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Abstract. The stability of the orbital motion of two long cylindrical magnets
interacting exclusively with magnetic forces is described. To carry out analytical
studies a model of magnetically interacting symmetric tops [1] is used. The model was
previously developed within the quasi-stationary approach for an electromagnetic fi-
eld based on the general expression of the energy of interacting magnetic bodies [2].
A special role in the investigation of the stability of orbital motions is played by
the so-called relative equilibria [3], i.e. the trajectories of the system dynamics whi-
ch are at the same time one-parameter subgroups of the system invariance group.
Nowadays their stability is normally investigated using two similar approaches –
energy-momentum and energy-Casimir methods. The most suitable criterion for the
system stability investigation was formulated in the theorem of [4]; this stability
criterion successfully generalizes both the methods mentioned above and covers the
Hamiltonian formalism based on Poisson structures [1]. The necessary and sufficient
conditions for the circular orbit stability are derived from this theorem.

1. Introduction
The paper describes the new results on the research into the orbital motion stabi-

lity of magnetically interacting bodies. It continues the cycle of papers devoted to the
investigation of contact-free confinement of bodies by means of magnetic forces.

There are two different historical aspects of our problem, physical and mathematical.
The physical aspect is attributed to V.V. Kozoriz who was the first to come out in

1974 with a supposition about the possibility of stable dynamic states in the so-called
“compact” magnetic configurations.

At that time an opinion about the global instability of electric and magnetic systems
within the classical electrodynamics was widespread among physicists [5]. These ideas in
statics were associated with Earnshaw’s theorem; in dynamics they are associated with
the so-called “1/r3 problem”.

The supposition of V.V. Kozoriz seemed to be paradoxical and received no support in
the scientific community; therefore he actually carried out his research on his own.

In his papers, among which monograph [6] is worthy of mentioning about, he gave a
whole number of models and predicted the orbital motion stability for them.

Applying the physical idea about the nature of stability in such systems and analyzing
the behaviour of the potential energy of the considered systems he gave a number of
stability criteria for these systems.

However, the method he used for investigating the stability cannot be called rigorous.
Now it is quite clear that the proposed orbit stability conditions are not sufficient.

Comparatively not long ago V.V. Kozoriz and his co-authors made numerical modelli-
ng of the system of two long cylindrical magnets using a PC-cluster from the Institute
of Cybernetics; they managed to discover a number of stable orbits [7]. However, they
didn’t produce any analytical proof of stability in this paper.
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At the moment the hypothesis about the possibility of stable orbital motions in
“compact” magnetic systems was made the suitable methods of analytical stability investi-
gation were only at the initial stage of their development and were unknown to physicists
for a long period of time.

This second, mathematical, aspect is associated with such names as B. Konstant, J.-
M. Souriau, V. I. Arnold, A. A. Kirillov, and especially with J. E. Marsden. Marsden’s
lectures given in the Royal Mathematical Society and published in a separate book [3]
are completely devoted to the stability problem. For several decades his scientific school
has been developing the theory of stability of Hamiltonian systems with symmetry and
applying it in the research into fluid flow, stability of plasma, elastic bodies, in the general
theory of relativity and the quantum field theory.

However, among the numerous results of these books and papers of his colleagues we
could not discover any result which would be completely suitable for our system. This
is due to the fact that the basic results on stability of Hamiltonian systems concern
symplectic manifolds. The paper of J.-P. Ortega and T. S. Ratiu [4] is an exception; their
theorem concerns an analytically more complicated case of Poisson structures. It is the
theorem that we use in our paper.

2. Hamiltonian formalism based on Poisson structures
The Hamiltonian formalism based on Poisson structures (PS) [1] gives an algebraic

coordinate-free representation of dynamics which is especially important when a system
consists of rigid bodies.

In our case the Poisson manifold is the direct product of Euclidean spaces

P = R3
x ×R3

p ×R3
µ ×R3

m ×R3
ν ×R3

n. (2.1)

Thus, the generatrices of our dynamic system will be xi as relative coordinates of
two bodies; pi as pulse components of relative (orbital) motion; mi, ni as components of
angular momentums of the 1st and 2nd body, respectively; µi, νi as components of unit
vectors of symmetry axes for the 1st and 2nd body, respectively.

The nonzero Poisson brackets between the generatrices on P are as follows,
{xi, pj} = δij ;

{mi, µj} = εijkµk; {mi,mj} = εijkmk;

{ni, νj} = εijkνk; {ni, nj} = εijknk,

(2.2)

and the remaining influential Poisson brackets are equal to zero.
It can be easily checked that the Casimir functions of this Poisson structure will be{

~µ 2 = 1, ~ν 2 = 1;

(~µ , ~m) = M3 = const1, (~ν , ~n) = N3 = const2.

The Hamiltonian of the system can be written in the following form

h = T + U(r, c
′
, c
′′
, c
′′′

), (2.3)

where 
r = |~x|; ~e = ~x/r;

c
′

= (~e, ~µ);

c
′′

= (~e, ~ν);

c
′′′

= (~µ, ~ν).
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This form of the potential energy U describes a wide enough class of paired interactions
of magnetic bodies such as rotationally symmetric permanent magnets, superconducting
rings and solenoids, dipoles, and mixed systems [2].

3. Problem on stable orbital motion of two cylindrical
magnets

We will use the constructive proof method to prove the existence of stable orbital
systems interacting with magnetic forces. It means that we will demonstrate the possibility
of stability on the example of a specific physical system of this type.

We will take two identical long cylinders as magnetic bodies. As it was shown earlier
in our paper [1], the interaction of such bodies can be described by the Coulomb potenti-
al energy of four fictitious magnetic charges [8] concentrated on the extensions of the
cylinders. Thus, the potential energy of the system takes the following form

U =
µ0κ

′
κ
′′

4π

∑
ε′ ,ε′′=±1

ε
′
ε
′′

Rε′ε′′
, (3.1)

where Rε′ε′′ (r, c
′
, c
′′
, c
′′′

) =
√
r2 + l′2 + l′′2 + 2r(ε′′ l′′c′′ − ε′ l′c′)− 2ε′ε′′ l′ l′′c′′′ ; l

′
, l
′′
are

semilengths of the cylinders; r is the distance between the centers of the cylinders; κ
′
, κ
′′

are quantities of fictitious charges.
The potential energy in point (3.1) is a special case of the potential energy in (2.3).
Let us consider the problem in the center-of-mass system of the bodies [1].
The kinetic energy of the system will be formed by the kinetic energies of translational

(orbital) motion of the bodies and their self-rotation kinetic energies:

T (p2, ~m2, ~n2) =
1

2m
p2 +

α

2
~m2 +

β

2
~n2,

where ~r, ~p are orbital coordinates and pulses; ~m, ~n are angular momentums of the 1st
and 2nd body, respectively; m = m1m2

m1+m2
; α = β = 1

I⊥
(if the principal moments of inertia

of the body are equal to each other, I1 = I2 = I⊥, the rigid body is termed a symmetric
top).

Remark: If the consideration is limited to symmetric tops it is possible to use the
uniform Cartesian frame, the components of physical vector quantities being suitable
generatrices for the Poisson structure. In this case the Poisson brackets of dynamic vector
variables can be considered, and the equations of motion can be written in a vector
form [1].

The corresponding Hamiltonian equations of motion are as follows

~̇r = 1
m~p;

~̇p = −∂rU~e− 1
r (∂c′UP

e
⊥(~µ) + ∂c′′UP

e
⊥(~ν));

~̇µ = α(~m× ~µ);

~̇m = ∂c′U(~e× ~µ)− ∂c′′′U(~µ× ~ν);

~̇ν = β(~n× ~ν);

~̇n = ∂c′′U(~e× ~ν) + ∂c′′′U(~µ× ~ν),

where operator P e⊥ is the projection operator on the plane perpendicular to the vector ~e,
i.e. P e⊥(~µ) = ~µ− c′~e.

It can be directly checked that the total momentum of ~j = ~l + ~m + ~n, ~l = ~x × ~p, for
the Hamiltonian function (2.3) is an integral of motion: ~̇j = {~j, h} = 0.
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4. Relative equilibria

During the last decades large progress in the investigation of the system dynamics
was reached thanks to the application of group-theoretic methods. This also concerns
the research into the stability of some types of motions. In particular, a special role
in the investigation of the stability of orbital motions is played by the so-called relati-
ve equilibria [3], i.e. the trajectories of the system dynamics which are simultaneously
one-parameter subgroups of the system invariance group. Nowadays their stability is
normally investigated using two similar approaches – energy-momentum and energy-
Casimir methods.

We will show that there are relative equilibria in the system in point.
Let z be a fixed axis. Let us consider a subgroup of rotations around this axis. Each

one-parameter subgroup of this group will be characterized by its angular velocity of
rotation ~ω = ω~ez. The rate with which any physical quantity ~v in our problem changes
along the orbit of the given subgroup will be set by the formula ~̇v = ~ω × ~v.

Therefore, the following relations should be fulfilled for the relative equilibrium{
~̇r = ω(~ez × ~r); ~̇µ = ω(~ez × ~µ); ~̇ν = ω(~ez × ~ν);

~̇p = ω(~ez × ~p); ~̇m = ω(~ez × ~m); ~̇n = ω(~ez × ~n).
(4.1)

The fixed point on the orbit ze can be chosen as{
~x0 = r0~e1; ~µ = ~e3; ~ν = −~e3;

~p0 = p0~e2; ~m = m~e3; ~n = n~e3,
(4.2)

where ~e1, ~e2, ~e3 is a fixed basis.
Thus, the bodies gyrate in the plane xy; the axes of the magnets are parallel to the

axis z and are opposite in direction; and all moments, i.e. the orbital moment ~l = ~x× ~p,
intrinsic moments ~m and ~n, and the total momentum ~j, are parallel to the axis z.

So (4.1) will then have the following form{
~̇r = ω(~ez × ~r); ~̇µ = 0; ~̇ν = 0;

~̇p = ω(~ez × ~p); ~̇m = 0; ~̇n = 0.
(4.3)

This is in an agreement with the equations of motion at the given starting conditions
since c

′
= 0, c

′′
= 0, c

′′′
= −1, and the evaluations show that in this case ∂c′U = 0 and

∂c′′U = 0 and ∂c′′U = 0.
It means that the conditions of (4.3) are reduced to the equality of centripetal and

centrifugal forces.
Remark: It should be noted that according to the conditions of the theorem of section

5 it is required to prove a weaker statement, namely, the fulfilment of the conditions of
(4.3) in one point.

5. Theorem of stability of relative periodic orbits in
Hamiltonian systems with symmetry

We will consider theorem 4.8 of paper [4] used to prove the orbital motion stability in
our problem in more detail. We will quote its original statement:

“Theorem 4.8 (Generalized energy-momentum method). Let (M, {, }, G,J : M →
g∗, h : M → R) be a Poisson system with a symmetry given by the Lie group G acting
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properly on M . Assume that the Hamiltonian h ∈ C∞(M) is G-invariant and that J is
equivariant. Letm ∈M be a relative equilibrium such that J(m) = µ ∈ g∗,Gµ is compact,
H := Gm, and ξ ∈ Lie(NGµ(H)) is its orthogonal velocity, relative to a given AdH -
invariant splitting. If there is a set of Gµ-invariant conserved quantities C1, C2, . . . , Cn ∈
C∞(M) : M → R, for which

d(h− Jξ + C1 + C2 + · · ·+ Cn)(m) = 0 (5.1)

and
d2(h− Jξ + C1 + C2 + · · ·+ Cn)(m)|W×W (5.2)

is definite for some (and hence for any) subspace W such that

kerdC1(m) ∩ · · · ∩ kerdCn(m) ∩ kerTmJ = W ⊕ Tm(Gµ ·m), (5.3)

then m is a Gµ-stable relative equilibrium. If dimW = 0, then m is always a Gµ-stable
relative equilibrium.”

Remark: The Gµ – stability appearing in this theorem is given by the following defi-
nition:

“Definition 4.6. Let (M, {, }, h,G,J : M → g∗) be a Hamiltonian system with
symmetry and let G

′
be a subgroup of G. A relative equilibrium m ∈ M is called

G
′
-stable, or stable modulo G

′
, if for any G

′
-invariant open neighborhood V of the orbit

G
′ · m, there is an open neighborhood U ⊆ V of m such that if Ft is the flow of the

Hamiltonian vector field Xh and u ∈ U , then Ft(u) ∈ V for all t ≥ 0.”
It is evident that there are five objects appearing in this theorem, i.e. M, {, }, G,J , h,

where the two first objectsM, {, } actually define the Poisson manifold (phase space), G is
the Lie group acting on this manifold, J is the momentum map [9], h is the Hamiltonian
of the system.

The given theorem includes conditions of topological, algebraic and analytical character.
The topological condition the “Lie group G acting properly on M ” is of a technical

nature and is always fulfilled for compact groups. The condition “Gµ is compact” is
essential.

The algebraic conditions are requirements of invariance relative to an action of the
group G: the Poisson structure, Hamiltonian function, momentum map (equivariance).

Another algebraic condition defines the “orthogonal velocity, relative to a given AdH –
invariant splitting”. This notion is complicated enough and is the subject of the previous
research of these authors. But everything is simplified in our case, and this quantity is an
angular velocity parallel to a selected value of the momentum.

To formulate the analytical conditions, a set of integrals of motion C1, C2, . . . , Cn
is introduced, and some efficiency function of the Hamiltonian and integrals of motion
including moment components (in our case there is one component) is formed. Concerning
C1, C2, . . . , Cn there is another algebraic condition we did not mention before. This condi-
tion is that these values should be invariant with respect to the subgroup Gµ. Equations
(5.1-5.2) are similar to the relations for seeking a conditional extremum using the method
of undetermined Lagrangian multipliers.

However it is necessary to mention that, first of all, this similarity is not full, and,
secondly, the theorem only requires checking conditions (5.1-5.2) in a certain point of
orbit.

Equation (5.1) is analogous to the necessary condition for extremum, i.e. all partial
derivatives of the efficiency function should be vanished in the point under test.

Equation (5.2) is more complicated and resembles the sufficient condition for extremum.
We should establish positive definiteness of the efficiency function relative to only some
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variation subspace W rather than to all possible variations of variables. Variations from
W are characterised by the following properties:

– they should conserve all integrals of motion involved in the efficiency function;
– they should be transversal to the orbit direction. This is the main idea of requirement

(5.3).
Hamiltonian systems require the improvement of the notion of stability as for example

the notion of asymptotic stability is not applicable to them. Indeed, let us suppose there
is a stable orbit, as well as another orbit which is so close to the stable orbit that the
stability is not broken, then for a rather long time interval the initially close points on
these orbits can diverge quite considerably; they can for example be found on the opposite
sides of the orbits. This behaviour is the case for Hamiltonian systems which could be
well observed during the numerical modelling of our system [1].

This well-known fact requires a suitable definition of the orbital stability which is given
in paper [4] (see Definition 4.6 above). This definition contains the same system with
symmetry as in the theorem. The stability is formulated with respect to some subgroup
G
′
. For this purpose a tubular neighbourhood of the stable orbit is introduced such that it

entirely consists of the orbits of subgroup G
′
. Then the trajectory of the system beginning

in some neighbourhood of a stable orbit point should not go beyond the given tubular
neighbourhood.

6. Fulfilment of theorem conditions in the given problem
First of all, it should be demonstrated that the group action is a Poisson action.
The conceptual definition of a group action on the Poisson manifold and the associated

formulas are given in book [9]. Below, the notations introduced in this book are used.

Φ : G× P → P, Φg(p) = g · p.

Actions Φ of the Lie group G on the Poisson manifold have the following form

Φ∗g{F1, F2} = {Φ∗gF1,Φ
∗
gF2}.

The action of the Lie algebra g of the Lie group G on the manifold P is then defined in
terms of vector fields ξP (z) according to the formula:

ξP (z) =
d

dt
[exp (tξ)z]|t=0, ξ ∈ g

The application of modern group-theoretic methods in the investigation of our
system is specific because these methods are far-reaching generalizations of the angular
momentum theory whereas it is the angular momentum that is the momentum map in
our case.

Thus, in our case it is necessary to bring the complications and niceties required for
the transition from a prime model to more and more general and complicated models
down to the initial prime model of the rotation group actions and the associated angular
momentum theory.

Thus, it appears that our model is trivial neither mathematically nor physically.
The group of transformations we are interested in is SO(3), i.e. a group of self-rotations

of the Euclidean space, or a group of orthogonal 3×3 matrices with det = 1. This group
is connected.

The elements of the Lie algebra so(3) can then be considered either as antisymmetric
matrices ω̂ ∈ so(3) or as vectors ~ω ∈ R3, i.e. ω̂ik = εilkω

l = −εiklωl −→ ωi = − 1
2εirsω̂rs

whence ω̂[~v] = ~ω × ~v, where ~v ∈ R3.

6



The elements ĵ ∈ so(3)∗ of the space dual to so(3) can also be represented through
three-dimensional vectors using the ordinary Euclidean scalar product as canonical pairing
〈Ĵ , ω̂〉 = ~J · ~ω.

The coadjoint action of the group G = SO(3) in so(3)∗ will be reduced to the rotation
in the Euclidean space

Ad∗A−1 = A↔ Ad∗A = A−1, A ∈ SO(3). (6.1)

In our case the Poisson manifold is a direct product of the Euclidean spaces (2.1), and
the Poisson brackets on P look like (2.2).

The group action on P is reduced to a standard action of SO(3) on the Euclidean
space, i.e. if A ∈ SO(3), and ~v is a vector which is one of the 6 factors of (2.1), then

Φ(A, (. . . , ~v, . . . )) = (. . . , A[~v], . . . ). (6.2)

Physically it represents the rotation of the system as a whole; all physical quantities
of a vector character are rotating synchronously.

We will show, that the relations in (2.2) are invariant relative to this action of SO(3)

on P . For example, (~Ω1, ~Ω2 are constants),

{mi,mj} = εijkmk −→ {Ωi1mi,Ω
j
2mj} = Ωi1Ωj2εijkmk

{〈~Ω1, ~m〉, 〈~Ω2, ~m〉} = 〈~Ω1 × ~Ω2, ~m〉.

Similarly, the first relation in (2.2) can be written as

{〈~ξ, ~x〉, 〈~β, ~p〉} = 〈~ξ, ~β〉.

It means that relations given below are equivalent to the corresponding base relations
(2.2) however they are invariant with regard to rotations:

{〈~ξ, ~x〉, 〈~β, ~p〉} = 〈~ξ, ~β〉;
{〈~Ω, ~m〉, 〈~η, ~µ〉} = 〈~Ω× ~η, ~µ〉;
{〈~Ω1, ~m〉, 〈~Ω2, ~m〉} = 〈~Ω1 × ~Ω2, ~m〉;
{〈~Ω, ~n〉, 〈~η, ~ν〉} = 〈~Ω× ~η, ~ν〉;
{〈~Ω1, ~n〉, 〈~Ω2, ~n〉} = 〈~Ω1 × ~Ω2, ~n〉,

(6.3)

where ~Ω, ~Ω1, ~Ω2, ~ξ, ~η, ~β are some constant, i.e. independent of the generatrices, vectors.
It follows that having transformed the base relations of (2.2) into (6.3) regardless of

the coordinate system selected we actually proved that the action of the group SO(3) is
a Poisson action on P .

Now the field ωP in our case will be written as

ωP (. . . , ~v, . . . )) = (. . . , ~ω × ~v, . . . ).

Let us show that the total angular momentum ~j in our problem is the momentum
map. It means that it is necessary to specify the Hamiltonian for each field ωP , i.e.
ωP = {z,Hω} where z ∈ P .

Direct checking will demonstrate that the total momentum of the system ~j = ~x× ~p+
~m + ~n generates all such Hamiltonians Hω = 〈~ω,~j〉, i.e. the dynamic variable ~j is the
total momentum of the system as well as the momentum map if so(3)∗ is equated with
the Euclidean space R3.
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The global equivariance generally means the following

J ◦ Φg = Ad∗g−1 ◦ J . (6.4)

Comparing the formulas in (6.1,6.2,6.4) we determine that in this special case the
momentum map is also globally equivariant which is a rule for compact connected groups
[9].

Therefore the following conditions are fulfilled in case of the dynamic system under
consideration:

1. The action of the group SO(3) and its Lie algebra so(3) on P is a Poisson action,
i.e. it conserves the Poisson structure (Poisson brackets) on P .

2. The momentum map is (globally) equivariant.
3. The Hamiltonian of the problem and Casimir functions are invariant with regard

to action (6.2) of the group SO(3).
4. The subgroup Gµ in terms of the theorem in section 5 is a one-parameter group of

rotations around some fixed axis; this group is compact.
5. The subgroup H = Gm in terms of the theorem in section 5 (Gze in our notation)

is a trivial group composed of one element, i.e. group identity.
6. The subgroup NGµ(H) appearing in the theorem of section 5 is nothing else than

Gµ. Accordingly, the algebra Lie(NGµ(H)) is one-dimensional and consists of rotation
angular velocities around the same fixed axis.

7. The integrals of motion used, namely the Casimir functions and component of the
momentum along the selected axis, Gµ are invariant.

All conditions of the theorem of section 5 relating to the actions of groups and Lie
algebras on a Poisson manifold are fulfilled for our dynamic system.

7. Selection of orbit point and integrals of motion
The theorem of section 5 allows reducing the investigation of the relative equilibrium

stability to the checking, in a fixed point ze of the orbit, of relations very similar in form
to those occurring when checking the constrained minimum (maximum) by the method
of undetermined Lagrangian multipliers. The necessary and sufficient conditions for the
circular orbit stability are derived from this theorem.

According to this approach the efficiency function is written as

H̃ = H − ωj3 + λ1C1 + λ2C2 + λ3C3 + λ4C4,

where ω, λ1, λ2, λ3, λ4 are Lagrangian multipliers, Ci are Casimir functions, and ~j is the
momentum map corresponding to the Poisson action of the rotation group G = SO(3) of
the system as a whole. Accordingly, the equation for determining these constants is

dH̃|ze = 0, (7.1)

and the sufficient condition for the minimum is a positive definite quadratic form

d2H̃|ze (δz, δz
′
). (7.2)

In the first place the vectors δz (and δz
′
)) being the generatrix variations must conserve

the relations, i.e.
∂δz~j = 0, ∂δzCi = 0, i = 1..4,

and, secondly, the subspace of variations δz must be transversal with regard to the di-
rection of motion along the orbit in the given point ze.
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The Casimir functions in our case are written as

C1 =
1

2
~µ2, C2 = (~µ, ~m), C3 =

1

2
~ν2, C4 = (~ν, ~n).

We select the point ze in a way shown in (4.2). ~j0 = ~j(ze) = ~x0× ~p0 + ~m+~n will then
be directed along the axis ~e3. The stationary subgroup of this value of the momentum will
be G~j0 , i.e. the rotation subgroup around the axis ~e3. This group is compact as supposed
in the theorem of section 5. Other premises of the theorem having a technical character
are also fulfilled in our case (see section 6, items 1-7).

10 variations of the following form can be considered independent

δx1, δx2; δµ1, δµ2, δm1, δm2; δν1, δν2, δn1, δn2.

To meet the requirements mentioned above, the remaining variations are expressed in
terms of the independent variations in the following way

δµ3 = 0; δm3 = 0; δν3 = 0; δn3 = 0;

δx3 = (δm1 + δn1)/p0;

δp1 = p0
r0
δx2;

δp2 = −p0r0 δx1;

δp3 = (δm2 + δn2)/r0.

(7.3)

From (7.1) for Lagrangian multipliers ω, λi we obtain

p0/M = ωr0;

p0ω = ∂rU ;

λ2 = (ω − αm)/µ;

λ4 = (ω − βn)/ν;

λ1 = − (ν∂c′′′U +mλ2) /µ;

λ3 = − (µ∂c′′′U + nλ4) /ν.

If we substitute the expression for dependent variations (7.2) into the quadratic form
(Hessian) from condition (7.3) we obtain a quadratic form from only 10 independent
variations. Its positive definite will be the orbital stability as it is follows from the theorem
in section 5. It appears that in the case of the following order of independent variations

δx1, δx2; δµ1, δν1, δm1, δn1; δµ2, δν2, δm2, δn2

the matrix of this quadratic form takes a block-diagonal form, one 2x2 block and two 4x4
blocks: 

B11 0 0 0 0 0 0 0 0 0
0 B22 0 0 0 0 0 0 0 0
0 0 B33 B34 B35 B36 0 0 0 0
0 0 B34 B44 B45 B46 0 0 0 0
0 0 B35 B45 B55 B56 0 0 0 0
0 0 B36 B46 B56 B66 0 0 0 0
0 0 0 0 0 0 B77 B78 B79 0
0 0 0 0 0 0 B78 B88 0 B8,10

0 0 0 0 0 0 B79 0 B99 B9,10

0 0 0 0 0 0 0 B8,10 B9,10 B10,10
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Thus, each of these blocks should define the positive-definite form from the correspondi-
ng variations. The positive definite conditions are analytically deduced in the Maple
system using Sylvester’s criterion. Ten independent conditions for the system parameters
were obtained which make it possible to define the regions of the orbital stability in the
parameter space of the system. Most inequalities derived are quite complicated analytical
expressions, and their complete analysis can only be conducted numerically. However, it
is easy to show the system parameters for which these conditions will be automatically
fulfilled. For example, the diameter and length of cylindrical magnets: d = 0.0025 [m],
h = 0.02 [m]. The reduced mass of two rigid bodies m = 0.0003828816 [kg]. The values
of the system parameters: α = 3.87228183489 · 107 [kg−1m−2]; µ = 0.15546875 [A m2].
Intrinsic angular momentum of rigid bodies |~m|=|~n|= 5 · 10−5 [m 2· kg· sec−1]. The rigid
body orientation at the initial instant of time is characterized by conditions (4.2). The
radius of the stable orbit is then Rorb=0.01 [m], the impulse of force is Porb=0.0006491
[N·sec], and the revolution period is Torb=0.037062129 [sec]. The stability conditions for
the orbit were fulfilled as well as derived in the Maple system (see Fig.).

Fig. Test the fulfilment of the theorem conditions for specify orbit

Summary
The paper is devoted to the analytical investigation of the possible existence of orbital

motions in the mathematical model [1] which we proposed earlier and which describes the
magnetic interaction of rigid bodies.

It has been shown that thanks to the application of group-theoretical methods the
Hamiltonian formalism developed in [1] on the basis of Poisson structures is a suitable
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mathematical instrument for the analytical investigation of the orbital motion stability.
The possibility of stable orbital motion has been proved for a specific system.
Ten conditions for the system parameters have been analytically obtained; they make

it possible to define the areas of the orbital stability in the parameter space of the system.
Following the logic of the constructive proof it is possible to assert that magnetic

systems can form stable orbits. This destroys the widespread opinion [5] about the global
instability of magnetic systems.
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