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Abstract

In this paper gravity is studied within the scope of the mea-
surability notion introduced by the author in his previous works.
The measurable variant of General Relativity (GR) is constructed
and it is shown that this variant represents its deformation. In the
general form it is demonstrated that all the basic ingredients of GR
have their measurable analogs, the way to derive every term in a
measurable variant of the Einstein equations is presented. Passage
of the measurable analog of GR to the ultraviolet (Planck’s) region
is considered, showing that it is quite natural from the viewpoint
of the methods and approaches developed in this work. The results
obtained are discussed; a further course of studies by the author is
indicated.

1 Introduction

This paper is a continuation of the author’s works [1]-[9]. The target of
the indicated works is to construct a correct quantum theory and gravity
in terms of the variations (increments) dependent on the existent energies.
It is clear that such a theory should not involve the infinitesimal space-time
variations dt,dx;,© = 1,...,3 and, in general, any abstract small quantities
ot,dx.
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The main instrument specified in the above mentioned articles was the mea-
surability concept introduced proceeding from the existence in a theory of
the minimal (fundamental) length /.

Within the framework of the concept, the theory becomes discrete but at
low energy levels F, distant from the Plank energies £ < Ep, it becomes
very close to the initial theory in the continuous space-time paradigm.
This paper presents a study of gravity within the scope of the measura-
bility notion. A measurable variant of General Relativity (GR) is con-
structed and it is shown that this variant presents its deformation according
to the definition given in the well-known paper [10]. In the general form it is
demonstrated that all the basic ingredients of GR have their measurable
analogs; the way to derive every term in the measurable variant of the
Einstein equations is presented. Passage of the measurable analog of GR
to the ultraviolet (Plank’s) region is considered, showing that it is quite
natural from the viewpoint of the notions and approaches developed in the
work.

This paper is based on the findings of the work [3].

The structure of this paper is as follows. Section 2 presents the information
necessary for extension of the findings earlier obtained in [1]-[9]. Then in
Section 3 the principal mathematical apparatus required to study measur-
ability in gravity is considered and, specifically, the measurable variant
(approximation) of the coordinate transformations. Section 4 presents the
main results. Finally, in Section 5 the author considers his further course
of studies.

2 Measurability Concept

2.1 Primary and Generalized Measurability in Gen-
eral Case

We begin with a particular minimal (universal) unit for measurement of the
length ¢ corresponding to some maximal energy E, = % and a universal

unit for measurement of time 7 = ¢/c. Without loss of generality, we can
consider ¢ and 7 at Plank’s level, i.e. ¢ = kl,, 7 = kt,, where the numerical



constant x is on the order of 1. Consequently, we have E, oc E, with the
corresponding proportionality factor.

Note that ¢ and 7 are referred to as "minimal” and ”universal” units of
measurement because in our case this is actually true.

Now consider in the space of momenta P defined by the conditions

70, (1)

Then we can easily calculate the numerical coefficients N; as follows:

P={ps},i=1,..3;|pa,

N; = or (2)

Here p,, is the momentum corresponding to the coordinate z;.

Definition 1. Primary Measurability

1.1 The momenta p given by the formula (1) are called the primary mea-
surable momenta when all N; from equation (2) are integer numbers.

1.2. Any variation in Az; for the coordinates x; and At of the time ¢ is
considered primarily measurable if

AIi = NA%[, At = NAtT, (3)

where Na,, # 0 and Na; # 0 are integer numbers.

1.3 Let us define any physical quantity as primary or elementary mea-
surable when its value is consistent with points 1.1 and 1.2 of this Defini-
tion.

We consider two different cases.
A) Low Energies, F < E,.

In P we consider the domain Py C P (LE is abbreviation of ”Low Ener-
gies”) defined by the conditions
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where P, = Fy/c-maximal momentum.
In this case the formula of (2) takes the form

h
Ni = m,OT (5)

3

N _h

|N;| > 1,

where the last row of the formula (5) is given by the requirement (4).

As the energies £ < Ej are low, i.e. (|NV;| > 1), primary measurable
momenta are sufficient to specify the whole domain of the momenta to a
high accuracy Ppg.

It is clear that

[N;] < N; < [N;]+1, (6)

where [N] defines the integer part of X. Then |N;|~! falls within the in-
terval with the finite points |[N;]|™! and |[N;] + 1|~! (which of the num-
bers is greater or smaller, depends on a sign of N;). In any case we have
N7 = [N < N+ D)7 = [N = (V] + DV

Thus, the difference between py, and pjy,) is negligibly small. Therefore,
the primary measurable momenta py,, (|N;| > 1) are sufficient to specify
the whole domain of the momenta to a high accuracy Ppg.

This means that in the indicated domain a discrete set of primary measur-
able momenta py;, (i = 1, ..., 3) from formula (5) varies almost continuously,
practically covering the whole domain.

That is why further Py is associated with the domain of primary mea-
surable momenta, satisfying the conditions of the formula (4) (or (5)).
Then boundaries of the domain P are determined for each coordinate by
the condition

N* > |N;| > N, > 1,

where high natural numbers N* N, are determined by the problem at hand.
The choice of the number N* is of particular importance. If N* < oo, then
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it is clear that the studied momenta fall within the domain Py . Assuming
the condition N* = oo, to P g for every coordinate x; we should add ”im-
proper” (or ”singular”) point p,, = 0 (these cases are called degenerate).
In any case, for each coordinate x;, the boundaries of Py are of the form:

pn- < pn| < P, (7)

For definiteness, we denote P, having the boundaries specified by the
formula (7), in terms of Pg[N*, N,].
It is obvious that in this formalism small increments for any component
pn, of the momentum p € Ppp are values of the momentum Py!s 8O that
|N;| > |N;]. And then, incrementing |N;|, we can obtain arbitrary small
increments for the momenta p € Pg.

A) High Energies, F ~ E,.
In this case formula (2) takes the form

And the discrete set py, is introduced as primary measurable momenta.

It is clear that primarily measurable variations in Az; for the coordi-
nates x; and in At for the time ¢ given in point 1.2 of Definition 1 could
hardly play a role of small spatial and temporal variations.

However, space-time quantities

T, £
Nt _pNtcCh
12 2



for |N;| > 1,|N¢ > 1 are small and they may be arbitrary small for
sufficiently high values of |N;|, | Ny|:

Nt 7pNtC h ]
f 62 N;—o00
— =py— — 0,1=1,...,3 10
Ni DPN; A ) 3 erey 9y ( )

Here py,, pn,.—corresponding primarily measurable momenta.

Of course, due to point 1.2 of Definition 1, the space and time quantities
T/Ny, £/N; are not primary measurable despite the fact that they, to
within a constant factor, are equal to primarily measurable momenta.
Therefore, it seems expedient to introduce the following definition:

Definition 2. Generalized Measurability

We define any physical quantity at all energy scales £ < FE, as general-
ized measurable or, for simplicity, measurable if any of its values may
be obtained in terms of Primarily Measurable Quantities specified by
points 1.1-1.3 of Definition 1.

It is evident that any primarily measurable quantity (PMQ) is mea-
surable. Generally speaking, the contrary is not correct, as indicated by
formula (9).

The ”improper” points associated with |N;| = oo and |N;| = oo may be
introduced into Definition 2., respectively, as in the case of low energies.
It has been shown that the Primary Measurable Momenta nearly cover
the whole momenta domain Py g at low energies F < FE,. However, this is
no longer the case at all the energy scales £ < Fj.

Therefore, the main target of the author is to construct a quantum theory
at all energy scales F < E, in terms of measurable quantities.

In this theory the values of the physical quantity G may be represented by
the numerical function F in the following way:

g:-F(Ni;Nhg):‘F(NhNt?G?h?C’K)’ (11)

where NN;, Ny—integers from the formulae (2),(9) and G, h, ¢ are fundamental
constants. The last equality in (11) is determined by the fact that ¢ = s,
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and [, = /Gh/c3.
If N; # 0, N; # 0 (nondegenerate case), then it is clear that (11) can be
rewritten as follows:

G = F(N;, Ny, l) = ﬁ((Ni)fla (Ny)~,0) (12)

Then at low energies £ < Ey, ie. at |[N;| > 1|V > 1, the function
F is a function of the variables changing practically continuously, though
these variables cover a discrete set of values. Naturally, it is assumed that
F varies smoothly (i.e. practically continuously). As a result, we get a
model, discrete in nature, capable to reproduce the well-known theory in
continuous space-time to a high accuracy, as it has been stated above.
Obviously, at low energies F < E, the formula (12) is as follows:

G = F(N;, Ny, l) = j':((Nz‘)fla (Ny) ™' 0) = (13)
= fp(pNﬂpNtc?g)?

where py,, pn,, are primary measurable momenta.

2.2 Generalized Measurability and Generalized Un-
certainty Principle

Basic results of this Subsection are contained in [3] and [9].
Further it is convenient to use the deformation parameter «,. This pa-
rameter has been introduced earlier in the papers [15],[16],[17]-[20] as a
deformation parameter (in terms of paper [10]) on going from the canoni-
cal quantum mechanics to the quantum mechanics at Planck’s scales (Early
Universe) that is considered to be the quantum mechanics with the minimal
length (QMML):

o, = 1?/a?, (14)

where a is the primarily measuring scale. It is easily seen that the parameter
a, from Equation (14) is discrete as it is nothing else but

2 1

aq = ay, = */a* = g NT (15)




for primarily measurable a = N,/{.
It should be noted that Heisenberg’s Uncertainty Principle (HUP) [12] is
fair at low energies £ < Fp. However it was shown that at the Planck
scale a high-energy term must appear:
h 12 Op

Az > A—p—kalp? (16)
where I, is the Planck length 2 = Gh/c¢® ~ 1,6 107*m and o' is a con-
stant. In [21] this term is derived from the string theory, in [22] it follows
from the simple estimates of Newtonian gravity and quantum mechanics, in
[23] it comes from the black hole physics, other methods can also be used
25],[24],[30]. Relation (16) is quadratic in Ap

o'l (Ap)* — hAzAp+ 1> <0 (17)
and therefore leads to the minimal length
AZppin = 2¢/d'l, = (18)

Inequality (16) is called the Generalized Uncertainty Principle (GUP) in
Quantum Theory.

Let us show that the generalized-measurable quantities are appeared
from the Generalized Uncertainty Principle (GUP) [21]-[32] (formula
(16)) that naturally leads to the minimal length ¢ (18).

Really solving inequality (16), in the case of equality we obtain the apparent
formula

(Az & /(Az)? — 4/2)h

20/l§

Apy = (19)
Next, into this formula we substitute the right-hand part of formula (3) for
primarily measurable Az = Nx,¢. Considering (18), we can derive the
following;:

(Naz £ v/ (Nag)? — 1)l
Api g %EQ =
2(Nas £ /(Nag)? — 1)

- - . (20)




But it is evident that at low energies £ < Ey; Na, > 1 the plus sign in the
nominator (20) leads to the contradiction as it results in very high (much
greater than the Planck’s) values of Ap. Because of this, it is necessary to
select the minus sign in the numerator (20). Then, multiplying the left and
right sides of (20) by the same number Na, + /N3, — 1, we get

Ap = 2h : (21)
(Nag + /N3, — 1)¢

Ap from formula (21) is the generalized-measurable quantity in the sense
of Definition 2. However, it is clear that at low energies F < Fy, i.e. for
Na, > 1, we have \/N3, — 1 ~ Na,. Moreover, we have

. 2 _
Niigoo”Nm’ 1 = Nag. (22)

Therefore, in this case (21) may be written as follows:

0 R
1/2(Nag + /N2, —1)¢  Nagl Az’

Ap = Ap(Nag, HUP) = Na, > 1,(23)

in complete conformity with HUP. Besides, Ap = Ap(Na,, HUP), to a high
accuracy, is a primarily measurable quantity in the sense of Definition
1.

And vice versa it is obvious that at high energies F ~ Fy, i.e. for Na, ~ 1,
there is no way to transform formula (21) and we can write

h
Ap = Ap(Na,, GUP) = i Naz =~ 1. 24
Y4 29( A ) 1/2(Nm+ Niz—l)é A ( )

At the same time, Ap = Ap(Na,, GUP) is a Generalized Measurable
quantity in the sense of Definition 2.
Thus, we have

GUP — HUP (25)

for
(Nag = 1) = (Naz > 1). (26)



Also, we have
Ap(Npy, GUP) — Ap(Naz, HUP), (27)

where Ap(Naz, GUP) is taken from formula (24), whereas Ap(Na,, HUP)
from formula (23).

Comment 2%
From the above formulae it follows that, within GUP, the primarily mea-
surable wvariations (quantities) are derived to a high accuracy from the
generalized-measurable wvariations (quantities) only in the low-energy
limit E < Ep

Next, within the scope of GUP, we can correct a value of the parameter
a, from formula (15) substituting a for Az in the expression 1/2(Na, +

VNI 1)L,

Then at low energies ¥ < E;y we have the primarily measurable quantity
a,(HUP)

1 1
= ~—: N, > 1, 28
12N+ NP N e 28)

that corresponds, to a high accuracy, to the value from formula (15).
Accordingly, at high energies we have E =~ Fj

g = a,(HUP)

g = oo (GUP) L. (29)

1
= s Ny =~
[1/2(Na + /NG = 1)J?
When going from high energies F ~ E, to low energies ¥ < FE,, we can
write

ag(Gup)y NN g p) (30)

in complete conformity to Comment 2%

Remark 2.1 What is the main difference between Primarily Measur-
able Quantities (PMQ) and Generalized Measurable Quantities
(GMQ)? PMQ defines variables which may be obtained as a result of
an immediate experiment. GMQ defines the variables which may be cal-
culated based on PMQ), i.e. based on the data obtained in previous clause.
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Remark 2.2. It is readily seen that a minimal value of N, = 1 is unattain-
able because in formula (24) we can obtain a value of the length [ that is
below the minimum [ < ¢ for the momenta and energies above the maximal
ones, and that is impossible. Thus, we always have N, > 2. This fact was
indicated in [15],[16], however, based on the other approach.

Let us for three space coordinates z;;¢ = 1,2,3 we introduce the follow-
ing notation:

A<Iz> = A[O‘NA%] = aNAzié(NA$i€> = g/NAxi;
Any,, [F(@:)]  F(a; + Axy)) — F(w;)

A Al ’ 531

where F(z;) is ”measurable” function, i.e function represented in terms
of measurable quantities.
Then function Ay,, [F'(z;)]/A(z;) is ” measurable” function too.
It’s evident that
AN, [F ()] Any,, [F(z:)]  OF

INA;I\H%OO Alx;) A(igio Alx;) 0x; (32)

Thus, we can define a measurable analog of a vectorial gradient V

ViNaw, =1 A (xz) } (33)
and a measurable analog of the Laplace operator
2
ANar) = VNay, VNay = Z ﬁgfy (34)
Respectively, for time xy =t we have:
A(t) = Alany,] = ang-(Nar) = 7/Nag;
ANy, [F(t)] _ F(t+A(t)) — F(t) (35)

A(t) A(t) ’



then

L AwaFO] A [FO)] _dE
|Nilt]‘:r—l>oo Alt) Al(t)—m Aty dt’ (36)

We shall designate for momenta p;;1 =1,2,3

h
Ap; = :
P Nanl
h
Ay F(pi) _ Flpi+ Ap) — F(pi) _ Flpi+ 57) — (i) o
Api Ap; Mot
;From where similarly (32) we get
‘ F(pi + Ap;) — F(p:) . F(pi + NAZ@) — F(pi)
lim = lim . =
INag, |00 Ap; |Na, |00 Ny
F(p: - Ap.) — F(p, F
g DR AR) = Flp) O o
Ap;—0 Ap; Op;

Therefore, in low energies F < Fy, i.e. at |[Nag| > 1;|Nag| > 1,0 =
1,...,3 in passages to the limit (32),(36),(38) it’s possible to obtain from
”measurable” functions partial derivatives like in case of continuous space-
time. That is, the partial derivatives of from ”measurable” functions can
be considered as ”measurable” functions with any given precision.

In this case the infinitesimal space-time variations dt,dx;,i = 1,...,3 are
appearing from formula (10) in the limit from measurable quantities.

3 Measurability. The Main Instruments

The calculations from Section 2 (formula (6) and the fragment directly
following this formula) indicate that, to a high accuracy, the momentum
(pn,), where N, is any (but not only integer) number having the property
|N,| > 1, may be thought to be equal to the momentum (ppy,)).

Therefore, it is assumed that we are in the domain of low energies £ < Ej,
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and we start from the primary measurable momenta (py,,py,.) in the
left-hand side of formula (10) to have

N> 1 (39)

for all the elements of the set {N,} = {Ny, N;},i =1,2,3; Nie = Ny = Np.
Further we equivalently use both the designation N, and Nag,. In the lat-
ter case it is assumed that the selected point has the coordinates x,,.

To construct the measurable variant of a theory, we formulate the follow-
ing principle.

Principle of Correspondence to Continuous Theory.

The infinitesimal space-time quantities dx,;u = 0,...,3 and also infinitesi-
mal values of the momenta dp;,7 = 1,2, 3 and of the energies

dE form the basic instruments (“construction materials”) for any theory
in continuous space-time. Because of this, to construct the measurable
variant of such a theory, we should find the adequate substitutes for these
quantities.

It is obvious that in the first case the substitute is represented by the quan-
tities ¢/N,,, where |N,| — no matter how large (but finite!) integer, whereas
in the second case by py, = Nli[;i =1,2,3;&n, = J\%? where N, — integer
with the above properties.

Remark 3.1. In this way in the proposed approach all the primary mea-
surable momenta at low energies E < Ly, py,, |N,| > 1 are small quan-
tities, the primary measurable momenta py, with no matter how large
|N,,| > 1 being analogous to infinitesimal quantities of a continuous theory.
It is clear that in this case we consider the whole set of the momenta (for-
mula (4)), not imposing the restrictions from formula (7). These restrictions
may naturally appear when solving a particular problem for the processes
in the preset bounds of the energy scales.

It should be noted that, as all the experimentally involved energies F are
low, they meet the condition £ < FE,, specifically for LHC the maximal
energies are ~ 10TeV = 10*GeV, that is by 15 orders of magnitude lower
than the Planck energy ~ 10°GeV. But since the energy E, is on the
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order of the Planck energy E, o E,, in this case all the numbers N; for
the corresponding momenta will meet the condition min|N;| & 10 i.e., the
formula of(5). So, all the experimentally involved momenta are considered
to be primary measurable momenta at low energies £ < Fj.

Let us consider any coordinate transformation z# = x* (") of the space—
time coordinates in continuous space—time. Then we have
oxt
oxv
As mentioned at the beginning of this section, in terms of measurable
quantities we have the substitution

dx* =

dz". (40)

14
1dT” = — , (41)
Az, Nagz,

dzt —

where Nag,, Naz, — integers (|Naz,| > 1, |Naz,| > 1) sufficiently high in
absolute value, and hence in the measurable case (40) is replaced by

14 14
Naz, Naz,

= AMV<xM7 jyv 1/NA1‘;U 1/NA56V) (42)

Equivalently, in terms of the primary measurable momenta we have
PNas, = D@, 7", 1/Nag,, 1/Naz,) PR, (43)

where A, (2%, 27, 1/Npg,, 1/Naz,) = A (3, T, PNaw, + PN g, ) — cOrrespond-
ing matrix represented in terms of measurable quantities.

It is clear that, in accordance with formula (10), in passage to the limit we
get

lim =dz" =
‘NAxM|4>OO NA:BH
C dim A (a2 1/Naw 1/ Nas,) o = 9T g (44)
— |NAQU‘HOO n ) ) Axy s AZ, NA@V = axl’ .

Equivalently, passage to the limit (44) may be written in terms of the pri-
mary measurable momenta PNas, s PNas, multiplied by the constant ¢2/F.
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How we understand formulae (41)—(44)?

The initial (continuous) coordinate transformations z# = z# (") gives the
matrix ‘gg‘; . Then, for the integers sufficiently high in absolute value Naz,,|Nagz, | >
1, we can derive

14 ort /¢
- - (45)
NA:EN a’tl’ NAi‘y

where |NAIM| > 1 but the numbers for Na,, are not necessarily integer.

Still, as noted above, the difference between ¢/Na,, and ¢/[Na.,] (and

hence between py,, ~and pin,, ]) is negligible.

Then substitution of [Na,,| for Na,, in the left-hand side of (45) leads to re-

placement of the initial matrix g“’;‘: by the matrix A, (2", 7", 1/Nag,, 1/Naz,)
represented in terms of measurable quantities and, finally, to the formula

(42). Clearly, for sufficiently high [Ny, |, [Naz, | , the matrix A, (z*, 2¥,1/Nag,,1/Nas, )
may be selected no matter how close to g;':.

Similarly, in the measurable format we can get the formula

ox*

oxv

dz" =

dx”. (46)

Thus, any coordinate transformation may be represented, to however high
accuracy, by the measurable transformation (i.e., written in terms of mea-
surable quantities), where the principal components are the measurable
quantities £/Na,, or the primary measurable momenta PNaa, -

4 Measurability in Gravity in the General
Form

According to the results from the previous section, the measurable vari-
ant of gravity should be formulated in terms of the measurable space-time
quantities //Na,, or primary measurable momenta PN, -
Let us consider the case of the random metric g,, = g,.(x) [33],[34], where
x € R* is some point of the four-dimensional space R* defined in measur-

able terms. Now, any such point # = {z,} € R* and any set of integer
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numbers {/N,, } dependent on the point {x,} with the property |N, | > 1
may be correlated to the bundle with the base R* as follows:

Ly oo (47)

BNIX = {xX + NIX

It is clear that lim By, = R*.

[ Nay | =00
Then as a canonically measurable prototype of the infinitesimal space-time
interval square [33],[34]

ds*(z) = g, (x)datdz” (48)
we take the expression
62

Aoty (w) = g o, (o) 5

(49)

Here g, (2, {N,, }) — metric g, (x) from formula (48) with the property that
minimal measurable variation of metric g,, () in point  has form

Ay (@, { Ny })xc = G (€ + €/ Nopy, {Nay }) = Gpur (2, { N }), (50)
Let us denote by A, g, (z,{N;, }) quantity

Axguu(x7 {Nzx}) = Ag#y(g)’}éj\]ﬁx})xl

(51)

It is obvious that in the case under study the quantity Ag,, (z,{N,, })y
is a measurable analog for the infinitesimal increment dg,,(x) of the
x-th component (dg,,(z)), in a continuous theory, whereas the quantity
Ay g (2, { Nz, }) is a measurable analog of the partial derivative 9, g,., ().
In this manner we obtain the (47)-formula induced bundle over the metric
manifold g, (x):

By Ny, = g (@, ANz J} = g (@) (52)

Referring to formula (10), we can see that (49 may be written in terms of
the primary measurable momenta (py;,, py,) = pn, as follows:

64
AS?VQCM (m) = ﬁgﬁ“’<x7 {N-TX})pN;LupNxV = gl”’(x7 {Nl’x})€2<a]\[1u aNa:V)l/Q? (53)
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where o Nup ON,, in the last equality is taken from formula (15) of Section 2.
Considering that ¢ o< [p (i.e., ¢ = klp), where k = const is on the order of
1, in the general case (53), to within the constant £*/h% we have

Asy, (2) = gu(z, {Nz, })PN,, PN, - (54)

As follows from the previous formulae, the measurable variant of General
Relativity should be defined in the bundle By v, .

As the base operators used to construct General Relativity in a continuous
theory have the corresponding measurable analogs, the base quantities of
General Relativity also have their measurable analogs.

In particular, the Christoffel symbols [33],[34]

1

U (0) = 5 9 (@) (0 9o () + 0 g0 () = D3 g () ) (55)

have the measurable analog

1
qu@’NxX) = §9aﬁ(x7 Nﬂcx) (Augﬂu(x’ Nﬂﬂx) + Aung?(x’NzX) - Aﬁgul/(x’NzX» (56)

Similarly, for the Riemann tensor in a continuous theory we have [33],[34]:
R yas(2) = 0alyg(w) = 9pT7, (2) + 1%, (2) g (x) — Dg(2) Tlo (2). (57)

With the use of formula (56), we can get the corresponding measurable
analog, i.e. the quantity R*,a5(z, N, ).

In a similar way we can obtain the measurable variant of Ricci tensor,
R (z, Ny, ) = R o (2, N;, ) , and the measurable variant of Ricci scalar:
R(z,N;,) = Ry (z, Ny, ) g (x, Ny, ).

So, for the Einstein equations (EU) in a continuous theory [33],[34]

1 1

2Rgu,,——AgW:87TGTW (58)

R, — 5

we can derive their measurable analog, for short denoted as (EUM):
1 1
Ry(x, N, ) — 5 R(z, N, ) g" (2, Ny, ) — 5 A(x, N, ) g (x, Ny, ) = 87 G Ty (0, Ny )(59)
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where G — Newton’s gravitational constant.
For correspondence with a continuous theory, the following passage to the
limit must take place for all the points x:
li Az, N, ) = A, 60

e, A N (60)
where the cosmological constant A is taken from formula(58).
Moreover, for high |N, |, the quantity A(z, N, ) should be practically in-
dependent of the point z, and we have

I /

Az, Ny ) = Az N, ) = A, (61)
where  # 2’ and [N, | > 1,|N,, | > 1.

Actually, it is clear that formula (60) reflects the fact that (EUM) given
by formula (59) represents deformation of the Einstein equations (EU) (58)
in the sense of the Definition given in [10] with the deformation parameter
N, , and we have

lim (EUM) = (EU). (62)

|NIX | =00

We denote this deformation as (EUM)[N, |. Since at low energies & < Ep
and to within the known constants we have (/N, = py, = a]l\{fx, the

following deformations of (EU) are equivalent to

(EUM)[N,.] = (EUM)[px, | = (EUM)[ay? ]. (63)

So, on passage from (EU) to the measurable deformation of (EUM)[N, |
(or identically (EUM)[pn, |, (EUM )[oz]l\{fx]) we can find solutions for the

gravitational equations on the metric bundle By n, = gu (z,{Ny}) (for-
mula (52))given by formula (49).
What are the advantages of this approach?

4.1 First, as [N, | > 1, from the above formulae it follows that the
metric g, (7, {N,, }) belonging to By, and representing a solution for
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(EUM)[N,, ], to a high accuracy, is a solution for the Einstein equations
(EU) in a continuous theory.

Besides, formula (62) shows that at sufficiently high |N,, | this accuracy may
be however high. In this way the Correspondence principle to a continuous
theory takes place.

4.2 We replace the abstract infinitesimal quantities dx,,, incomparable with
each other, by the specific small quantities ¢/N,, which may be made
however small at sufficiently high [N, [, still being ordered and compa-
rable. Because of this, we can compare small values of the squared intervals
AS%NI y(2) from formula (49).

Possibxly, this will help to recover the causality property for all solutions in
(EUM)[N,, | without pathological solutions in the form of the Closed Time-
like Curves (CTC), involved in some models of General Relativity [35]-[38],
in (BEUM)[N,, ]. This means that, for the metrics g,,(z) in General Rel-
ativity generating the Closed Time-like Curves we have no prototype in
the mapping(52).

4.3. Finally, this approach from the start is quantum in character due to
the fact that the fundamental length ¢ is proportional to the Planck length
¢ x lp and includes the whole three fundamental constants, the Planck
constant h as well. Besides, it is naturally dependent on the energy scale:
sets of the metrics g, (x, { N, }) with the lowest value |N, | correspond to
higher energies as they correspond to the momenta {pNxX} which are higher
in absolute value. This is the case for all the energies E.

However, minimal measurable increments for the energies ' ~ Ep are not
of the form ¢/N,, because the corresponding momenta {py, } are no longer
primary measurable, as indicated by the results in Section 2.

So, in the proposed paradigm the problem of the ultraviolet generalization
of the low-energy measurable gravity (EUM [N, | (formula (59)) is actu-
ally reduced to the problem: what becomes with the primary measurable
momenta {py, },[Nz|> 1 at high Planck’s energies.

In a relatively simple case of (GUP) in Section 2 we have the answer. And,
using the fact that (EUM)[N,, | = (EUM)pn,, ] (63), based on the results
of Section 2, we can construct a correct high-energy passage to the Planck
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energies B ~ L,
(EUM)[pNIX, |Np | > 1] = (EUM)[pNZX (GUP),|N,, | = 1], (64)

where py, (GUP) = Ap(Ax,), GUP) according to formula (24) of Section
2. In this specific case, we can construct the natural ultraviolet generaliza-
tion (EUM)[pn, , |Ne, | > 1] = (EUM)[pn, |-

The theoretical calculations

(EUM)[pn, (GUP),|N, | ~ 1] derived at Planck’s energies are obviously
discrete;measurable, and represent a high-energy deformation in the sense
of the [10] measurable gravitational theory (EUM)pn, , | Ny, | > 1].

5 Conclusion Commentaries

In this paper we develop a constructive approach to the derivation of a
measurable variant (analog) of gravity as a continuation of the studies
presented in [3]. Compared to [3], the earlier obtained results have been
used to show, how the "measurable” metric should look in the general case
and how to find all the terms of the corresponding gravitational equations
representing a measurable analog of the Einstein equations.
Naturally, such a study necessitates correct definition and elucidation of
the physical meaning of measurable analogs for all the basic ingredients
of General Relativity [33],[34]: tensors, covariant differentiation, parallel
transport, geodesics, etc.
Of great interest is to establish the exact form of a measurable variant of
the Einstein—Hilbert action

1

_ 4
Sen = e d"z+/lg] (R+A) + Sy (g, matter). (65)

Proceeding from the results earlier obtained in [3], [8], passage to the mea-
surable variant of Sgy (65) necessitates the substitution

/de,,; -3 ﬁ,g(m) s g(x, N, ), R(z) = R(z, Ny ), . (66)

It is obvious that this substitution may be reformulated in terms of the

primary measurable momenta p Noy | with the use of the relation ﬁ =
TX
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%p| N, |- It is important to study the details associated, for example, with
a number of the summands in formula (66).

By the author’s opinion, for the construction of a measurable variant of
gravity it is required to consider the following problems.

5.1. The behavior of (EUM)[N,,] and its high-energy limit depending
on the selected energy scale, i.e., depending on the quantities |V, |. In this
context, it is interesting, how the ”"quantum corrections” at low energies
E < Ep and semiclassical approximation should look like?

5.2. As in the well-known works by S.Hawking [39] —[41] all the results
have been obtained within the scope of the semiclassical approximation,
seeking for a solution of the above-mentioned problem is of primary im-
portance. More precisely, we must find, how to describe thermodynamics
and quantum mechanics using the “language” of the measurable variant
of gravity and what is the difference (if any) from the continuous treatment
in this case.

The author has already started a study of this problem for a simple case of
the Schwarzschild black holes [7],[9].

To have a deeper understanding of the problem, we should know about the
transformations of the notion of quantum information for the measurable
variant of gravity and quantum theory at low ¥ < Ep and at high £ ~ Ep
energies. Possibly, a new approach to the solution of the Information Para-
dox Problem [39] will offer a better insight.

5.3. As at low energies £ < Ep the measurable variant of gravity may be
written in terms of the primary measurable momenta py, , an analog of
the equivalence principle may be also formulated in terms of the primary
measurable momenta py, .

Since the equivalence principle in a continuous theory reflects its locality,
the problem is, what are the differences of the equivalence principle in the
measurable variant of gravity from the equivalence principle in General
Relativity and what are the transformations of this principle in both cases
on passage to the quantum domain. Specifically, we should know, what is
the correlation with "the quantum equivalence principle” introduces in the
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preprint [42].

5.4. As noted in point 4.3., in a simple case of (GUP) considered in Sec-
tion 2 passage to quantum gravity in the measurable variant of General
Relativity is represented by formula (64). However, (GUP) may be of a
more complex form as considered in the survey work [43]. In this case on
passage to quantum gravity the formula (64) is still valid.

But in the most general case we should find a correct expression for the
momenta.

Using the proposed paradigm, we can denote the measurable momenta in
the most general case (formulas (11)—(13)) at Planck’s energies £ ~ Ep as

PN, (| Nay | = 1) = pﬁi . Then on passage to quantum gravity we have

(EUM)[px,, . [Noy| > 1] = (EUM)[px;. |- (67)

Thus, within the scope of the measurability notion, at all the energy
scales £ we can derive a common (in a sense universal) apparatus and the
mathematical form for gravitational equations based on the introduction of
measurable momenta, the definition of which involves all the three funda-
mental constants, the Planck constant A in particular. And this means that
gravity is a quantum theory by its nature. But, as noted above, this prop-
erty of gravity is revealed only at the scale of Planck’s energies F ~ Ep.
By the author’s opinion, the proposed approach offers the possibility to com-
bine correctly a quantum theory and gravity in a most simple and natural
way.
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