Nxµ

∆

∆Nxµ

. (37)

17



Due to the fact that E ≪ Ep, all the momenta under consideration are given
by formula (15); then the quantum mechanical states of spin-s particles,
with the momentum p = (p0, p⃗) and helicity σ = −s,−s + 1, · · · ,+s, are
denoted in the conventional way by Dirac kets |pNxµ

, σ> and all Nxµ are
integer numbers on the condition that |Nxµ | ≫ 1. They are normalized
according to the relativistically invariant convention

<pσ | p′σ′>=<pNxµ
σ | pN ′

xµ
σ′>= 2p0 δ3(p⃗− p⃗ ′) δσσ′ =

= 2p0 δ3((Nxi
)− (N ′

xi
) ) δσσ′ . (38)

A special state, the zero-particle state or the vacuum, respectively, is de-
noted by |0>. It is normalized to unity

<0 | 0> = 1 . (39)

Considerations of Section 3 point to the fact that the Least Action Principle
at low energies E ≪ Eℓ is valid in the measurable form with substitu-
tion of the measurable analogs defined in the foregoing Section for all the
components involved in the proof of these arguments. For the canonical
(continuous) case we use the notation of Section 3 in [24].
Let φ be a set of all the considered fields φ

.
= (φ1, φ2, ...). Then the action

S in the continuous case taking the form

S =

∫
L(φ, ∂µφ)d4x (40)

is replaced by the measurable action Smeas,N

Smeas,{N} =
∑

Lmeas,{N}(φ,
∆φ

∆Nxµ

)
∏ ℓ

Nxµ

, (41)

where Nxµ – integers with the property |Nxµ | ≫ 1,Lmeas,N–Lagrangian den-
sity of themeasurable fields φ and of theirmeasurable analogs for partial
derivatives in formula (17) ∆φ

∆Nxµ
. This means that all variations of these

functions are expressed in terms of only measurable quantities. In the
product

∏
the index µ takes the values µ = 0, ..., 3, and {N}–collection of

all Nxµ ,i.e. {N} .
= {Nxµ}. Further, where this causes no confusion, for the
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measurable quantities corresponding to the set {N} we can equally use
both the lower index {N} and N .
According to Remarks 3.1.,3.3. for the integer numbers Nxµ sufficiently
high in absolute value we, to a high accuracy, have

S = Smeas,{N}. (42)

Then it is assumed that all the considered functions are measurable, i.e.
all variations of these functions are expressed in terms of only measurable
quantities. In this case well-known formula

∂µ
∂L

∂(∂µϕ)
− ∂L

∂ϕ
= 0 (43)

is replaced by the expression

∆

∆Nxµ

∂Lmeas,{N}

∂( ∆
∆Nxµ

ϕ)
−

∂Lmeas,{N}

∂ϕ
= 0 (44)

The paper [6] presents in detail a measurable form of the Least Action
Principle.
It is clear that in all the formulae, similar to formula (41), on passage
from QFT in continuous consideration to the measurable form of QFT, in
accordance with (16) and (17), the substitution is performed∫

7→
∑

; ∂µ 7→ ∆

∆Nxµ

; d4x 7→
∏ ℓ

Nxµ

, ... (45)

It is clear that the above-mentioned discrete (almost-continuous) (QFT),
with a cut-off at a certain upper limit of the momenta which are consider-
ably much lower than the Planck, should be ultraviolet-finite. In this case
passage to higher energies means going from the momenta pN , |N | ≫ 1 to
the momenta pN ′ , |N | > |N ′| ≫ 1 and, vice versa, passage to lower energies
is going in the last inequality from the integers N

′
to the integers N .

4.2 Basic Principles for Construction of QFT Mea-
surable Variant

Based on the foregoing results and considering the energy bounds E ≪ Ep,
QFT in the measurable form is close to canonical QFT [24]. At the same
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time, it is important to take into account the following remark.

Remark 4.0
As distinct from canonical QFT, for the indicated energies in ”measur-
able” QFT a set of momenta and energies is a certain bounded set PMQ
rather than space.

Besides, in canonical QFT there are no serious limitations on space-time
coordinates for the observable quantities. But this is not the case in ”mea-
surable” QFT. Indeed, according toRemark 3.2., at the indicated low en-
ergies observable quantities correspond to PMQ but at low energies E ≪ Ep

space-time PMQ is nothing else than

{xµ} = Nxµℓ,Nxµ are integer numbers, |Nxµ| ≫ 1 ore Nxµ = 0.(46)

It is clear that this is a really discrete set, whereas the corresponding set of
Primarily Measurable Momenta or PMM, by definition and to a high
accuracy, gives all the (continuous) set of momenta at these energies, as it
has been shown in Section 3. Moreover, it is obvious that in essence the
Minkowskian space-time in terms of the generalized measurable quan-
tities (or simply measurable quantities is not different from the ordinary
Minkowskian space-time in a canonical theory [24]. This conclusion directly
follows from the fact that any real number may be approximated by ratio-
nal numbers to however high accuracy (in the present case by the rational
number multiplied by ℓ or τ).
Proceeding from the above, in a measurable consideration one can use the
Fourier transformation with due regard for the replacement indicated in for-
mula (45). Still, taking into account Remark 4.0, we use only the Fourier
transformation from momentum representation to position representation.
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4.3 Free Quantum Fields in Measurable Form

4.3.1 Simple Lagrangians With Scalars Fields

Using formula (37), we can easily obtain, instead of the well-known La-
grangian for a free real scalar field

L =
1

2
(∂µϕ)

2 − m2

2
ϕ2 (47)

and the corresponding Klein–Gordon equation or KGE

(� +m2)ϕ = 0 (48)

their measurable forms

Lmeas,{N} =
1

2
(

∆

∆Nxµ

ϕmeas)
2 − m2

2
ϕ2
meas (49)

and

(�Nxµ
+m2)ϕmeas = 0 . (50)

Similarly, using the replacement from formula (45), a solution of the equa-
tion (48) in terms of a complete set of the plane waves e±ikx

ϕ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (51)

in the measurable form should be written as follows:

ϕ(x,N∗, N∗)meas =
1

(2π)3/2

N∗∑
Ni=N∗

∆3k

2k0
[a(k) e−ikx + a†(k) eikx] =

=
1

(2π)3/2

pN∗∑
pN∗

∆3k

2k0
[a(k) e−ikx + a†(k) eikx]. (52)

Here, according to Subsection 5.2., x = {xi}, xi = Nxi
ℓ, Nxi

–integers with
the property |Nxi

| ≫ 1, k
.
= {ki}, ki

.
= pNi

= ~/(Niℓ),∆ki
.
= ki − ki+1 =

ki(i+1),∆
3k

.
=

∏3
i=1∆ki, k

0 =

√
k⃗i

2
+m2, Ni are integer numbers too, and

|N∗| ≥ |Ni| ≥ |N∗| ≫ 1, |N∗| ≫ |N∗|. (53)
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Which conditions should be satisfied by the lower N∗ and upper N∗ bounds
of the summation in formula (52)?
Clearly, in the measurable case the function ϕ(x,N∗, N∗)meas from this
formula is not a complete analog of the function ϕ(x) from formula (52). It
is only an analog of the function ϕ(x,N∗, N∗)

ϕ(x,N∗, N∗)
.
=

1

(2π)3/2

pN∗∫
pN∗

d3k

2k0
[a(k) e−ikx + a†(k) eikx ] (54)

that seems to be a certain low-energy part of ϕ(x). Naturally, it is desirable
so that ϕ(x,N∗, N∗) should meet the equation KGE to a high accuracy (48)
to have

(� +m2)ϕ(x,N∗, N∗) = 0 . (55)

As ϕ(x,N∗, N∗)meas is very close to ϕ(x,N∗, N∗) and, respectively, the op-
erator �Nxµ

– to the operator �, the only initial constraint imposed on the
integers N∗, N∗ is the condition that the function ϕ(x,N∗, N∗)meas to a high
accuracy satisfies the equation

(�Nxµ
+m2)ϕ(x,N∗, N∗)meas ≈ 0 . (56)

Then, similar to canonical QFT, in the measurable pattern for the mo-
mentum representation we have

a†(k) |0>= |k>
a(k) |k′>= 2k0 δ3((Ni)− (N ′

i ) |0> . (57)

Similar formulae are easily derived for the complex scalar field ϕ† ̸= ϕ having
two degrees of freedom and describing spinless particles, which carry the
charge ±1 and can be interpreted as particles or antiparticles.
The corresponding Lagrangian of canonical QFT [24]

L = (∂µϕ)
†(∂µϕ)−m2 ϕ†ϕ (58)

is replaced by

Lmeas,{N} = (
∆

∆Nxµ

ϕ)†(
∆

∆Nxµ

ϕ)−m2 ϕ†ϕ, (59)
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where ∆
∆Nxµ

and ∆
∆Nxµ

are related by formula (37).

Consequently, a measurable analog of the Fourier expansion in canonical
QFT with the annihilation and creation operators a, a† for the particle
states |+, k> and b, b† and for the antiparticle states |−, k>,

ϕ(x) =
1

(2π)3/2

∫
d3k

2k0
[a(k) e−ikx + b†(k) eikx ] (60)

has the form

ϕ(x,N∗, N∗)meas =
1

(2π)3/2

N∗∑
Ni=N∗

∆3k

2k0
[a(k) e−ikx + b†(k) eikx] =

=
1

(2π)3/2

pN∗∑
pN∗

∆3k

2k0
[a(k) e−ikx + b†(k) eikx], (61)

where all the basic notations are taken from formulae (52),(53). And, in
analogy with formula (57), we have

a†(k) |0>= |+, k>, b†(k) |0>= |−, k>,

a(k) |+, k′>= 2k0 δ3((Ni)− (N ′
i )) |0>,

b(k) |−, k′>= 2k0 δ3((Ni)− (N ′
i )) |0> . (62)

In the proposed paradigm for propagators in momentum and position rep-
resentations with a measurable picture we have the same formalism as of
the wave functions.
Specifically, in canonical QFT the propagators in the momentum and posi-
tion representations D(k) and D(x− y) are related by the Fourier transfor-
mation

D(x− y) =

∫
d4k

(2π)4
D(k) e−ik(x−y), (63)

and the Green function D(x − y) is a solution of the inhomogeneous field
equation

(� +m2)D(x− y) = −δ4(x− y) . (64)
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Similar to formula (54), at low energies E ≪ Ep in the canonical case of
the well-known QFT for D(x− y) one can introduce the cutoff
D(x− y,N∗, N∗):

D(x− y,N∗, N∗)
.
=

pN∗∫
pN∗

d4k

(2π)4
D(k) e−ik(x−y), (65)

where N∗, N∗–sets of the numbers from formula (53) with the added corre-
sponding bound for p0. D(x − y,N∗, N∗) – low-energy term dependent on
N∗, N∗ in the full propagator D(x− y). In analogy with wave functions, on
the number sets N∗, N∗ the following constraint is imposed:

(� +m2)D(x− y,N∗, N∗) ≈ −δ4(x− y) . (66)

As in ameasurable consideration at low momenta in the domain of E ≪ Eℓ

the approximate equality D(x − y,N∗, N∗)meas ≈ D(x − y,N∗, N∗) should
be the case, formula (65) is replaced by

D(x− y,N∗, N∗)meas
.
=

pN∗∑
pN∗

∆4k

(2π)4
D(k)meas e

−ik(x−y), (67)

where ∆4k is defined in the same way as ∆3k in formula (52) with the
addition of the zero-index coordinate. As a result, formula (66) in the case
under study is transformed to the following expression:

(�Nxµ
+m2)D(x− y,N∗, N∗)meas ≈ −δ4(x− y) . (68)

As the wave functions describe free particles without space–time limitations,
with regard to the foregoing formula, in a measurable consideration for
the propagator in the momentum space, similar to the canonical case, we
have

(k2 −m2)D(k)meas = 1 . (69)

A solution for (69) is of the form

iD(k)meas =
i

k2 −m2 + iϵ
. (70)
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However, now k takes a discrete, restricted set of values that is represented
by formulae (52),(53) and expanded for the four-dimensional case in formula
(67).
The Feynman diagram associated with a scalar propagator in this case is of
the standard form

iD(k)meas •- - -¿- - -•
k .

Of particular importance are the following remarks.
Remark 4.1
It should be noted that, when coordinates of the space-time points x and
y are the coordinates of some observable quantities, in the measurable
picture they satisfy the condition (46). Moreover, as energies are low, coor-
dinates of the point x− y should satisfy the same condition when x ̸= y.

Remark 4.2
From Remark 3.3 it follows directly that the functions ϕ(x,N∗, N∗)meas

and ϕ(x,N∗, N∗) from formulae (52) and (54), respectively, are close to each
other and in the majority of calculations we can assume that ϕ(x,N∗, N∗) ≈
ϕ(x,N∗, N∗)meas. The only cardinal distinction of ϕ(x,N∗, N∗)meas from
ϕ(x,N∗, N∗) is the fact that, if the number N∗ is finite, the first of the men-
tioned functions in its Fourier series expansion is determined by the finite
number of the terms, whereas the second – by the infinite number. Simi-
larly close are the Green functionsD(x−y,N∗, N∗) andD(x−y,N∗, N∗)meas

from formulae (65) and (67), respectively.

Remark 4.3
If we assume that |N∗| are large enough (and the corresponding momenta
p∗N are thus small) so that, without any detriment for the performed calcu-
lations, we can consider |N∗| = ∞, (and, consequently, p∗N = 0).
Then the above-mentioned functions ϕ(x,N∗, N∗)meas, (ϕ(x,N

∗, N∗)), D(x−
y,N∗, N∗)meas, (D(x− y,N∗, N∗)), ... should be dependent on the single pa-
rameter N∗

ϕ(x,∞, N∗)meas ≡ ϕ(x,N∗)meas,

D(x− y,∞, N∗)meas ≡ D(x− y,N∗)meas, ... (71)
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It is clear that |N∗|–integer cutoff parameter at the upper bound of mo-
menta: the lower the parameter, the large the momenta p|N∗|, the closer
the quantities ϕ(x,N∗)meas, ϕ(x,N∗), D(x − y,N∗)meas, D(x − y,N∗), ... to
the initial ones ϕ(x), D(x− y), .... But, considering that (see Section 2) the
Einstein Equivalence Principle (EP) should have the applicability bound-
ary, it is assumed:

4.3.1The parameter |N∗| has the minimum |Ñ∗| determined by linear di-

mensions of the minimal neighborhood |Ñ∗|ℓ, for which (EP) remains valid
in the process under study. The fact that such a neighborhood should be
the case, with |N∗| ≫ 1, was noted in Section 2.

4.3.2 Vector and Dirac Fields

It is obvious that for vector and Dirac fields the whole formalism from 4.3.1
remains valid.
In particular, let Aµ(x) is vector field which describes a particle with spin
1. If this particle has the mass m, then the corresponding Lagrangian for a
free system (‘massive photon’) in a canonical theory [24] is of the form

L = −1

4
FµνF

µν − m2

2
AµA

µ with Fµν = ∂µAν − ∂νAµ (72)

yielding from (43) (with ϕ → Aν) the Proca equation[
(�+m2) ηµν − ∂µ∂ν

]
Aν = 0 . (73)

And, due to (45), formulae (72),(73) are replaced in a measurable picture
by the formulae

Lmeas = −1

4
Fµν,measF

µν
meas −

m2

2
AµA

µ with

Fµν,meas =
∆

∆Nxµ

Aν −
∆

∆Nxν

Aµ, (74)

and [
(�Nxµ

+m2) ηµν − ∆

∆Nxµ

∆

∆Nxν

]
Aν = 0 . (75)
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Correspondingly, the field Aµ that can be represented for canonical QFT as
a Fourier expansion

Aµ(x) =
1

(2π)3/2

∑
λ

∫
d3k

2k0

[
aλ(k) ϵ

(λ)
µ (k) e−ikx + a†λ(k) ϵ

(λ)
µ (k)∗ eikx

]
,

(76)

similar to formula (52), may be written in the measurable form as follows:

Aµ(x,N
∗, N∗)meas =

=
1

(2π)3/2

∑
λ

pN∗∑
pN∗

∆3k

2k0

[
aλ(k) ϵ

(λ)
µ (k) e−ikx + a†λ(k) ϵ

(λ)
µ (k)∗ eikx

]
, (77)

where in the last formula all the basic notations are taken from formulae
(52),(53) and helicity λ = ±1, 0 for massive particles, λ = ±1 for particles
with zero mass.
Similar to the scalar case, the Feynman propagator of a vector field in the
measurable form, D(x− y,N∗, N∗)meas, is a solution of the inhomogeneous
field equation[
(�Nxµ

+m2) ηµρ − ∆

∆Nxµ

∆

∆Nxρ

]
Dρν(x− y,N∗, N∗)meas ≈ ηµν δ

4(x− y)

(78)

by the respective Fourier transformation

D(x− y,N∗, N∗)meas
.
=

pN∗∑
pN∗

∆4k

(2π)4
D(k) e−ik(x−y), (79)

that naturally agrees with formula (67).
Repeating all steps from 4.3.1, we can derive the Feynman propagator of a
massive vector field in a measurable consideration in the standard form

iDρν(k)meas =
i

k2 −m2 + iϵ

(
−ηνρ +

kνkρ
m2

)
, (80)
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where, as noted in 4.3.1, k takes a discrete, restricted set of values that is
determined by the numbers N∗ and N∗.
The measurable case for a massless vector field and Dirac fields is treated
in the same way. Of course, in the process all the foregoing remarks Re-
mark 4.1–Remark 4.3 remain valid.
In conclusion the procedure in terms of measurability notion is shown for
gauge theories at low energies.

4.4 Measurability for Gauge Theories at Low Ener-
gies

In this section we use the formalism from [24],[25].
It is easily seen that at low energies E ≪ Ep for the gauge theories written
in the measurable form all formulae of the canonical (continuous) theory
are valid when using the corresponding substitution in accordance with
formulae (16),(17),(45).
Indeed, let G – gauge group and {N} .

= {Nxµ}, similar to formulae from
the preceding section,– fixed set of the integers |Nxµ | ≫ 1 sufficiently large
in the absolute value.
As G - group of the local internal symmetries of a physical system and the
definition of measurability refer only to the space-time indexes, we can
get the following correspondences:

W′
µ = U Wµ U

−1 − i

g
(∂µU)U−1 7→ W′

µ,{N}
.
=

.
= U Wµ,{N}, U

−1 − i

g
(

∆

∆Nxµ

U)U−1,

Dµ = ∂µ − igWµ 7→ Dµ,{N}
.
=

.
=

∆

∆Nxµ

− igWµ,{N},

Fµν = ∂µWν − ∂νWµ − i g [Wµ,Wν ] 7→ Fµν,{N}
.
=

.
=

∆

∆Nxµ

Wν,{N} −
∆

∆Nxν

Wµ,{N} − i g [Wµ,{N},Wµ,{N}]. (81)
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And, similarly, we have

Ψ (iγµDµ −m)Ψ 7→ Ψ{N} (iγ
µDµ,{N} −m)Ψ{N}. (82)

Here g is a coupling constant,Wµ – space-time components of gauge fields,
Ψ,Ψ–corresponding material fields (in this case fermion),Dµ–covariant deriva-
tive and U - element of the gauge group G.
Passage in formulae (81),(82) from the left- to the right-hand side is as-
sociated with the transition from the canonical (continuous) consideration
to the representation in terms of measurable quantities for the fixed set
{N} .

= {Nxµ}. It is clear that in this case all the transformable quanti-
ties in the right-hand sides of these formulae should depend on {N},that is
indicated by the additional lower index {N}. In a similar way, the ”mea-
surable” metric gµν(x,Nxχ) ≡ gµν(x, {N}) from formula (21) is dependent
on {N}.
However, considering that the energies are low and the numbers |Nxµ | ≫ 1
are sufficiently high, the above-mentioned relationship is very weak.
As follows from formulae (81),(82) and from the paragraph preceding these
formulae, if L – gauge-invariant Lagrangian associated with the left-hand
sides of these formulae, the corresponding Lagrangian given in terms of
measurable quantities Lmeas,{N} is also gauge-invariant by G and we have

L ≈ Lmeas,{N}. (83)

Besides, from the above formulae it follows that all the known relations
for the gauge theory with the group G are valid, to a high accuracy, at
low energies for a measurable variant of this theory on replacement of all
basic quantities in the initial theory by the corresponding quantities with
the additional lower index {N}.
Specifically, the ”gauge” analog Bianchi identity

DρFµν +DµFνρ +DνFρµ = 0 (84)

in the measurable form is replaced, to a high accuracy, by the identity

Dρ,{N}Fµν,{N} +Dµ,{N}Fνρ,{N} +Dν,{N}Fρµ,{N} = 0. (85)
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Obviously, this accuracy is the higher the greater the absolute values of the
numbers from the set {N}.
Similar to the canonical case, formula (84) is equivalent to the Jacoby iden-
tity ∑

cyclic permutations

[Dρ, [Dµ, Dν ]] = 0, (86)

in the measurable consideration formula (85) to a high accuracy is equiv-
alent to the measurable form of Jacoby identity∑

cyclic permutations

[Dρ,{N}, [Dµ,{N}, Dν,{N}]] = 0. (87)

5 Conclusion

In the proposed approach we have considered QFT in themeasurable form
at the energies E ≪ Ep (or same E ≪ El). In the process the upper bounds
for a sum of the contributions made by the particles during calculations of
physical quantities are determined by the EP applicability boundaries which
in specific cases should be much lower than Ep.
This paper presents only a single case of free quantum fields. To use the
potentialities of this approach in full, we should study thoroughly the case
of interacting fields in terms of the measurability notion and the EP ap-
plicability boundaries dependence for specific processes. Within the scope
of the UV divergence problem in canonical QFT [24]– [26], most important
for this consideration are loop Feynman diagrams.
Initially, we have chosen some maximal bound for the measurement mo-
menta p = pmax at Plank’s level and the corresponding primary length ℓ
from formula (10). Of course, all the results should not be dependent on
this choice.
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