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Preliminaries 
 

Starting from the set theoretic result in the ASTP2010 paper of the author, the question was raised 

whether or not a local realistic model is actually possible. In the present draft this possibility will be 

demonstrated using stochastic argumentation. For completeness the author would also like to refer 

to a draft paper on arXiv. In the latter paper the author showed that from a local hidden variable 

model the quantum correlation may be obtained. The proposed basic flaw in Bell’s reasoning is also 

indicated in that paper. 

The final goal of the present draft is to show that a 2LHV based correlation of Bell can be construed 

that follows the structure laid down in ASTP2010. This is to show that A and B functions under a strict 

locality condition produce correlations that have a non-zero probability to violate the CHSH. With the 

stochastic of the example the LHV partitioning of the Omega sets that, according to critics can only 

be realized with non-local hidden variables, is then established. 

Stochastic reasoning 
 

In the present draft the A and B functions are stochastic in certain intervals of the respective hidden 

variables while in other intervals those functions are not stochastic sign functions. We believe that 

two aspects of the ASTP2010 paper need to be recapitulated. In the first place we have the integral 
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The Omega sets are defined by 

  0| ( , ) 0( , ) | ( ) ( ) ( ) ( ) 1P a b x y A a B b A x B y           (1.2) 

Together with 

  | ( , ) 0( , ) | ( ) ( ) ( ) ( ) 1P a b x y A a B b A x B y           (1.3) 

The plus in the Omega index indicates a +1 for the product while the minus in the Omega index 

indicates a -1 result for the product. 

The previous mentioned integral (1.1) will be treated ‘stochastically’. This means we will argue for:  



  Pr ( , ) ( ) 0LHVP x y x y    (1.4) 

Meaning the probability that LHV based Bell correlations exist that violate the CHSH is non-zero.  

 

In the second place the expression of the LHV correlation in (1.1) must match the one below for 

consistency. This is so because we argued for a partitioning of the  set into three  sets, 

0| ( , ) 0 ( , )P a b x y , 
| ( , ) 0 ( , )P a b x y   and 

| ( , ) 0 ( , )P a b x y  . Hence, 
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 Functions A and B 
 

In this draft the A and B function represent the measurement functions and a strict locality rule must 

be obeyed. The rule is simply that in no way whatsoever the behavior of the A function can be 

related to the setting of B and vice versa. Because in our model of ASTP2010 we assumed that 

partitioning of the universal set  of the hidden variables we also reject indirect communication 

through sets related to settings. In effect a measurement function may hence only be determined by 

its settings and its particular hidden variable(s) plus set(s) associated to it.  

 

Let us inspect a two-hidden variable model and associate 1 to A and 2 to B. This implies that the 

universal set  is a Cartesian product of 1 for the A side LHV and 2 for the B side LHV. Hence, 

1 2    . If we subsequently introduce  

 
1

1

1

1

1 1

( ),
( )

( ), \

x for I
A x

x for I







 

 


 

 

 (1.6) 

with, 1I   partitioning 1 into two sets. Similarly for the B function we see: 
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Similarly, 2J   creates a partitioning of 2 into two sets. The   and  functions also project in 

the set  1,1 . The dot denotes the place where an index value can be filled in (see the selection 

rule below).  



It is supposed that proper 
1
( )A a and 

2
( )B b always can be obtained for convenient orthogonal A 

and B settings such that Omega sets can be construed with the definitions in (1.6) and (1.7). Later on 

we will have more to say about this matter. 

Probability density of the hidden variables 
 

In our example let us postulate a density for  1 2
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   , |p q x p x q    . The density is (for 1,2n  )  
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Form of the integrals in the example 2LHV density  
 

Using the density we now may write for this two LHV model 
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Moreover, the consistency condition in (1.5) now becomes 
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Parameter selection rules 
 

In the example for the ease of presentation a two dimensional parameter vector system is supposed. 

Let us select, 1 (1,0)A  and 2 (0,1)A  for the A wing of the experiment. For the B wing let us take 

1 1
1 ,

2 2
B

 
  
 

 and 
1 1

2 ,
2 2

B

  
  
 

. The indices on the numbers indicate the wing. The number 

notation is a short hand for indicating the parameter vectors.  

 

 

 



In ASTP2010 it was described how settings of a measurement instrument restrict the 
1 and 

2

intervals. In the two tables below the selection rule is recapitulated. For the A instrument: 

Setting Interval 

1A  
1

1 1 1 1
,1 ,

2 2 2 2
I

    
     
   

 

2A  
2

1 1 1 1
1 , ,

2 2 2 2
I

   
      
   

 

  

For the B instrument: 

Setting Interval 

1B  
1

1 1 1
,0 ,

2 2 2
J

    
    
   

 

2B  
2

1 1 1
0, ,

2 2 2
J

   
    
   

 

 

In terms of measurement one can imagine a first ‘stage gate’ where the selection rule in the two 

tables is implemented. In a subsequent ‘stage gate’ the proper A and B response function, given in 

(1.6) and (1.7), are implemented.  If the entrance of the to-be-measured particle is the second ‘stage 

gate’ the selection of the A and B function in the measurement instrument is also affected by the 

event of the entrance of the particle. Hence, third stage gate A and B function selection will warrant 

proper stochastic behavior for the functions.   

 

In order to violate the CHSH, four pairs, (1 ,1 )A B , (1 ,2 )A B , (2 ,1 )A B and (2 ,2 )A B   need to be 

inspected on their LHV correlation and consistency with the idea of partitioning. If 

  Pr | (1 ,1 ) (1 ,2 ) (2 ,1 ) (2 ,2 ) | 2 0LHV A B LHV A B LHV A B LHV A BP P P P      (1.11) 

then Bell’s expression for correlation is unfit for discriminating between all LHV models and quantum 

mechanical result.  

Setting pair (1 ,1 )A B  

1. The correlation 

As can be seen from the definitions of 1A and 1B the quantum correlation in this case is equal to 

1
(1 ,1 )

2
QM A BP   . The LHV expression is expected to behave like presented in (1.4).  



From the selection rule in the previous two tables we may obtain, in the first stage gate, the 

partitioning into the set 
1 1I J and the set  1 1\ I J  . Note that 

1 1 1 1
, ,

2 2 2 2

    
     

   
.    

Let us suppose that the 
1
( )x from (1.6) and the 

2
( )y from (1.7) are 1 signs obtained from 

tossing fair (but separated) coins. Let us denote this with 
1
( ) (1)ctx F  and 

2
( ) (2)cty F  .  

Under the convenient assumption that 
1
( )A a and 

2
( )B b always can be obtained for suitable 

orthogonal A and B settings we find in probabilistic terms that  

  | ( , ) 0 | ( , ) 0 1 1Pr (1 ,1 ) & (1 ,1 ) 0P a b A B P a b A B I J          (1.12) 

This is so because with 
1
( ) (1)ctx F  and 

2
( ) (2)cty F   there is a non-zero probability that, 

under convenient 
1
( )A a and

2
( )B b , 

1 2

(1 ) (1 ) 1.A BA B      

Note that if we drop the convenient 
1
( )A a and

2
( )B b  assumption and make 

1
( )A a and

2
( )B b

stochastic too the probability in (1.12) will be smaller but still nonzero. The latter fact is what counts 

so it is allowed to argue under convenient 
1
( )A a and

2
( )B b .  

If it is subsequently noted that (1.12) implies that  
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then we see 
1

Pr (1 ,1 ) 0
2

A BP
 

   
 

.  

2. The consistency condition  

For the sake of easy argumentation let us introduce the notation (1 ,1 ) |A BP


for the LHV correlation 

based on the form in (1.9) and 
0

(1 ,1 ) |A BP  for the LHV correlation based on the form (1.10). In our 

case the consistency condition is: 
0

(1 ,1 ) |A BP  is equal to (1 ,1 ) |A BP


.  

 

When either the stochastic assignment leads to | ( , ) 0 | ( , ) 0 1 1(1 ,1 ) & (1 ,1 )P a b A B P a b A B I J         

or | ( , ) 0 | ( , ) 0 1 1(1 ,1 ) & (1 ,1 )P a b A B P a b A B I J         we see that, under convenient 
1
( )A a and

2
( )B b  ,  0 is equal to 

 0| ( , ) 0 1 1(1 ,1 ) \ ( )P a b A B I J    (1.14) 

Reformulating 0 into a more handy form this leads to 



 
0| ( , ) 0 1 2 1 1 1 1 1 2(1 ,1 ) ( ) (( \ ) ) (( \ ) )P a b A B I J I J I J        (1.15) 

Recall that 1 2    with 
1 2

1 1
,

2 2

 
     

 
 and the sets 1I ,

1J and 
2J  as defined in the 

selection rule tables.  

 

From the definition of the A and B functions in (1.6) and (1.7) and 
1
( ) (1)ctx F   together with 

2
( ) (2)cty F   brings us to the following expression for 

0
(1 ,1 ) |A BP 
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 (1.16) 

This is true because for e.g. 1 1I  we have 
1 1
(1 ) (1 ) { 1,1}A AA      based on a fair coin toss 

Fct. Similarly for 2 2J  we have
2 2
(1 ) (1 ) { 1,1}B BB     while  for 2 1J   we see that 

2 2
(1 ) (1 ) { 1,1}B BB       etc.  

 

Because of the consistency condition we need to show that: 
0

1
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  . Let us 

introduce the following notation. We have 
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together with  
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 the following algebraic 

equation occurs after multiplying (1.16) on both sides with   

 1

2 2
U V UV      (1.19) 

Here, 1   , is employed because of | ( , ) 0 | ( , ) 0 1 1(1 ,1 ) & (1 ,1 )P a b A B P a b A B I J         while 

the definitions in (1.17) and (1.18) are used that lead us to (1.19). 



   

3. Numerics of the consistency condition  on partitioning 

The equation in (1.19) appears to be difficult to solve exactly. In this section the existence of  
1
(1 )A

and 
2
(1 )B will be shown by approximately solve the U,V equation. To this end let us select 

mathematical forms for 
1
(1 )A  and 

2
(1 )B  .  

Suppose, for proper,  (1 )B and (1 )A that 

  
2 2(1 ) 2(1 ) (1 )

B J B Bsign   
    (1.20) 

For completeness: 1
2 2

0,J    
. As can be verified we may write 
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Hence, 1 1

2 2
,U   

. In addition, suppose 

 
1 1 1(1 ) \ 1(1 ) ( (1 ) )

A I A Asign   
    (1.22) 

For completeness: 1 1
1 1 2 2

\ 1 ,I     
. As can be verified we also have 
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This implies that in numerical exploration of possible zeroes of (1.19) we see 1 2, 2 1V    
 

. 

With the interval conditions 1 1

2 2
,U   

 and 1 2, 2 1V    
 

 and exploring 1  the 

following numerical results were found for  1

2 2
( , )U V U V UV        

U V Step size h ( , )U V  

-0.60711 0.075786 0.01 0.0004 

-0.45511 0.215786 0.001 9.1x10-6 

-0.45371 0.218186 0.0001 9.9x10-7 

 

  



 

Similarly for 1   we found 

U V Step size h ( , )U V  

0.31000 -0.40421 0.01 2.1x10-5 

0.32300 -0.37421 0.001 4.7x10-6 

0.32760 -0.36691 0.0001 8.0x10-7 

 

The numerical exactness of the approximation can of course always be better. For the first row in the 

1     case the following plot of the error ( , )U V can be shown. 

                      

 

In the present case the numerical simulation is employed to demonstrate that a solution to (1.19) 

Hence, there exists a solution to (1.19) ‘in principle’ within the boundaries of the approximate open 

intervals  0,70711,0,70711U   and  0,414214,0,414214V   .  This implies that both (1 )A

and (1 )B are possible ‘in principle’. Hence, 
1
(1 )A and 

2
(1 )B can be obtained when 

| ( , ) 0 | ( , ) 0 1 1(1 ,1 ) & (1 ,1 )P a b A B P a b A B I J        . 

 

4. Concluding remarks on correlation and consistency for (1 ,1 )A B  

In the previous paragraphs of this section it was demonstrated that 
1

Pr (1 ,1 ) | 0
2

A BP


 
   

 
in 

a manner that is consistent with partitioning of the  set of LHVs, or, because of numerical 

Figure 1 Plot of error term in iteration step. 



demonstration only:  
0

1
Pr (1 ,1 ) | 0

2
A BP 

 
   

 
. This allows the conclusion that (misusing 

slightly the Bayesian condition notation)  

  1

2
Pr (1 ,1 ) 0LHV A BP Consistency    (1.24) 

The consistency refers to the partitioning of the  set of LHVs without the need to renormalize the 

probability density function defined in equation (1.8). 

 

Concluding remarks 
 

Although much more numerical work and demonstration needs to be done that fits into one 

weekend of the author, we may draw the conclusion that not only for the pair (1 ,1 )A B  , 

 1

2
Pr (1 ,1 ) 0LHV A BP Consistency   can be obtained but also for (1 ,2 )A B , (2 ,2 )A B  and 

(2 ,1 )A B pairs we may see, 
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 (1.25) 

Please do observe that the ‘stage gating’ of the measurement instrument such as described in the 

previous sections implies that the event of a particle hitting the ‘measurement area’ of the 

instrument ensures proper randomization of function response. Meaning that 
1
( )x and 

2
( )y  in 

their proper I and J sets are stochastic random projections in { 1,1} , with 1  such that 

 | ( , ) 0 | ( , ) 0Pr ( , ) & ( , ) ( ) ( ) 0P a b P a bx y x y I x J y         for ( , )x y  equal to (1 ,2 )A B , (2 ,2 )A B  

or (2 ,1 )A B .  The functions 
1
(1 )A  and 

2
(1 )B  are adapted to them.  The, ( ) ( )I x J y , is 

determined according to the selection rule in the selection rule tables. 

 

In (1.25) the consistency conditions reflect the partitioning of the set   without the necessity to 

renormalize the probability density in (1.8). This finally may lead to the already anticipated 

conclusion in ASTP2010 that there is a non-zero probability, small as it may be, such that LHVs violate 

the CHSH metric. Please observe that strict locality is obeyed in all steps of the computations and in 

all stage gates of the separate measurement instruments. 

Hence, the conclusion of the author in ASTP2010 that Bell’s correlation is an unfit measure to 

differentiate between LHV and quantum non-locality in experiment can still be upheld. This 



conclusion is related to the one expressed by Joy Christian in an arXiv prepublication (CHRIST2011). 

The present author believes that this paper of Christian still holds because previous attacks on it 

were rightfully rejected. Hopefully, we can read Christian’s rebuttal on the attacks on his views in 

arXiv1 soon. Note that the claim of the author also is supported by earlier publications such as 

IJTP2007. 
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