TWO-SCALE CONVERGENCE OF UNSTEADY STOKES
TYPE EQUATIONS

LAZARUS SIGNING

University of Ngaoundere
Department of Mathematics and
Computer Science, P.O.Box 454

Ngaoundere, Cameroon

email: lsigning@uyl.uninet.cm

ABSTRACT. In this paper we study the homogenization of unsteady
Stokes type equations in the periodic setting. The usual Laplace op-
erator involved in the classical Stokes equations is here replaced by a
linear elliptic differential operator of divergence form with periodically
oscillating coefficients. Our mean tool is the well known two-scale con-
vergence method.

1. INTRODUCTION

Let Q be a smooth bounded open set in RY (the N-numerical space RY
of variables = (z1,...,zx)), where N is a given positive integer, and let T
and ¢ be real numbers with 7" > 0 and 0 < € < 1. We consider the partial
differential operator

N
e __ 9 € 9
== Z al‘l (aij 8@)
1,5=1

in Qx]0,T[, where af; (v) = ajj (%) (xe€Q),a;eLl>™RNR) (1<i,j<
N) with

(11) (Iij = aji,
and the assumption that there is a constant a > 0 such that
N
(1.2) > i (y) (¢ = al¢]? for all ¢ = (¢;) € RY and
i,j=1

for almost all y € RY, where ]Rév is the N-numerical space RY of variables

y = (y1,...,yn), and where |-| denotes the Euclidean norm in RY. The opera-
tor P¢ acts on scalar functions, say ¢ € L? (0, T;H! (Q)) However, we may
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2 LAZARUS SIGNING

as well view P* as acting on vector functions u = (u’) € L? (0, T; H' (Q)N>
in a diagonal way, i.e.,

(Pfu)' = P’ (i=1,..,N).
For any Roman character such as i, j (with 1 < 4,57 < N), u’ (resp.
u?) denotes the i-th (resp. j-th) component of a vector function u in
L} (©2x]0,T DY or in L}, (RZ]JV X RT)N where R, is the numerical space
R of variables 7. Further, for any real 0 < € < 1, we define u® as

W (2,8) = u (f f) (2,1) € Qx]0,T])

9
g €

i

for u € Llloc (]Rév X ]RT), as is customary in homogenization theory. More
generally, for u € L} (Q X ]Rév X ]RT) with @ = Qx]0, T, it is customary
to put

t
u (z,t) = u <a:,t, g, E> ((z,t) € 2x]0,T7)
whenever the right-hand side makes sense (see, e.g., [8 9]).

After these preliminaries, let f = (f’) € L? <0, T, H ' (Q; R)N>. For any

fixed 0 < € < 1, we consider the initial boundary value problem

(1.3) 8(;16 + P°u. + gradp. = f in 2x]0,T7,
(1.4) divu, = 0 in 2x]0, 17,

(1.5) u. =0 on 902x]0,T7,

(1.6) u. (0) =01in Q.

We will later see that as in [I8], (L3)-(L6) uniquely define (u.,p.) with
u. € W(0,T) and p. € L? (O,T; L? (;R) /R), where

W(0,T)={ue L?*0,T;V):d € L* (0, T; V") }

V being the space of functions u in H} (€ R)Y with divu = 0 (V' is the
topological dual of V') and where

L* ((;R) /R = {v € L* (O R) : / vdr = 0} :
Q
Let us recall that W (0,T) is provided with the norm
1
) 1
HuHW@T) - (”u”%Q(O,T;V) + Hu,HLQ(QT;V’)) ’ (uew(0,7)),

which makes it a Hilbert space with the following properties (see [18]):
W (0,T) is continuously embedded in C <[0, T]; L? (Q)N> and is compactly

embedded in L? (0, T; L? (Q)N>
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Our aim here is to investigate the asymptotic behavior, as ¢ — 0, of
(ug, pe) under the assumption that the functions a;; (1 <,j < N) are peri-
odic in the space variable y. The steady state version of this problem (i.e.,
the homogenization of stationary Stokes type equations) was first investi-
gated by Bensoussan, Lions and Papanicalaou [2]. These authors use the
well-known approach of asymptotic expansions combined with Tartar’s en-
ergy method. We also mention the paper of Nguetseng and the author [16],
on the sigma-convergence of stationary Navier-Stokes type equations.

The present study deals with the periodic homogenization of an evolution
problem for Stokes type equations.

This study is motivated by the fact that the homogenization of (IL3])- (L)
is connected with the modelling of heterogeneous fluid flows (see, e.g., [19]
for more details about such models).

Our approach is the well-known two-scale convergence method.

Unless otherwise specified, vector spaces throughout are considered over
the complex field, C, and scalar functions are assumed to take complex
values. Let us recall some basic notation. If X and F' denote a locally
compact space and a Banach space, respectively, then we write C (X; F)
for continuous mappings of X into F, and B (X;F) for those mappings
in C(X;F) that are bounded. We shall assume B (X;F) to be equipped
with the supremum norm [lul|, = sup,cx [|u ()| (||-|| denotes the norm
in F'). For shortness we will write C (X) = C(X;C) and B(X) = B(X;C).
Likewise in the case when F' = C, the usual spaces L? (X; F') and L} (X; F)
(X provided with a positive Radon measure) will be denoted by LP (X) and
LY (X)), respectively. Finally, the numerical space RY and its open sets are
each provided with Lebesgue measure denoted by dx = dz...dzy.

The rest of the paper is organized as follows. Section 2 is devoted to the
preliminary results on existence and uniqueness, and some estimates on the
velocity u., the pressure p. and the accelaration aa‘f of the fluid, whereas in
Section 3 one convergence theorem is established.

2. PRELIMINARIES

Let © be a smooth bounded open set in RY, let T' > 0 be a real number
and let f = (fj) € L? <O,T; H-! (Q)N> For 0 < € < 1, it is not apparent

that the initial boundary value problem (L3])-(L.6]) has a solution (uc,p;),
and that the latter is unique. With a view to elucidating this, we introduce,
for fixed 0 < & < 1 the bilinear form a on H} (; R)Y x H(; R)Y defined
by
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for u = (u¥) and v = (v¥) in H} (Q:;R)V. By virtue of (L), the form a is
symmetric. Further, in view of (L2)),

(2.1) 0 (v,v) 2 a |l o)n

for every v = (v*) € H} (% R)Y and 0 < € < 1, where

N 3
I (Z/ ‘Vzﬂf‘d:ﬂ)
k=174

with VoF = <‘9”1c out ) On the other hand, it is clear that a constant

Oxr1°’""" Ozn

co > 0 exists such that
(2.2) la® (u,v)| < co ”u”Hé(Q)N ”VHH(%(Q)N

for every u, v € H} (Q;R)™ and 0 <& < 1.
We are now in a position to verify the following result.

Proposition 2.1. Suppose f lies in L? <0,T; L? (Q;R)N). Under the hy-

potheses (IL1)-(1.2), the initial boundary value problem (I.3)-(1.04) deter-
mines a unique pair (Ug,pe) with

u. € L? (o,T; H} (Q;R)N) ne ([o,T] L2 (Q;R)N) and
pe € L? (O,T; L? (;R) /}R)
Proof. For fixed 0 < € < 1, we consider the Cauchy problem
(23) { ul (t) + Acu (t) = £(t) in]0, T
u. (0) =0,
where A, is the linear operator of V into V' defined by
(Acu,v) =a (u,v) forallu,veV
and / is the function in L? (0,7; V') defined by
((t),v)=(f(t),v) forallveV

and for almost all ¢ €]0,T[, and where (,) denotes the duality pairing be-
tween V/ and V as well as between H~1 (Q;R)" and H} (Q;R)N. Thanks
to (2I)-22) the Cauchy problem (2.3]) admits a unique solution u. in
W (0,T), as is easily seen by following [5, Chap.3, Théoreme 1.2, p.116],
see also [18] pp.254-260]. Now, let us check that the abstract parabolic
problem (23] is equivalent to (L3)-(L4). Let U, (t) = fot Peu, (s)ds and
F(t) = f(f f(s)ds for 0 <t < T, where u,. satisfies (2.3]). It is evident that

U.and F eC ([O,T] s HL (Q;]R)N). By the first equality of (2.3]) we have

24 L ).9)= () - A (1),9) forall p eV,
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where
V= {cp e D (R : divep = O}.
Integrating (24]), we have

Thus, using a classical argument (see, e.g., [18, p.14]), we get a function
P.e€C([0,T];L*(9;R) /R) such that

u. + U, + gradP. =F.
Hence p. = 6{55 € D' (Q) and the pair (u., p.) verifies (I3]) (in the distribu-
tion sense on @), with in addition (L4)-(L6), of course. Futhermore, by us-
ing the fact that f € L? (O, T; L? () ]R)N) we have u. € L2 <0, T; L2 (; R)N>,
as is easily seen by following [18] p.268]. Therefore p. lies in L? (O, T;L? (;R) /}R)
and is unique. Conversely, it is an easy exercise to verify that if (u.,p.) is a

solution of (L3)-(L6) with u. € W (0,T) and p. € L* (0,T; L? (Q;R)), then
u. satisfies (Z3]). The proof is complete. O

The following regularity result is fundamental for the estimates of the
solution (ug,p.) of (L3)-(L4).
Lemma 2.1. Suppose £,£ € L2(0,T;V") and £ (0) € L2 (Q;R)N. Then the
solution u. of (2.3) verifies:

u. e L2(0,T;V)NL>®(0,T;H),
where H is the closure of V in L? (Q;}R)N.

The proof of the above lemma follows by the same line of argument as in
the proof of [I8, p.299, Theorem 3.5]. So we omit it. We are now able to
prove the result on the estimates.

Proposition 2.2. Under the hypotheses of Lemma 21, there exists a con-
stant ¢ > 0 (independent of €) such that the pair (u.,p.) solution of (L3)-
(L8) in W(0,T) x L? (0,T; L* (4 R) /R) satisfies:

(2.5) el < ¢

(2.6) ‘ ou. s¢
ot LZ(O,T;Hfl(Q)N)

and

(2.7) 1= L2 0,7;22(0)) < €

Proof. Let (ug,pe) be the solution of (L3])-(T.6]). We have
(2.8) (ul(t),v) +a° (u:(t),v)=(f(t),v) (vevV)
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for almost all ¢ € [0,7T]. By taking in particular v = u,. (¢) in ([2.8]), we have
for almost all ¢t € [0,T]

d 1
7 [ue (0 + 20 lue (B)° < = IE (B + o [Jue ()]

where || and ||-|| are respectively the norms in L2 ()" and H} (2)". Hence,
for every s € [0,T]

s 1 T
u ) ra [ a@Fa< s [ ie@la
0 & Jo
since u. (0) = 0. By the preceding inequality, we see that
T ) 1 [T )
(2.9 o [luc@ifae < [ e ae
0 a Jo
On the other hand, the abstract parabolic problem (2.3]) gives
u. =f— A.u..

Hence, in view of (2.2))
(2.10) [ 20,70y < Iz + co el 20 v -

Thus, by (2.9) and (2.I0) one quickly arrives at ([2.5)). Let us show (2.6).
We are allowed to differentiate (2.8) in distribution sense on ]0,7'[, and by

virtue of the hypotheses of Lemma 2.1} we get u” € L? (0,T;V’) and
(2.11) (ul,v) +a° (ul,v)=(f',v) (veV).
In view of Lemma [2.1] we take in particular v = ul (¢) in (2.8). This yields

2

[l (8) + 0 (ue (1)l (1) = (£(6), 0. (1)) (¢ € [0,77).
Further, since u. € L%*(0,7;V) and u? € L?(0,7;V’), we have u. €
C ([0, T]; H). Hence, by taking in particular ¢ = 0 in the preceding equality
and using (6] one quickly arrives at

2
ul (0)]” < |£(0) [ul (0)],

i.e.,
(212) o (0)] < £ (0)]
The inequality (2.12]) shows that ul (0) lies in a bounded subset of H. On
the other hand, by taking in particular v = u. (¢) in ([2.I1]), we get

a0+ 20 ul ()] < = [F O, + o Jul 0]

for almost all ¢t € [0,T]. Integrating the preceding inequality on [0,¢] (¢ €
[0,T7]) leads to

/ ¢ / 1 / /
WO +o [ @ s < 20 + [ O
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It follows from (2I2) and the preceding inequality that u. belongs to a
bounded subset of L2 <0, T; L? (; R)N). Hence (2.0)) is immediate. Let us
prove ([2.7). For almost all t € [0,T], p (t) € L? (;R) /R. Thus, by [17, p.
30] there exists v. (t) € H} (Q;R)Y such that

(2.13) divv, (t) = pe (t)

(2.14) [ve @I < et |pe (D) r2(q) -

where the constant ¢; depends solely on Q. Multiplying (I.3]) by v, (¢) yields
(u; (), ve (t)) +a° (ue (t),ve (1) — /Qpa (t) divve (t) do = (£ (t) , ve (1))

for almost all ¢ € [0,T]. Integrating the preceding equality on [0,7] and

using (2.13)-(2I4) lead to

HP:—:Hiz(Q) < e HUQHLz(O,T;Lz(Q)N) ||p€||L2(Q) +a HfHL?(O,T;H*l(Q)) ||p6||L2(Q)

+erco (el 20,0y [1Pell 220 -

where c is the constant in the Poincaré inequality, cg and ¢q are the constants
in ([2.2)) and (2I4]) respectively. Thus,

(2.15)
HpEHLZ(Q) < cc Hu;HL2(O,T;L2(Q)N)+Cl ||f||L2(0,T;H*1(Q))+CICO HUEHLZ(O,T;W .
Combining (215, (2.5) and (2.6) leads to (2.71). O

3. A CONVERGENCE RESULT FOR ([[.3))- (6]

We set Y = (—%, %)N, Y considered as a subset of Rév (the space RV

of variables y = (y1,...,yn)). We set also Z = (—%, %), Z considered as
a subset of R, (the space R of variables 7). Our purpose is to study the
homogenization of (L3)-(L6) under the periodicity hypothesis on a;;.
3.1. Preliminaries. Let us first recall that a function u € LlloC (RZ]JV X RT)
is said to be Y x Z-periodic if for each (k,1) € Z" x Z (Z denotes the
integers), we have u(y + k,7+1) = u(y,7) almost everywhere (a.e.) in
(y,7) € RY x R. If in addition u is continuous, then the preceding equality
holds for every (y,7) € RY x R, of course. The space of all Y x Z-periodic
continuous complex functions on ]Rév x R; is denoted by Cpe, (Y x Z); that
of all Y x Z-periodic functions in L} (}Rév x R;) (1 < p < 00) is denoted by
Lher (Y X Z). Cper (Y x Z) is a Banach space under the supremum norm on
RN x R, whereas L., (Y x Z) is a Banach space under the norm

1
p
Hunmm):( Ll IU(y,T)IpdydT> (we L, (¥ x 2)).
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We will need the space H L (Y) of Y-periodic functions u € H} . (RN ) =

VVIT)C2 (RN ) such that fy dy = 0. Provided with the gradient norm,

lallnyn = ( [ 19 dy) (ue HL(Y)),

where V,u = ( g;l . 8yN> Hy L (Y) is a Hilbert space. We will also need

the space L2, <Z ; H# (Y)) with the norm

%
lollg oy = ([ [ 19 )P dyar)” (e B (2023 (1)

which is a Hilbert space.

Before we can recall the concept of two-scale convergence, let us introduce
one further notation. The letter £ throughout will denote a family of real
numbers 0 < € < 1 admitting 0 as an accumulation point. For example,
E may be the whole interval (0,1); F may also be an ordinary sequence
(En)pen With 0 < e, <1 and €, — 0 as n — oo. In the latter case £ will be
referred to as a fundamental sequence.

Let Q be a bounded open set in RY and Q = Qx]0, T[ with T € R?% , and
let 1 <p< o0

Definition 3.1. A sequence (u:).cp C LP (Q) is said to:
(i) weakly two-scale converge in LP (Q) to some ug € LP (Q; Lbe, (Y x Z))
if as
E>e—0,
(3.1)

/uE (x,t) Y° (z,t) dmdt—)/// wo (z,t,y, 7)Y (z,t,y, 7) dedtdydr
Q QXY xZ

for all € LP' (Q; Cper (Y x Z)) :z% =1- %) , where Y (z,t) =
V(@2 L) ((z.t) €Q);
(ii) strongly two-scale converge in LP (Q) to some ug € LP (Q; Lber (Y x Z))
if the following property is verified:

Givenn >0 and v € LP (Q;Cper (Y X Z)) with
luo = vl Loy xz) < 1, there is some o > 0 such
that |[ue — v°[| oy < 1 provided E > € < o

We will briefly express weak and strong two-scale convergence by writing
ue — ug in LP (Q)-weak 2-s and u. — ug in LP (Q)-strong 2-s, respectively.

Remark 3.1. [t is of interest to know that if u. — ug in LP (Q)-weak 2-s,
then ([31) holds for ¢ € C (Q; L2, (Y x Z)). See [9, Proposition 10] for the
proof.
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Instead of repeating here the main results underlying two-scale conver-
gence, we find it more convenient to draw the reader’s attention to a few
references, see, e.g., [1], [7], [9] and [20].

However, we recall below two fundamental results. First of all, let

Y(0,T)={veL?(0,T;H} (%R)) : v € L* (0,T; H ' (4 R)) } .
Y (0,T) is provided with the norm

N

2 2
HUHJJ(O,T) = (”UHL2(0,T;H3(Q)) + HU/HLZ(O,T;H*(Q))> (veY(0,7))
which makes it a Hilbert space.
Theorem 3.1. Assume that 1 < p < oo and further E is a fundamental

sequence. Let a sequence (uc).cp be bounded in LP (Q). Then, a subsequence
E' can be extracted from E such that (uc),cp weakly two-scale converges in

LP(Q).

Theorem 3.2. Let E be a fundamental sequence. Suppose a sequence
(te)ocp 15 bounded in Y (0,T). Then, a subsequence E' can be extracted
from E such that, as E' > & — 0,

ue — ug in Y (0,T) -weak,

ue — ug i L* (Q) -weak 2-s,
Ou: _, Oup | O,
al‘j 8:Ej ayj

where up € Y (0,T), uy € L? <Q; 12, <Z; "), (Y))).

n L* (Q) -weak 2-s (1< j < N),

The proof of Theorem Bl can be found in, e.g., [1], [7], whereas Theorem
3.2 has its proof in, e.g., [9] and [15].

3.2. A global homogenization theorem. Before we can establish a so-
called global homogenization theorem for (L3))-(LH), we require a few basic
notation and results. To begin, let

Vy = {w ece (VR - /Y ¥ (y)dy = 0, div,i =0},

Vy = {w e Hy (V;R)N : div,w :o} ,
where: Cpe, (Y;R) = C* (RYM;R) N Cper (Y), divy, denotes the divergence
operator in Rév . We provide Vy with the Hi# (Y)N-norm, which makes it
a Hilbert space. There is no difficulty in verifying that Vy is dense in Vy
(proceed as in [14, Proposition 3.2]). With this in mind, set

Fo = L?(0,T;V) x L* (Q; L2, (Z; Vy)) .

per

This is a Hilbert space with norm

N

2 2
HVHF}) = <”V0”L2(0,T;V) + |’V1”L2(Q;L§GT(Z;VY))> , v =(vo,v1) € Fy.
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On the other hand, put
Fg" =D (0,T;V) x [D(Q:R) @ [C, (Z:R) @ Vy]]
where C22. (Z;R) = C™ (R;R) N Cper (Z), C3%, (Z;R) ® Vy stands for the

per per
space of vector functions w on ]Rév x R, of the form

wym) = > x;(Mvi(y) (reR, yeRY)

finite
with x; € 2%, (Z;R), v; € Vy, and where D (Q;R) ® (Cpo,. (Z;R) ® Vy) is
the space of vector functions on Q) x RN x R of the form
¥ (@ ty, )= @@ t)wi(y,7) ((z.t) €Q, (y,7) RV xR)
finite
with ¢; € D(Q;R), w; € Cpg,. (Z;R) ® Vy. Since V is dense in V' (see [18]

p.18)), it is clear that F§° is dense in F}.

Now, let
U=V xL*(Q L2, (Z;Vy)).

per

Provided with the norm

[NIES

2 2
¥l = (ol + v112a0zs. (zi0)) (¥ = (Vo va) € 1),
U is a Hilbert space. Let us set

ouf 8u’f> <8v§ 8v’f>
A el + ddyd
Z ///QXYXZ <3$j dy; ) \ow; " ay; ) YT

i,5,k=1

for u =(up,u;) and v =(vg,vy) in U. This defines a symmetric continuous
bilinear form @ on U x U. Furthermore, aq is U-elliptic. Specifically,

(3.2 o (w,u) > au} (ueU)

as is easily checked by using (L.2)) and the fact that fy a (z,y,7)dy = 0.
Here is one fundamental lemma.

Lemma 3.1. Under the hypotheses (I1)-(1.2). The variational problem
(3.3)

uy €W (O,T) with ug (0) =0y

u = (up,u;) € F}:
T N
Jo (WG (), vo(®)dt + f; dq (u(t),v = Jo (E(),vo () dt
for all v = (vo,vl) E IF'O

has at most one solution.

Proof. Let v, = (vp,v1) € U and ¢ € D(]0,7]). By taking v =¢ ® v, in
B3), we arrive at

(3.4) (u6 (t),vo) +aq (u(t),v.) = (£(t),vo) (v €U)
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for almost all ¢ € (0,7"). Suppose that u, and u,, are two solutions of (3.3])
with w, = (U4, Us1) and Wss = (Was0, Was1 ). Let u = u, — wy = (up, uy)
with ug = U9 — U4 and U3 = Uy — U4yq. Let us show that u =0. By using
B4]) we see that u verifies:

(3.5) (ug (1), vo) +ao (u(t),v.) =0
for all v, € U and for almost all ¢t € (0,7). But, by virtue of [I8, p. 261]

2 g (O = 2 (s ()0 1)

for almost all ¢t € (0,7"). Then, taking v,.= u (¢) in ([B.5]), we obtain by (B.2)
d

(3.6) 7 lwo (OF +2a Ju(®)f <0

for almost all ¢ € (0,7). Integrating ([B.6) on [0,¢] (0<t<T), we get

lug ()]* < 0 for all ¢ € [0,7] and HquzFé < 0, thus u = 0 and the lemma

follows. O

We are now able to prove the desired theorem. Throughout the remainder
of the present section, it is assumed that a;; is Y-periodic for any 1 <i,j <
N.

Theorem 3.3. Suppose that the hypotheses of Lemmal2.1l are satisfied. For
0<e <1, let u. be defined by (IL.3)-(1.8). Then, as ¢ — 0 we have

(3.7) u. — ug in W(0,T) -weak,

out  ouf ouk .
) 1 i L - 2-5 (1< <N
(3.8) 7z, — oz, + 7y, in L* (Q) -weak 2-s (1 < j,k < N)
where u = (g, u1) (with ug = (uf) and uy = (u})) is the unique solution

of (3.3).

Proof. By Proposition[2.2], we see that the sequences (pe ). and (u:)g..cq =
(ué,...,ué\’)ka<1 are bounded respectively in L?(Q) and W (0,T). Fur-
ther, it follows from (23] and (2.0) that for 1 < k < N, the sequence
(u§)0<€<1 is bounded in Y (0,T). Let E be a fundamental sequence. Then,
by Theorems and the fact that W (0,T") is compactly embedded in

L? (Q)N , there exist a subsequence E’ extracted from E and functions ug =

() ey €WO,T), w1 = (ub),_,y € L2 (Q;Lger (Z;H;é (Y;R)N)),
andp € L* (Q; L2, (Y x Z;R)) such that as E' 5 ¢ — 0, we have (37)-(B3)
and

(3.9) u. = ug in L? (Q)" -strong,

(3.10) pe — pin L? (Q)-weak 2-s.

But, by virtue of Lemma [B.1] the theorem will be entirely proved if we
show that u = (ug,u;) verifies (B.3). In fact, according to (L4]), we have
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divug = 0 and div,u; = 0. Therefore u = (ug,u;) € F§. Let us recall that
uy can be considered as a continuous function of [0, 7] into H since W (0,T)
is continuously embedded in C ([0,7]; H). Let us show that ug (0) = 0. For
v € Vand ¢ € C'([0,T]) with ¢ (T) = 0 and ¢ (0) = 1, we have by an
integration by part

T T
/(%@%ﬂw@ﬁ+/(%@%ﬂd@ﬁz—mdmw%
0 0

According to (LA), we have by passing to the limit in the preceding equality
as ' 5e—0

T T
| o) et [ ).v) @ d o
0 0

Hence (ug (0),v) = 0 for all v € V, and as V is dense in H we conclude
that ug (0) = 0. Now, let us check that u = (ug, uy) verifies the variational
equation of ([B.3]). For 0 < e < 1, let

(3.11) B, = 1 + ey with ¢y € D(Q;R)™ and
' P, € D(Q;R) ® [CX, (Z:R) @ Vy]

ie, ®. (z,t) = Yy (z,t) + ey (m,t,%,g) for (x,t) € Q. We have ®. €
D (Q; R)N. Thus, multiplying (3] by ®. yields

(3.12) Jo (L (0), @< (1)) dit + J o o), . ()

—prgdivi’ed:Edt fo t), P (t))dt
ovh , _(owi), (vt
B ( - + B dxdt.
Then by virtue of ([3.9]) we have
(3.13)

T T
/0( (), ®- () dt — — Z/uoaoda;dt /O(ug(t),z/;o(t))dt

as E' > & — 0. In fact, on one hand
1 &€ 1 15
z [k |5 (gi) + (gi) ]

N
= / ug&/’od dt + / / / uo 1dxdtdydr
=1 ot QXY xZ or

as B/ 3 & — 0, on the other hand

Let us note at once that

Aﬂ%w, §:/
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l
I [ fQXszué%d:EdtdydT = fQ ué <f foZ 8wldydT) dxdt = 0 by virtue
of the Y x Z-periodicity. The next point is to pass to the limit in ([BI2]) as
E’' 3 ¢ — 0. To this end, we note that as £’ 3 ¢ — 0,

T T
/ aa(ue(t),@(t))dm/ o (u(t), ® (1)) dt,
0 0

where ® = (¢y,%;) (proceed as in the proof of the analogous result in
[13, p.179]). Now, based on (3.10), there is no difficulty in showing that as
E' >¢—0,

/pgdz'vi’sdxdt%/// pdivypgdxdtdydr.
Q QXY xZ

On the other hand, let us check that as e — 0

T T
(3.14) /0 (F (), ®e (1)) dt — /0 (E () by (1)) dt.

Indeed, if f € L? (O, T; L? () ]R)N) (3:14)) is immediate by using the classical
fact that ®. — o, in L2 (Q)"-weak and %f; - %—Za‘? in L2 (Q)"-weak
(1<j<N)ase— 0. In the general case, (B.I14]) follows by the density of
L2 (o, T, L2 (Q; }R)N> in L2 (o, T, H- (9 R)N>.

Having made this point, we can pass to the limit in ([3.12]) when E' 5 ¢ —
0, and the result is that

(3.15) Jy (uhy (8) 4o (1)) dt + fy G (u (1), ® (1)) dt
| — o podivipodadt = [ (£ (1) 4o (1) dt,

where pg denotes the mean of p, i.e., py € L? (O, T; L? (; ]R)) and pg (x,t) =
[ Jywzp(x,t,y,7)dydr ae. in (z,t) € Q, and where ® = (¥, %), ¥,
ranging over D (Q;R)" and v, ranging over D (Q;R) ® [Coe. (Z;R) @ Vy .
Taking in particular 1, in D (0,T;V) and using the density of F3° in F},
one quickly arrives at (8.3]). The unicity of u = (ug,uy) follows by Lemma
B Consequently, (3.7) and (3.8)) still hold when E > ¢ — 0. Hence when

0 < e — 0, by virtue of the arbitrariness of E. The theorem is proved. [

Now, we wish to give a simple representation of the vector function uy
in Theorem [3.3] for further uses. For this purpose we introduce the bilinear
form @ on L2, (Z;Vy) x L2, (Z;Vy) defined by

per

Auk vk
i —dyd
Z //szajayj ay: 0T

i,5,k=1
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for u= (uk) and v = (vk) € Lf,er (Z;Vy). Next, for each pair of indices

1 <4,k < N, we consider the variational problem
Xik € L;z%er (27 VY) :

~ ,wk
(3.16) @ (X W) = 201 fyz ati Gy dydr
for all w = (w’) € L2, (Z; Vy),

which determines X, in a unique manner.

Lemma 3.2. Under the hypotheses and notation of Theorem [3.3, we have

N ouk
(317) u; (:Evt)y)T) = - Z 8:170 (:Evt) Xik (va)

ik=1

almost everywhere in (x,t,y,7) € Q XY X Z.

Proof. In ([B3)), we choose the test functions v = (vp, vq) such that vo =0
and vy (z,t,y,7) = ¢ (z,t) w(y,7) for (z,t,y,7) € Q XY X Z, where ¢ €
D(Q;R) and w € L2, (Z; Vy). Then for almost every (z,t) in Q, we have
(3.18) a (ul (ﬂj,t) ’W) = - Zl,j,k:l 8_5(;(; (:Evt) f foZ aljé)—yldydT

for all w € L2, (Z; Vy).

per

But it is clear that u; (z,t) (for fixed (z,t) € @) is the unique function in
L2, (Z;Vy) solving the variational equation (3.I8). On the other hand, it

per
k

is an easy exercise to verify that z (z,t) = — ngzl Z—Z‘z (z,t) X, solves also

(B18). Hence the lemma follows immediately. (]

3.3. Macroscopic homogenized equations. Our aim here is to derive a
well-posed initial boundary value problem for (ug,pp). To begin, for 1 <
i,5,k,h <N, let

iikh = 0 /ai' dy — // a; J ,T) dydT,
Gmn = Onn | aig (y) dy ; | aa() 5= ) dy

where: 0y, is the Kronecker symbol, x, = (X?h) is defined by ([B.16). To

the coefficients g;j1, we associate the differential operator Q on ) mapping
D (Q)" into D’ (Q)N (D’ (Q) being the usual space of complex distributions

on @) as
(3.19)
k - 82zh h h /
(Qz)f =— Gy (LSESN) forz= (), " e D' (@,

ivjvh:]-
Q is the so-called homogenized operator associated to P¢ (0 < e < 1).
Now, let us consider the initial boundary value problem

(3.20) % + Qug + gradpo = f in Q = Qx]0,T],
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(3.21) divug = 0 in @,
(3.22) up = 0 on 9N x]0,T7,
(3.23) up (0) =0 in Q.

Lemma 3.3. The initial boundary value problem (320)-(3.23) admits at
most one weak solution (ug,py) with
uy € W(0,T) and po € L* (0, T;L? (;R) /R).

Proof. If (ug,po) € W (0,T) x L* (0, T; L* (Q; R)) verifies (3:20)-(323), then
we have
oul vk
Jo ( (£) o (¢ >>dt+ziikh 1 Jo i i 7y deel
= (& (t)) dt

for all vg € L?(0,T;V). From the previous equality, one quickly arrives at
(3.24)

S (1) v (8 dt + 3N,y [ f me i (8“0 n a“l) 9% dadtdydr
= fo (t))dt

where u¥ (2,t,y,7) = — thzl gixg (z,t) x5 (y,7) for (z,t,y,7) € QXY x Z.

k
Let us check that u = (ug, uy) (with uy (z,¢,y,7) = — ngzl g_q;z (z,t) X (Y, T)
for (z,t,y,7) € Q x Y x Z) satisfies (3.3). Indeed, we have

ou, oul\ ovk
3.25 /// < °+—1> L grdtdydr = 0
( ) Z Q><Y><Z ax] ayj yi Y

i,5,k=1

for all vi = (vf) € L?(Q; L2, (Z;Vy)), since uy (z,t) verifies (3I8) for

(z,t) € Q. Thus, by (3:24)-(3.25]), we see that u = (ug, uy) verifies ([B.3)).
Hence, the unicity in (3.20)-(3.23]) follows by Lemme [311 O

This leads us to the following theorem.

Theorem 3.4. Suppose that the hypotheses of Theorem are satisfied.
For each 0 < & < 1, let (u.,p:) € W(0,T) x L*(0,T;L* (Q;R) /R) be
defined by (I3)-(1.6). Then, as ¢ — 0, we have u. — uy in W (0,T)-
weak and p. — po in L? (O,T; L? (Q))—weak, where the pair (ug,po) lies in
W (0,T)xL* (0,T; L? (% R) /R) and is the unique solution of (3.20)-(3.23).

Proof. Let E be a fundamental sequence. As in the proof of Theorem B.3],
there exists a subsequence E’ extracted from E such that as £/ > & — 0, we
have (B.7)-B.8) and BI0) with u = (ug,u;) € F§ and ug (0). Then, from
(3.10) we have p. — po in L? (O, T; L? (Q))—weak when E’ > € — 0, where pg
is the mean of p. Hence, it follows that pg € L* (0,T;L? (Q;R) /R). Furher,

(EETH) holds for all & = (14, 45,) € D (Q: R)™ xD (Q: R)=[C55, (Z:R) @ V|-
Then, substituting (B17) in [B.I5]) and choosing therein the ®’s such that
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1, = 0, a simple computation leads to (320) with evidently (B2I])-(3:23]).
Hence the Theorem follows by Lemma B3] since E is arbitrarily chosen. [

Remark 3.2. The operator Q is elliptic, i.e., there is some ag > 0 such
that

N N

2

Z Gijkn€ar€in = o Z (974
i7j7k7h:1 k7h:1

for all &€ = ({ij) with §;; € R. Indeed, by following a classical line of argu-
ment (see, e.g., [2]), we can give a suitable expression of Qijkh, VIZ.

Gijkh = 0 (Xak — Tiks Xjn — Tjh)
where, for each pair of indices 1 < i,k < N, the vector function m; =
(mher o mi)) Rjyv — R is given by 7, (y) = yidgr (r=1,...,N) fory =
(y1,...,yn) € RN. Hence, the above ellipticity property follows in a classical
fashion.
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