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Abstract. In this paper we study the homogenization of unsteady
Stokes type equations in the periodic setting. The usual Laplace op-
erator involved in the classical Stokes equations is here replaced by a
linear elliptic differential operator of divergence form with periodically
oscillating coefficients. Our mean tool is the well known two-scale con-
vergence method.

1. Introduction

Let Ω be a smooth bounded open set in R
N
x (the N -numerical space R

N

of variables x = (x1, ..., xN )), where N is a given positive integer, and let T
and ε be real numbers with T > 0 and 0 < ε < 1. We consider the partial
differential operator

P ε = −

N∑

i,j=1

∂

∂xi

(
aεij

∂

∂xj

)

in Ω×]0, T [, where aεij (x) = aij
(
x
ε

)
(x ∈ Ω), aij ∈ L∞

(
R
N
y ;R

)
(1 ≤ i, j ≤

N) with

(1.1) aij = aji,

and the assumption that there is a constant α > 0 such that

(1.2)

N∑

i,j=1

aij (y) ζjζi ≥ α |ζ|2 for all ζ =
(
ζj
)
∈ R

N and

for almost all y ∈ R
N , where R

N
y is the N -numerical space R

N of variables

y = (y1, ..., yN ), and where |·| denotes the Euclidean norm in R
N . The opera-

tor P ε acts on scalar functions, say ϕ ∈ L2
(
0, T ;H1 (Ω)

)
. However, we may
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2 LAZARUS SIGNING

as well view P ε as acting on vector functions u =
(
ui
)
∈ L2

(
0, T ;H1 (Ω)N

)

in a diagonal way, i.e.,

(P εu)i = P εui (i = 1, ..., N) .

For any Roman character such as i, j (with 1 ≤ i, j ≤ N), ui (resp.
uj) denotes the i-th (resp. j-th) component of a vector function u in

L1
loc (Ω×]0, T [)N or in L1

loc

(
R
N
y × Rτ

)N
where Rτ is the numerical space

R of variables τ . Further, for any real 0 < ε < 1, we define uε as

uε (x, t) = u

(
x

ε
,
t

ε

)
((x, t) ∈ Ω×]0, T [)

for u ∈ L1
loc

(
R
N
y × Rτ

)
, as is customary in homogenization theory. More

generally, for u ∈ L1
loc

(
Q× R

N
y × Rτ

)
with Q = Ω×]0, T [, it is customary

to put

uε (x, t) = u

(
x, t,

x

ε
,
t

ε

)
((x, t) ∈ Ω×]0, T [)

whenever the right-hand side makes sense (see, e.g., [8, 9]).

After these preliminaries, let f =
(
f i
)
∈ L2

(
0, T ;H−1 (Ω;R)N

)
. For any

fixed 0 < ε < 1, we consider the initial boundary value problem

(1.3)
∂uε
∂t

+ P εuε + gradpε = f in Ω×]0, T [,

(1.4) divuε = 0 in Ω×]0, T [,

(1.5) uε = 0 on ∂Ω×]0, T [,

(1.6) uε (0) = 0 in Ω.

We will later see that as in [18], (1.3)-(1.6) uniquely define (uε, pε) with
uε ∈ W (0, T ) and pε ∈ L2

(
0, T ;L2 (Ω;R) /R

)
, where

W (0, T ) =
{
u ∈ L2 (0, T ;V ) : u′ ∈ L2

(
0, T ;V ′

)}

V being the space of functions u in H1
0 (Ω;R)

N with divu = 0 (V ′ is the
topological dual of V ) and where

L2 (Ω;R) /R =

{
v ∈ L2 (Ω;R) :

∫

Ω
vdx = 0

}
.

Let us recall that W (0, T ) is provided with the norm

‖u‖W(0,T ) =
(
‖u‖2L2(0,T ;V ) +

∥∥u′
∥∥2
L2(0,T ;V ′)

) 1
2

(u ∈ W (0, T )) ,

which makes it a Hilbert space with the following properties (see [18]):

W (0, T ) is continuously embedded in C
(
[0, T ] ;L2 (Ω)N

)
and is compactly

embedded in L2
(
0, T ;L2 (Ω)N

)
.
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Our aim here is to investigate the asymptotic behavior, as ε → 0, of
(uε, pε) under the assumption that the functions aij (1 ≤ i, j ≤ N) are peri-
odic in the space variable y. The steady state version of this problem (i.e.,
the homogenization of stationary Stokes type equations) was first investi-
gated by Bensoussan, Lions and Papanicalaou [2]. These authors use the
well-known approach of asymptotic expansions combined with Tartar’s en-
ergy method. We also mention the paper of Nguetseng and the author [16],
on the sigma-convergence of stationary Navier-Stokes type equations.

The present study deals with the periodic homogenization of an evolution
problem for Stokes type equations.

This study is motivated by the fact that the homogenization of (1.3)-(1.6)
is connected with the modelling of heterogeneous fluid flows (see, e.g., [19]
for more details about such models).

Our approach is the well-known two-scale convergence method.
Unless otherwise specified, vector spaces throughout are considered over

the complex field, C, and scalar functions are assumed to take complex
values. Let us recall some basic notation. If X and F denote a locally
compact space and a Banach space, respectively, then we write C (X;F )
for continuous mappings of X into F , and B (X;F ) for those mappings
in C (X;F ) that are bounded. We shall assume B (X;F ) to be equipped
with the supremum norm ‖u‖∞ = supx∈X ‖u (x)‖ (‖·‖ denotes the norm
in F ). For shortness we will write C (X) = C (X;C) and B (X) = B (X;C).
Likewise in the case when F = C, the usual spaces Lp (X;F ) and Lploc (X;F )
(X provided with a positive Radon measure) will be denoted by Lp (X) and
Lploc (X), respectively. Finally, the numerical space RN and its open sets are
each provided with Lebesgue measure denoted by dx = dx1...dxN .

The rest of the paper is organized as follows. Section 2 is devoted to the
preliminary results on existence and uniqueness, and some estimates on the
velocity uε, the pressure pε and the accelaration ∂uε

∂t
of the fluid, whereas in

Section 3 one convergence theorem is established.

2. Preliminaries

Let Ω be a smooth bounded open set in R
N , let T > 0 be a real number

and let f =
(
f j
)
∈ L2

(
0, T ;H−1 (Ω)N

)
. For 0 < ε < 1, it is not apparent

that the initial boundary value problem (1.3)-(1.6) has a solution (uε, pε),
and that the latter is unique. With a view to elucidating this, we introduce,
for fixed 0 < ε < 1 the bilinear form aε on H1

0 (Ω;R)
N ×H1

0 (Ω;R)
N defined

by

aε (u,v) =

N∑

k=1

N∑

i,j=1

∫

Ω
aεij

∂uk

∂xj

∂vk

∂xi
dx
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for u =
(
uk
)
and v =

(
vk
)
in H1

0 (Ω;R)
N . By virtue of (1.1), the form aε is

symmetric. Further, in view of (1.2),

(2.1) aε (v,v) ≥ α ‖v‖2
H1

0 (Ω)N

for every v =
(
vk
)
∈ H1

0 (Ω;R)
N and 0 < ε < 1, where

‖v‖
H1

0 (Ω)N =

(
N∑

k=1

∫

Ω

∣∣∣∇vk
∣∣∣ dx

) 1
2

with ∇vk =
(
∂vk

∂x1
, ..., ∂v

k

∂xN

)
. On the other hand, it is clear that a constant

c0 > 0 exists such that

(2.2) |aε (u,v)| ≤ c0 ‖u‖H1
0 (Ω)N ‖v‖

H1
0 (Ω)N

for every u, v ∈ H1
0 (Ω;R)

N and 0 < ε < 1.
We are now in a position to verify the following result.

Proposition 2.1. Suppose f lies in L2
(
0, T ;L2 (Ω;R)N

)
. Under the hy-

potheses (1.1)-(1.2), the initial boundary value problem (1.3)-(1.6) deter-
mines a unique pair (uε, pε) with

uε ∈ L2
(
0, T ;H1

0 (Ω;R)
N
)
∩ C

(
[0, T ] ;L2 (Ω;R)N

)
and

pε ∈ L2
(
0, T ;L2 (Ω;R) /R

)
.

Proof. For fixed 0 < ε < 1, we consider the Cauchy problem

(2.3)

{
u′
ε (t) +Aεuε (t) = ℓ (t) in ]0, T [

uε (0) = 0,

where Aε is the linear operator of V into V ′ defined by

(Aεu,v) = aε (u,v) for all u,v ∈ V

and ℓ is the function in L2 (0, T ;V ′) defined by

(ℓ (t) ,v) = (f (t) ,v) for all v ∈ V

and for almost all t ∈]0, T [, and where (, ) denotes the duality pairing be-

tween V ′ and V as well as between H−1 (Ω;R)N and H1
0 (Ω;R)

N . Thanks
to (2.1)-(2.2) the Cauchy problem (2.3) admits a unique solution uε in
W (0, T ), as is easily seen by following [5, Chap.3, Théorème 1.2, p.116],
see also [18, pp.254-260]. Now, let us check that the abstract parabolic

problem (2.3) is equivalent to (1.3)-(1.6). Let Uε (t) =
∫ t
0 P

εuε (s) ds and

F (t) =
∫ t
0 f (s) ds for 0 ≤ t ≤ T , where uε satisfies (2.3). It is evident that

Uε and F ∈ C
(
[0, T ] ;H−1 (Ω;R)N

)
. By the first equality of (2.3) we have

(2.4)
d

dt
(uε (t) ,ϕ) = (ℓ (t)−Aεuε (t) ,ϕ) for all ϕ ∈ V,
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where

V =
{
ϕ ∈ D (Ω;R)N : divϕ = 0

}
.

Integrating (2.4), we have

〈uε (t) +Uε (t)− F (t) ,ϕ〉 = 0, 0 ≤ t ≤ T , ϕ ∈ V.

Thus, using a classical argument (see, e.g., [18, p.14]), we get a function
Pε ∈ C

(
[0, T ] ;L2 (Ω;R) /R

)
such that

uε +Uε + gradPε = F.

Hence pε =
∂Pε

∂t
∈ D′ (Q) and the pair (uε, pε) verifies (1.3) (in the distribu-

tion sense on Q), with in addition (1.4)-(1.6), of course. Futhermore, by us-

ing the fact that f ∈ L2
(
0, T ;L2 (Ω;R)N

)
we have u′

ε ∈ L2
(
0, T ;L2 (Ω;R)N

)
,

as is easily seen by following [18, p.268]. Therefore pε lies in L
2
(
0, T ;L2 (Ω;R) /R

)

and is unique. Conversely, it is an easy exercise to verify that if (uε, pε) is a
solution of (1.3)-(1.6) with uε ∈ W (0, T ) and pε ∈ L2

(
0, T ;L2 (Ω;R)

)
, then

uε satisfies (2.3). The proof is complete. �

The following regularity result is fundamental for the estimates of the
solution (uε, pε) of (1.3)-(1.6).

Lemma 2.1. Suppose f , f ′ ∈ L2 (0, T ;V ′) and f (0) ∈ L2 (Ω;R)N . Then the
solution uε of (2.3) verifies:

u′
ε ∈ L2 (0, T ;V ) ∩ L∞ (0, T ;H) ,

where H is the closure of V in L2 (Ω;R)N .

The proof of the above lemma follows by the same line of argument as in
the proof of [18, p.299, Theorem 3.5]. So we omit it. We are now able to
prove the result on the estimates.

Proposition 2.2. Under the hypotheses of Lemma 2.1, there exists a con-
stant c > 0 (independent of ε) such that the pair (uε, pε) solution of (1.3)-
(1.6) in W (0, T )× L2

(
0, T ;L2 (Ω;R) /R

)
satisfies:

(2.5) ‖uε‖W(0,T ) ≤ c

(2.6)

∥∥∥∥
∂uε
∂t

∥∥∥∥
L2(0,T ;H−1(Ω)N)

≤ c

and

(2.7) ‖pε‖L2(0,T ;L2(Ω)) ≤ c.

Proof. Let (uε, pε) be the solution of (1.3)-(1.6). We have

(2.8)
(
u′
ε (t) ,v

)
+ aε (uε (t) ,v) = (f (t) ,v) (v ∈ V )
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for almost all t ∈ [0, T ]. By taking in particular v = uε (t) in (2.8), we have
for almost all t ∈ [0, T ]

d

dt
|uε (t)|

2 + 2α ‖uε (t)‖
2 ≤

1

α
‖f (t)‖2V ′ + α ‖uε (t)‖

2

where |·| and ‖·‖ are respectively the norms in L2 (Ω)N andH1
0 (Ω)

N . Hence,
for every s ∈ [0, T ]

|uε (s)|
2 + α

∫ s

0
‖uε (t)‖

2 dt ≤
1

α

∫ T

0
‖f (t)‖2V ′ dt

since uε (0) = 0. By the preceding inequality, we see that

(2.9) α

∫ T

0
‖uε (t)‖

2 dt ≤
1

α

∫ T

0
‖f (t)‖2V ′ dt.

On the other hand, the abstract parabolic problem (2.3) gives

u′
ε = f −Aεuε.

Hence, in view of (2.2)

(2.10)
∥∥u′

ε

∥∥
L2(0,T ;V ′)

≤ ‖f‖L2(0,T ;V ′) + c0 ‖uε‖L2(0,T ;V ) .

Thus, by (2.9) and (2.10) one quickly arrives at (2.5). Let us show (2.6).
We are allowed to differentiate (2.8) in distribution sense on ]0, T [, and by
virtue of the hypotheses of Lemma 2.1, we get u′′

ε ∈ L2 (0, T ;V ′) and

(2.11)
(
u′′
ε ,v
)
+ aε

(
u′
ε,v
)
=
(
f ′,v

)
(v ∈ V ) .

In view of Lemma 2.1, we take in particular v = u′
ε (t) in (2.8). This yields

∣∣u′
ε (t)

∣∣2 + aε
(
uε (t) ,u

′
ε (t)

)
=
(
f (t) ,u′

ε (t)
)

(t ∈ [0, T ]) .

Further, since u′
ε ∈ L2 (0, T ;V ) and u′′

ε ∈ L2 (0, T ;V ′), we have u′
ε ∈

C ([0, T ] ;H). Hence, by taking in particular t = 0 in the preceding equality
and using (1.6) one quickly arrives at

∣∣u′
ε (0)

∣∣2 ≤ |f (0)|
∣∣u′
ε (0)

∣∣ ,
i.e.,

(2.12)
∣∣u′
ε (0)

∣∣ ≤ |f (0)| .

The inequality (2.12) shows that u′
ε (0) lies in a bounded subset of H. On

the other hand, by taking in particular v = u′
ε (t) in (2.11), we get

d

dt

∣∣u′
ε (t)

∣∣2 + 2α
∥∥u′

ε (t)
∥∥2 ≤ 1

α

∥∥f ′ (t)
∥∥2
V ′

+ α
∥∥u′

ε (t)
∥∥2

for almost all t ∈ [0, T ]. Integrating the preceding inequality on [0, t] (t ∈
[0, T ]) leads to

∣∣u′
ε (t)

∣∣2 + α

∫ t

0

∥∥u′
ε (s)

∥∥2 ds ≤ 1

α

∥∥f ′
∥∥2
L2(0,T ;V ′)

+
∣∣u′
ε (0)

∣∣2 .
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It follows from (2.12) and the preceding inequality that u′
ε belongs to a

bounded subset of L2
(
0, T ;L2 (Ω;R)N

)
. Hence (2.6) is immediate. Let us

prove (2.7). For almost all t ∈ [0, T ], pε (t) ∈ L2 (Ω;R) /R. Thus, by [17, p.

30] there exists vε (t) ∈ H1
0 (Ω;R)

N such that

(2.13) divvε (t) = pε (t)

(2.14) ‖vε (t)‖ ≤ c1 |pε (t)|L2(Ω) ,

where the constant c1 depends solely on Ω. Multiplying (1.3) by vε (t) yields

(
u′
ε (t) ,vε (t)

)
+ aε (uε (t) ,vε (t))−

∫

Ω
pε (t) divvε (t) dx = (f (t) ,vε (t))

for almost all t ∈ [0, T ]. Integrating the preceding equality on [0, T ] and
using (2.13)-(2.14) lead to

‖pε‖
2
L2(Q) ≤ c1c

∥∥u′
ε

∥∥
L2(0,T ;L2(Ω)N) ‖pε‖L2(Q) + c1 ‖f‖L2(0,T ;H−1(Ω)) ‖pε‖L2(Q)

+c1c0 ‖uε‖L2(0,T ;V ) ‖pε‖L2(Q) ,

where c is the constant in the Poincaré inequality, c0 and c1 are the constants
in (2.2) and (2.14) respectively. Thus,
(2.15)
‖pε‖L2(Q) ≤ c1c

∥∥u′
ε

∥∥
L2(0,T ;L2(Ω)N)+c1 ‖f‖L2(0,T ;H−1(Ω))+c1c0 ‖uε‖L2(0,T ;V ) .

Combining (2.15), (2.5) and (2.6) leads to (2.7). �

3. A convergence result for (1.3)-(1.6)

We set Y =
(
−1

2 ,
1
2

)N
, Y considered as a subset of RNy (the space R

N

of variables y = (y1, ..., yN )). We set also Z =
(
−1

2 ,
1
2

)
, Z considered as

a subset of Rτ (the space R of variables τ). Our purpose is to study the
homogenization of (1.3)-(1.6) under the periodicity hypothesis on aij .

3.1. Preliminaries. Let us first recall that a function u ∈ L1
loc

(
R
N
y × Rτ

)

is said to be Y × Z-periodic if for each (k, l) ∈ Z
N × Z (Z denotes the

integers), we have u (y + k, τ + l) = u (y, τ) almost everywhere (a.e.) in
(y, τ) ∈ R

N ×R. If in addition u is continuous, then the preceding equality
holds for every (y, τ ) ∈ R

N × R, of course. The space of all Y × Z-periodic
continuous complex functions on R

N
y × Rτ is denoted by Cper (Y × Z); that

of all Y ×Z-periodic functions in Lploc
(
R
N
y × Rτ

)
(1 ≤ p <∞) is denoted by

Lpper (Y × Z). Cper (Y × Z) is a Banach space under the supremum norm on
R
N × R, whereas Lpper (Y × Z) is a Banach space under the norm

‖u‖Lp(Y×Z) =

(∫

Z

∫

Y

|u (y, τ)|p dydτ

) 1
p (

u ∈ Lpper (Y × Z)
)
.
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We will need the space H1
# (Y ) of Y -periodic functions u ∈ H1

loc

(
R
N
y

)
=

W 1,2
loc

(
R
N
y

)
such that

∫
Y
u (y) dy = 0. Provided with the gradient norm,

‖u‖H1
#
(Y ) =

(∫

Y

|∇yu|
2 dy

) 1
2 (

u ∈ H1
# (Y )

)
,

where ∇yu =
(
∂u
∂y1

, ..., ∂u
∂yN

)
, H1

# (Y ) is a Hilbert space. We will also need

the space L2
per

(
Z;H1

# (Y )
)
with the norm

‖u‖
L2
per(Z;H1

#
(Y )) =

(∫

Z

∫

Y

|∇yu (y, τ)|
2 dydτ

) 1
2 (

u ∈ L2
per

(
Z;H1

# (Y )
))

which is a Hilbert space.
Before we can recall the concept of two-scale convergence, let us introduce

one further notation. The letter E throughout will denote a family of real
numbers 0 < ε < 1 admitting 0 as an accumulation point. For example,
E may be the whole interval (0, 1); E may also be an ordinary sequence
(εn)n∈N with 0 < εn < 1 and εn → 0 as n→ ∞. In the latter case E will be
referred to as a fundamental sequence.

Let Ω be a bounded open set in R
N
x and Q = Ω×]0, T [ with T ∈ R

∗
+, and

let 1 ≤ p <∞.

Definition 3.1. A sequence (uε)ε∈E ⊂ Lp (Q) is said to:
(i) weakly two-scale converge in Lp (Q) to some u0 ∈ Lp (Q;Lpper (Y × Z))

if as
E ∋ ε→ 0,
(3.1)∫

Q

uε (x, t)ψ
ε (x, t) dxdt →

∫ ∫ ∫

Q×Y×Z

u0 (x, t, y, τ)ψ (x, t, y, τ ) dxdtdydτ

for all ψ ∈ Lp
′

(Q; Cper (Y × Z))
(

1
p′

= 1− 1
p

)
, where ψε (x, t) =

ψ
(
x, t, x

ε
, t
ε

)
((x, t) ∈ Q) ;

(ii) strongly two-scale converge in Lp (Q) to some u0 ∈ L
p (Q;Lpper (Y × Z))

if the following property is verified:




Given η > 0 and v ∈ Lp (Q; Cper (Y × Z)) with
‖u0 − v‖Lp(Q×Y×Z) ≤

η
2 , there is some α > 0 such

that ‖uε − vε‖Lp(Q) ≤ η provided E ∋ ε ≤ α.

We will briefly express weak and strong two-scale convergence by writing
uε → u0 in Lp (Q)-weak 2-s and uε → u0 in Lp (Q)-strong 2-s, respectively.

Remark 3.1. It is of interest to know that if uε → u0 in Lp (Q)-weak 2-s,
then (3.1) holds for ψ ∈ C

(
Q;L∞

per (Y × Z)
)
. See [9, Proposition 10] for the

proof.
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Instead of repeating here the main results underlying two-scale conver-
gence, we find it more convenient to draw the reader’s attention to a few
references, see, e.g., [1], [7], [9] and [20].

However, we recall below two fundamental results. First of all, let

Y (0, T ) =
{
v ∈ L2

(
0, T ;H1

0 (Ω;R)
)
: v′ ∈ L2

(
0, T ;H−1 (Ω;R)

)}
.

Y (0, T ) is provided with the norm

‖v‖Y(0,T ) =
(
‖v‖2

L2(0,T ;H1
0 (Ω)) +

∥∥v′
∥∥2
L2(0,T ;H−1(Ω))

) 1
2

(v ∈ Y (0, T ))

which makes it a Hilbert space.

Theorem 3.1. Assume that 1 < p < ∞ and further E is a fundamental
sequence. Let a sequence (uε)ε∈E be bounded in Lp (Q). Then, a subsequence
E′ can be extracted from E such that (uε)ε∈E′ weakly two-scale converges in
Lp (Q).

Theorem 3.2. Let E be a fundamental sequence. Suppose a sequence
(uε)ε∈E is bounded in Y (0, T ). Then, a subsequence E′ can be extracted
from E such that, as E′ ∋ ε→ 0,

uε → u0 in Y (0, T ) -weak,

uε → u0 in L2 (Q) -weak 2-s,

∂uε
∂xj

→
∂u0
∂xj

+
∂u1
∂yj

in L2 (Q) -weak 2-s (1 ≤ j ≤ N) ,

where u0 ∈ Y (0, T ), u1 ∈ L2
(
Q;L2

per

(
Z;H1

# (Y )
))

.

The proof of Theorem 3.1 can be found in, e.g., [1], [7], whereas Theorem
3.2 has its proof in, e.g., [9] and [15].

3.2. A global homogenization theorem. Before we can establish a so-
called global homogenization theorem for (1.3)-(1.6), we require a few basic
notation and results. To begin, let

VY =

{
ψ ∈ C∞

per (Y ;R)N :

∫

Y

ψ (y) dy = 0, divyψ =0

}
,

VY =
{
w ∈ H1

# (Y ;R)N : divyw =0
}
,

where: C∞
per (Y ;R) = C∞

(
R
N ;R

)
∩ Cper (Y ), divy denotes the divergence

operator in R
N
y . We provide VY with the H1

# (Y )N -norm, which makes it
a Hilbert space. There is no difficulty in verifying that VY is dense in VY
(proceed as in [14, Proposition 3.2]). With this in mind, set

F
1
0 = L2 (0, T ;V )× L2

(
Q;L2

per (Z;VY )
)
.

This is a Hilbert space with norm

‖v‖
F1
0
=
(
‖v0‖

2
L2(0,T ;V ) + ‖v1‖

2
L2(Q;L2

per(Z;VY ))

) 1
2
, v =(v0,v1) ∈ F

1
0.
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On the other hand, put

F∞
0 = D (0, T ;V) ×

[
D (Q;R)⊗

[
C∞
per (Z;R)⊗ VY

]]
,

where C∞
per (Z;R) = C∞ (R;R) ∩ Cper (Z), C

∞
per (Z;R) ⊗ VY stands for the

space of vector functions w on R
N
y ×Rτ of the form

w (y, τ) =
∑

finite

χi (τ)vi (y)
(
τ ∈ R, y ∈ R

N
)

with χi ∈ C∞
per (Z;R), vi ∈ VY , and where D (Q;R) ⊗

(
C∞
per (Z;R)⊗ VY

)
is

the space of vector functions on Q× R
N
y × R of the form

ψ (x, t, y, τ ) =
∑

finite

ϕi (x, t)wi (y, τ )
(
(x, t) ∈ Q, (y, τ ) ∈ R

N × R
)

with ϕi ∈ D (Q;R), wi ∈ C∞
per (Z;R) ⊗ VY . Since V is dense in V (see [18,

p.18]), it is clear that F∞
0 is dense in F

1
0.

Now, let

U = V × L2
(
Ω;L2

per (Z;VY )
)
.

Provided with the norm

‖v‖
U
=
(
‖v0‖

2 + ‖v1‖
2
L2(Ω;L2

per(Z;VY ))

) 1
2

(v = (v0,v1) ∈ U) ,

U is a Hilbert space. Let us set

âΩ (u,v) =

N∑

i,j,k=1

∫ ∫ ∫

Ω×Y×Z

aij

(
∂uk0
∂xj

+
∂uk1
∂yj

)(
∂vk0
∂xi

+
∂vk1
∂yi

)
dxdydτ

for u =(u0,u1) and v =(v0,v1) in U. This defines a symmetric continuous
bilinear form âΩ on U× U. Furthermore, âΩ is U-elliptic. Specifically,

(3.2) âΩ (u,u) ≥ α ‖u‖2
U

(u ∈ U)

as is easily checked by using (1.2) and the fact that
∫
Y

∂uk1
∂yj

(x, y, τ) dy = 0.

Here is one fundamental lemma.

Lemma 3.1. Under the hypotheses (1.1)-(1.2). The variational problem
(3.3)



u0 ∈ W (0, T ) with u0 (0) = 0;
u = (u0,u1) ∈ F

1
0 :∫ T

0 (u′
0 (t) ,v0 (t)) dt+

∫ T
0 âΩ (u (t) ,v (t)) dt =

∫ T
0 (f (t) ,v0 (t)) dt

for all v =(v0,v1) ∈ F
1
0

has at most one solution.

Proof. Let v∗ = (v0,v1) ∈ U and ϕ ∈ D (]0, T [). By taking v =ϕ ⊗ v∗ in
(3.3), we arrive at

(3.4)
(
u′
0 (t) ,v0

)
+ âΩ (u (t) ,v∗) = (f (t) ,v0) (v∗ ∈ U)
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for almost all t ∈ (0, T ). Suppose that u∗ and u∗∗ are two solutions of (3.3)
with u∗ = (u∗0,u∗1) and u∗∗ = (u∗∗0,u∗∗1). Let u = u∗ − u∗∗ = (u0,u1)
with u0 = u∗0−u∗∗0 and u1 = u∗1−u∗∗1. Let us show that u =0. By using
(3.4) we see that u verifies:

(3.5)
(
u′
0 (t) ,v0

)
+ âΩ (u (t) ,v∗) = 0

for all v∗ ∈ U and for almost all t ∈ (0, T ). But, by virtue of [18, p. 261]

d

dt
|u0 (t)|

2 = 2
(
u′
0 (t) ,u0 (t)

)

for almost all t ∈ (0, T ). Then, taking v∗= u (t) in (3.5), we obtain by (3.2)

(3.6)
d

dt
|u0 (t)|

2 + 2α ‖u (t)‖2
U
≤ 0

for almost all t ∈ (0, T ). Integrating (3.6) on [0, t] (0 ≤ t ≤ T ), we get

|u0 (t)|
2 ≤ 0 for all t ∈ [0, T ] and ‖u‖2

F1
0
≤ 0, thus u = 0 and the lemma

follows. �

We are now able to prove the desired theorem. Throughout the remainder
of the present section, it is assumed that aij is Y -periodic for any 1 ≤ i, j ≤
N .

Theorem 3.3. Suppose that the hypotheses of Lemma 2.1 are satisfied. For
0 < ε < 1, let uε be defined by (1.3)-(1.6). Then, as ε→ 0 we have

(3.7) uε → u0 in W (0, T ) -weak,

(3.8)
∂ukε
∂xj

→
∂uk0
∂xj

+
∂uk1
∂yj

in L2 (Q) -weak 2-s (1 ≤ j, k ≤ N)

where u =(u0,u1) (with u0 =
(
uk0
)
and u1 =

(
uk1
)
) is the unique solution

of (3.3).

Proof. By Proposition 2.2, we see that the sequences (pε)0<ε<1 and (uε)0<ε<1 =(
u1ε, ..., u

N
ε

)
0<ε<1

are bounded respectively in L2 (Q) and W (0, T ). Fur-

ther, it follows from (2.5) and (2.6) that for 1 ≤ k ≤ N , the sequence(
ukε
)
0<ε<1

is bounded in Y (0, T ). Let E be a fundamental sequence. Then,

by Theorems 3.1-3.2 and the fact that W (0, T ) is compactly embedded in

L2 (Q)N , there exist a subsequence E′ extracted from E and functions u0 =(
uk0
)
1≤k≤N

∈ W (0, T ), u1 =
(
uk1
)
1≤k≤N

∈ L2
(
Q;L2

per

(
Z;H1

# (Y ;R)N
))

,

and p ∈ L2
(
Q;L2

per (Y × Z;R)
)
such that as E′ ∋ ε→ 0, we have (3.7)-(3.8)

and

(3.9) uε → u0 in L2 (Q)N -strong,

(3.10) pε → p in L2 (Q) -weak 2-s.

But, by virtue of Lemma 3.1, the theorem will be entirely proved if we
show that u =(u0,u1) verifies (3.3). In fact, according to (1.4), we have
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divu0 = 0 and divyu1 = 0. Therefore u =(u0,u1) ∈ F
1
0. Let us recall that

u0 can be considered as a continuous function of [0, T ] into H since W (0, T )
is continuously embedded in C ([0, T ] ;H). Let us show that u0 (0) = 0. For
v ∈ V and ϕ ∈ C1 ([0, T ]) with ϕ (T ) = 0 and ϕ (0) = 1, we have by an
integration by part

∫ T

0

(
u′
ε (t) ,v

)
ϕ (t) dt+

∫ T

0
(uε (t) ,v)ϕ

′ (t) dt = − (uε (0) ,v) .

According to (1.6), we have by passing to the limit in the preceding equality
as E′ ∋ ε→ 0

∫ T

0

(
u′
0 (t) ,v

)
ϕ (t) dt+

∫ T

0
(u0 (t) ,v)ϕ

′ (t) dt = 0.

Hence (u0 (0) ,v) = 0 for all v ∈ V , and as V is dense in H we conclude
that u0 (0) = 0. Now, let us check that u =(u0,u1) verifies the variational
equation of (3.3). For 0 < ε < 1, let

(3.11)
Φε = ψ0 + εψε1 with ψ0 ∈ D (Q;R)N and
ψ1 ∈ D (Q;R)⊗

[
C∞
per (Z;R)⊗ VY

]
,

i.e., Φε (x, t) = ψ0 (x, t) + εψ1

(
x, t, x

ε
, t
ε

)
for (x, t) ∈ Q. We have Φε ∈

D (Q;R)N . Thus, multiplying (1.3) by Φε yields

(3.12)

∫ T
0 (u′

ε (t) ,Φε (t)) dt+
∫ T
0 aε (uε (t) ,Φε (t)) dt

−
∫
Q
pεdivΦεdxdt =

∫ T
0 (f (t) ,Φε (t)) dt.

Let us note at once that

∫ T

0

(
u′
ε (t) ,Φε (t)

)
dt = −

N∑

l=1

∫

Q

ulε

[
∂ψl0
∂t

+ ε

(
∂ψl1
∂t

)ε
+

(
∂ψl1
∂τ

)ε]
dxdt.

Then by virtue of (3.9) we have
(3.13)
∫ T

0

(
u′
ε (t) ,Φε (t)

)
dt → −

N∑

l=1

∫

Q

ul0
∂ψl0
∂t

dxdt =

∫ T

0

(
u′
0 (t) ,ψ0 (t)

)
dt

as E′ ∋ ε→ 0. In fact, on one hand

N∑

l=1

∫

Q

ulε

[
∂ψl0
∂t

+ ε

(
∂ψl1
∂t

)ε
+

(
∂ψl1
∂τ

)ε]
dxdt

→
N∑

l=1

[∫

Q

ul0
∂ψl0
∂t

dxdt+

∫ ∫ ∫

Q×Y×Z

ul0
∂ψl1
∂τ

dxdtdydτ

]

as E′ ∋ ε→ 0, on the other hand
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∫ ∫ ∫
Q×Y×Z

ul0
∂ψl

1

∂τ
dxdtdydτ =

∫
Q
ul0

(∫ ∫
Y×Z

∂ψl
1

∂τ
dydτ

)
dxdt = 0 by virtue

of the Y × Z-periodicity. The next point is to pass to the limit in (3.12) as
E′ ∋ ε→ 0. To this end, we note that as E′ ∋ ε→ 0,

∫ T

0
aε (uε (t) ,Φε (t)) dt→

∫ T

0
âΩ (u (t) ,Φ (t)) dt,

where Φ = (ψ0,ψ1) (proceed as in the proof of the analogous result in
[13, p.179]). Now, based on (3.10), there is no difficulty in showing that as
E′ ∋ ε→ 0,

∫

Q

pεdivΦεdxdt →

∫ ∫ ∫

Q×Y×Z

pdivψ0dxdtdydτ .

On the other hand, let us check that as ε→ 0

(3.14)

∫ T

0
(f (t) ,Φε (t)) dt →

∫ T

0
(f (t) ,ψ0 (t)) dt.

Indeed, if f ∈ L2
(
0, T ;L2 (Ω;R)N

)
(3.14) is immediate by using the classical

fact that Φε → ψ0 in L2 (Q)N -weak and ∂Φε

∂xj
→

∂ψ0

∂xj
in L2 (Q)N -weak

(1 ≤ j ≤ N) as ε → 0. In the general case, (3.14) follows by the density of

L2
(
0, T ;L2 (Ω;R)N

)
in L2

(
0, T ;H−1 (Ω;R)N

)
.

Having made this point, we can pass to the limit in (3.12) when E′ ∋ ε→
0, and the result is that

(3.15)

∫ T
0 (u′

0 (t) ,ψ0 (t)) dt+
∫ T
0 âΩ (u (t) ,Φ (t)) dt

−
∫
Q
p0divψ0dxdt =

∫ T
0 (f (t) ,ψ0 (t)) dt,

where p0 denotes the mean of p, i.e., p0 ∈ L2
(
0, T ;L2 (Ω;R)

)
and p0 (x, t) =∫ ∫

Y×Z
p (x, t, y, τ ) dydτ a.e. in (x, t) ∈ Q, and where Φ = (ψ0,ψ1), ψ0

ranging over D (Q;R)N and ψ1 ranging over D (Q;R)⊗
[
C∞
per (Z;R)⊗ VY

]
.

Taking in particular ψ0 in D (0, T ;V) and using the density of F∞
0 in F

1
0,

one quickly arrives at (3.3). The unicity of u =(u0,u1) follows by Lemma
3.1. Consequently, (3.7) and (3.8) still hold when E ∋ ε → 0. Hence when
0 < ε→ 0, by virtue of the arbitrariness of E. The theorem is proved. �

Now, we wish to give a simple representation of the vector function u1

in Theorem 3.3 for further uses. For this purpose we introduce the bilinear
form â on L2

per (Z;VY )× L2
per (Z;VY ) defined by

â (u,v) =
N∑

i,j,k=1

∫ ∫

Y×Z

aij
∂uk

∂yj

∂vk

∂yi
dydτ
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for u =
(
uk
)
and v =

(
vk
)
∈ L2

per (Z;VY ). Next, for each pair of indices
1 ≤ i, k ≤ N , we consider the variational problem

(3.16)





χik ∈ L2
per (Z;VY ) :

â (χik,w) =
∑N

l=1

∫
Y×Z

ali
∂wk

∂yl
dydτ

for all w =
(
wj
)
∈ L2

per (Z;VY ) ,

which determines χik in a unique manner.

Lemma 3.2. Under the hypotheses and notation of Theorem 3.3, we have

(3.17) u1 (x, t, y, τ ) = −

N∑

i,k=1

∂uk0
∂xi

(x, t)χik (y, τ )

almost everywhere in (x, t, y, τ) ∈ Q× Y × Z.

Proof. In (3.3), we choose the test functions v = (v0,v1) such that v0 = 0
and v1 (x, t, y, τ) = ϕ (x, t)w (y, τ ) for (x, t, y, τ ) ∈ Q × Y × Z, where ϕ ∈
D (Q;R) and w ∈ L2

per (Z;VY ). Then for almost every (x, t) in Q, we have

(3.18)

{
â (u1 (x, t) ,w) = −

∑N
l,j,k=1

∂uk0
∂xj

(x, t)
∫ ∫

Y×Z
alj

∂wk

∂yl
dydτ

for all w ∈ L2
per (Z;VY ) .

But it is clear that u1 (x, t) (for fixed (x, t) ∈ Q) is the unique function in
L2
per (Z;VY ) solving the variational equation (3.18). On the other hand, it

is an easy exercise to verify that z (x, t) = −
∑N

i,k=1
∂uk0
∂xi

(x, t)χik solves also

(3.18). Hence the lemma follows immediately. �

3.3. Macroscopic homogenized equations. Our aim here is to derive a
well-posed initial boundary value problem for (u0, p0). To begin, for 1 ≤
i, j, k, h ≤ N , let

qijkh = δkh

∫

Y

aij (y) dy −

N∑

l=1

∫ ∫

Y×Z

ail (y)
∂χkjh
∂yl

(y, τ) dydτ ,

where: δkh is the Kronecker symbol, χjh =
(
χkjh

)
is defined by (3.16). To

the coefficients qijkh we associate the differential operator Q on Q mapping

D′ (Q)N into D′ (Q)N (D′ (Q) being the usual space of complex distributions
on Q) as
(3.19)

(Qz)k = −

N∑

i,j,h=1

qijkh
∂2zh

∂xi∂xj
(1 ≤ k ≤ N) for z =

(
zh
)
, zh ∈ D′ (Q) .

Q is the so-called homogenized operator associated to P ε (0 < ε < 1).
Now, let us consider the initial boundary value problem

(3.20)
∂u0

∂t
+Qu0 + gradp0 = f in Q = Ω×]0, T [,
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(3.21) divu0 = 0 in Q,

(3.22) u0 = 0 on ∂Ω×]0, T [,

(3.23) u0 (0) = 0 in Ω.

Lemma 3.3. The initial boundary value problem (3.20)-(3.23) admits at
most one weak solution (u0, p0) with

u0 ∈ W (0, T ) and p0 ∈ L2
(
0, T ;L2 (Ω;R) /R

)
.

Proof. If (u0, p0) ∈ W (0, T )×L2
(
0, T ;L2 (Ω;R)

)
verifies (3.20)-(3.23), then

we have
∫ T
0 (u′

0 (t) ,v0 (t)) dt+
∑N

i,j,k,h=1

∫
Q
qijkh

∂uh0
∂xj

∂vk0
∂xi

dxdt

=
∫ T
0 (f (t) ,v0 (t)) dt

for all v0 ∈ L2 (0, T ;V ). From the previous equality, one quickly arrives at
(3.24)∫ T

0 (u′
0 (t) ,v0 (t)) dt+

∑N
i,j,k=1

∫ ∫ ∫
Q×Y×Z

aij

(
∂uk0
∂xj

+
∂uk1
∂yj

)
∂vk0
∂xi

dxdtdydτ

=
∫ T
0 (f (t) ,v0 (t)) dt

where uk1 (x, t, y, τ) = −
∑N

i,h=1
∂uh0
∂xi

(x, t)χkih (y, τ) for (x, t, y, τ ) ∈ Q×Y ×Z.

Let us check that u = (u0,u1) (with u1 (x, t, y, τ ) = −
∑N

i,k=1
∂uk0
∂xi

(x, t)χik (y, τ)

for (x, t, y, τ ) ∈ Q× Y × Z) satisfies (3.3). Indeed, we have

(3.25)

N∑

i,j,k=1

∫ ∫ ∫

Q×Y×Z

aij

(
∂uk0
∂xj

+
∂uk1
∂yj

)
∂vk1
∂yi

dxdtdydτ = 0

for all v1 =
(
vk1
)
∈ L2

(
Q;L2

per (Z;VY )
)
, since u1 (x, t) verifies (3.18) for

(x, t) ∈ Q. Thus, by (3.24)-(3.25), we see that u = (u0,u1) verifies (3.3).
Hence, the unicity in (3.20)-(3.23) follows by Lemme 3.1. �

This leads us to the following theorem.

Theorem 3.4. Suppose that the hypotheses of Theorem 3.3 are satisfied.
For each 0 < ε < 1, let (uε, pε) ∈ W (0, T ) × L2

(
0, T ;L2 (Ω;R) /R

)
be

defined by (1.3)-(1.6). Then, as ε → 0, we have uε → u0 in W (0, T )-
weak and pε → p0 in L2

(
0, T ;L2 (Ω)

)
-weak, where the pair (u0, p0) lies in

W (0, T )×L2
(
0, T ;L2 (Ω;R) /R

)
and is the unique solution of (3.20)-(3.23).

Proof. Let E be a fundamental sequence. As in the proof of Theorem 3.3,
there exists a subsequence E′ extracted from E such that as E′ ∋ ε→ 0, we
have (3.7)-(3.8) and (3.10) with u =(u0,u1) ∈ F

1
0 and u0 (0). Then, from

(3.10) we have pε → p0 in L
2
(
0, T ;L2 (Ω)

)
-weak when E′ ∋ ε→ 0, where p0

is the mean of p. Hence, it follows that p0 ∈ L2
(
0, T ;L2 (Ω;R) /R

)
. Furher,

(3.15) holds for allΦ = (ψ0,ψ1) ∈ D (Q;R)N×D (Q;R)⊗
[
C∞
per (Z;R)⊗ VY

]
.

Then, substituting (3.17) in (3.15) and choosing therein the Φ’s such that
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ψ1 = 0, a simple computation leads to (3.20) with evidently (3.21)-(3.23).
Hence the Theorem follows by Lemma 3.3 since E is arbitrarily chosen. �

Remark 3.2. The operator Q is elliptic, i.e., there is some α0 > 0 such
that

N∑

i,j,k,h=1

qijkhξikξjh ≥ α0

N∑

k,h=1

|ξkh|
2

for all ξ =
(
ξij
)
with ξij ∈ R. Indeed, by following a classical line of argu-

ment (see, e.g., [2]), we can give a suitable expression of qijkh, viz.

qijkh = â
(
χik − πik,χjh − πjh

)
,

where, for each pair of indices 1 ≤ i, k ≤ N , the vector function πik =(
π1ik, ..., π

N
ik

)
: RNy → R is given by πrik (y) = yiδkr (r = 1, ..., N) for y =

(y1, ..., yN ) ∈ R
N . Hence, the above ellipticity property follows in a classical

fashion.

References

[1] G. Allaire; Homgenization and two-scale convergence, SIAM J. Math. Anal., 23
(1992), 1482-1518.

[2] A. Bensoussan, J.L. Lions and G. Papanicolaou; Asymptotic Analysis for Periodic
Structures, North-Holland, 1978.

[3] A. Guichardet; Analyse Harmonique Commutative, Dunod, Paris, 1968.
[4] R. Larsen; Banach Algebras, Dekker, New York, 1973.
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