
Algorithmi proof of Barnette's ConjetureI. CahitNear East Universityemail: iahit�gmail.omAbstratIn this paper we have given an algorithmi proof of an long standingBarnette's onjeture (1969) that every 3-onneted bipartite ubi pla-nar graph is hamiltonian. Our method is quite di�erent than the knownapproahes and it rely on the operation of opening disjoint hambers, byusing spiral-hain like movement of the outer-yle elasti-stiky edges ofthe ubi planar graph. In fat we have shown that in hamiltoniity ofBarnette-graph a single-hamber or double-hamber with a bridge fae isenough to transform the problem into �nding spei� Hamilton path in theubi bipartite planar graph redued. In the last part of the paper we havedemonstrated that, if the given ubi planar graph is non-hamiltonian,then the algorithm whih onstruts spiral-hain (or double-spiral hain)like hamber shows that exept one vertex there exists (n−1)-vertex yle.1 IntrodutionSpanning yle of dodeahedron is the origin of the famous Hamiltonianyle problem in graphs. Next is the Tait's "onjeture" of hamiltoniity ofubi planar graphs whih has been shown to be wrong by Tutte is another waveof stimulation of researh area [1℄,[7℄. The best haraterization of Hamiltoniangraphs was given in 1972 by Bondy and Chvátal theorem whih generalizesearlier results by Dira and Ore [2℄.Theorem 1 (Bondy and Chvátal). A graph is Hamiltonian i� its losure isHamiltonian.Given a graph G with n verties the losure cl(G) is uniquely onstrutedfrom G by suessively adding for all nonadjaent pairs of verties u and v with
deg(u) + deg(v) ≥ n the new edge uv.In general hamiltonian yle problem in graphs is NP-omplete, and re-main NP-omplete for perfet graphs, planar bipartite graphs, grid graphs, 3-onneted planar graphs [2℄. However polynomial algorithm has been given byGihiba and Nishizeki (1989) for 4-onneted planar graphs [3℄,[4℄,[5℄,[6℄. Heneour algorithm is important sine it shows that hamiltoniity of Barnette graphin linear time. 1
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ESE-path Px,yFigure 1: Hamilton yle of dodeahedron, spiral hamber and ESE path.Barnette has made the following onjeture in 1969 [8℄:Conjeture 1,(Barnette),1969). Every graph that is 3-onneted, 3-regular, bipartite and planar has a hamiltonian yle.Any graph satisfying the onditions of Conjeture 1 is alled Barnette-graph.An exellent survey together some new ideas on Barnette graphs has been givenby Luis de la Torre [4℄. In fat algorithmi proof given in this paper, is re-lated with an stronger onjeture than Barnette's onjeture whih is based onhamiltonian yles of a list of Tutte embeddings of Barnette graphs from 8 to
16 verties (see Appendix A [4℄). We will give also an argument to rule outthe possibility of existene of Tutte's fragments in the Barnette graphs. Similarresults have been obtained using a di�erent approah by Kim and Lee in [9℄. First Temperley-Lieb algebras have been generalized to sl(3,C) web spaes.Sine a ubi bipartite planar graph with suitable diretions on edges is a web,the quantum sl(3) invariants naturally extend to all ubi bipartite graph. Theyompletely lassify ubi bipartite planar graphs as a onneted sum of primeswebs and provide a method to �nd all prime webs and exhibit all prime web upto 20 verties. Goodey showed the onjeture holds when all faes of the graphhave either 4 or 6 sides [10℄,[11℄. Feder and Subi generalize this by showing thatwhen the faes of suh graph are 3-olored, with adjaent faes having di�erentolors, if two of the three olor lasses ontain only faes with either 4 or 6, thenthe onjeture holds [12℄. Kelmans has shown the following important theoremwhih is equivalent to Conjeture 1 [13℄:Theorem 2 (Kelmans). (a) For every bipartite, ubi, 3-onneted andplanar graph G and for every edges a, b of G, belonging to the same faial faeof G, there is a hamiltonian yle in G ontaining a and avoiding b.(b)For every bipartite, ubi, 3-onneted and planar graph G and for everyedges a, b of G, belonging to the same faial fae of G, there is a hamiltonianyle in G ontaining both a and b.Hertel has given stronger than Theorem 2 [17℄.2



Figure 2: Hamilton yles in Barnette graphs.
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Theorem 3 (Hertel). Barnette's onjeture holds if and only if any arbi-trary path P of length 3 that lies on a fae in a Barnette graph is a hamiltonianyle whih passes through the middle edge in P and avoids its leading andtrailing edges.Holton et.al., have shown that 3 onneted ubi graphs with fewer than
66 verties are hamiltonian [14℄ together the relations of 3-ut and essential
4-ut with the possible smallest non-hamiltonian graphs. Aldler et.al., haveannouned that through a omputer searh Conjeture 1 is true at most for 84verties [15℄.2 Algorithmi proof of Conjeture 1Let G be denote a ubi, bipartite planar graph with n verties. Assumethat G drawn suitably in the plane that no edges rosses eah other. Co de-notes outer-yle of G, where |Co| ≥ 4. By H we denote a hamiltonian ylewhih passes through all verties of G suh that its edge set partitioned intotwo subsets E(H) = Ho ∪ Hi, where Ho = {ho,j ∈ E(Co), j = 1, 2, ..., k − 1}and Hi = {hi,j /∈ E(Co), j = 1, 2, ..., m}, n = k + m − 1. Hene the edge setof Co = {ho,1, ho,2, ..., ho,k−1} ∪ {de} where subsript e indiates the entraneedge of the outer-yle whih is not in H . Hene the set of edges of G an beexpressed as

E(G) = Ho ∪ Hi ∪ Do ∪ Di ∪ {de}where the setDo denotes the door-edges remain outside of the region boundedby the hamiltonian yle H and the set Di denotes the door-edges remain insidethe region bounded by the hamiltonian yle H and {de} denotes the entranedoor-edge. We also note that the number of entrane door-edges may be morethan one for an single-hamber. For example double-spiral shape hamiltonianyle H shown in Figure 5 (104) has two entrane doors de1 and de2.De�nition 1. The yle Cc = {Hi} ∪ {de}j is alled the hamber-yleindued by the hamiltonian yle H of G.If for an hamiltonian yle H of G there is only one hamber-yle Cc asabove we say single-hambered H (see Figures 1) otherwise we all it multi-hambered H . It is easy to see that for any hamiltonian yle H of G no twodoor-edges di and dj are adjaent.In Figure 2 we have shown single-hamber hamiltonian yles of all Barnettegraphs from 8 to 16 verties. In Figure 4 we also give single-hamber hamiltonianyles of all prime webs up to 20 verties [9℄. This gives us enourage to stateand prove the following:Conjeture 2. All Barnette graphs with at most one 3-ut have single-hamber hamiltonian yles.Clearly the restrition of single-hamber hamiltonian yle H in G makes4



the Conjeture 2 easier to prove or disprove than the Conjeture 1. That is,right from the beginning we assume that all outer-edges (exept de) of Ho arereadily in the hamiltonian yle H . Hene if x and y are the end points ofthe entrane-edge de the hamiltonian yle problem would redue to �nd anhamiltonian path PH(x, y) in the subgraph G1 = G \ {Ho}. In the Algorithmbelow hamiltonian path is onstruted step-by-step by strething the entrane-edge de onto the edges of the hamber. We will all this operation as addingelasti-stiky edge.2.1 A possible threat to Conjetures 1 and 2Tutte has given a ounterexample to Tait's onjeture that all 3-onnetedubi planar graphs have hamiltonian yles. The main element of the ounter-example now is known as Tutte's fragment shown in Figure 3(a) with threeritial verties x, y, z on the orners of the fragment. A sub-hamiltonian paths
PH(i, j) only exists if i ∈ {x, y} and j = z. Now if one an onstrut a fragmentwith three orners by using only even yles that would be a ounter-exampleboth for Conjetures 1 and 2. Closest onstrutions using only yles of lengths
4 and 6 is shown in Figure 3(b) and () with 13 verties and fortunately theyfail. This is true in general, sine for any sub-hamiltonian path around aneven yle no vertex of an even yle an be left unvisited or end-vertex of thesub-hamiltonian path. This observation is equivalent, in the Algorithm 1, thatno two door-edges di and dj would adjaent in the hamber yle Cc. This isalways possible sine all faes in G are even. This is learly seen, then algorithmapplied for non-hamiltonian planar graphs (see Figure 5).2.2 The algorithm arve-ubi-planarLet us start with a useful Lemma.Lemma 1. Let G be a Barnette graph with a 3-ut {a, b, c}, a, b, c ∈ E(G).That is G = G1 ∪ G2 ∪ {a, b, c}. Then in any single-hamber hamiltonian yle
H the entrane-door edge de /∈ G1 or G2 .Proof: If the edges a, b, c are the 3-ut, where a and c are outer-yle edges,then hamiltonian yle H must ontains both a and b or both b and c. Eitherase implies another hamber by the entrane-door edge de = c or de = a.Algorithm (Carve-Cubi-Planar):Step 1: (Initial Chamber).Let G be a 3-onneted, bipartite ubi planar graph. First selet a suitableouter-edge (see Lemma 1) for the entrane door-edge de. Hene outer-edges of
G is Eo = {de, ho,1, ho,2, ..., ho,k}, where k + 1 is even. Initially the entranedoor-edge de�nes a faial yle (fae) Cc,1 = {de, ein,1, ein,2, ..., ein,r}. Sine
|Cc,1| is even we an rewrite its edges as Cc,j = {de, hin,1, ein,2, hin,3, ..., hin,r}.That is ein,j = hin,j , j = 1, 3, ..., r beomes subset of internal hamiltonian edgesand ein,j = din,j , j = 2, 4, ..., r − 1 beomes internal door-edges. Hene H =
{Ho ∪Hin,c1} where Hin,c1 is the set of internal hamiltonian yle edges of the5
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Figure 3: (a) The Tutte's fragment, (b),() unsuessful bipartite fragments.
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8



hamber Cc de�ned by de. Similarly let Din,c1 be the set of door-edges de�nedby de.Step 2: (Knok-the door and enter).Repeat Step 1 for eah door-edge di ∈ Din,c1. If the fae (yle) de�ned by door-edge di ontains an edge that share a yle from the set Ho then we put the edgeinto the set of internal hamiltonian edges. That is H = {Ho ∪ Hin,c1 ∪ Hin,di
},

di ∈ Din,c1. If the door-edge di de�nes a fae (yle) Ci has an edge e whihshare a yle Cj with an outer-hamiltonian edge and with another door-edge:
Ci = {e, di, ...}, Cj = {e, hoj, dj , ...}, e = {Ci ∩ Cj}, hoj ∈ Ho, di 6= dj Thenput the edge e and door-edge into the set Hi. That is we all the yle (fae)as the bridge-fae in the hamiltonian yle H (see Figure 5). This situationarises when G has two edge-disjoint 3-uts . Algorithm ontinue from the dooredge dj . If |H | = n then we have entered all faes through the door-edges anda hamiltonian yle has been found. Otherwise we repeat Step 1 for the otherdoor-edges in the other levels. Note here that we have not seleted adjaentdoor-edges.Illustration of algorithm is shown in Figure 6.Theorem 4. Let G be any ubi, 3-onneted, bipartite planar graph G.Then the Algorithm "Carve-Cubi-Planar" always terminate with an hamilto-nian yle H of G.Proof. Let us assume that algorithm CCP has not produed a hamiltonianyle H . Then there must be a vertex vx /∈ H and vx must be exatly in threefaial yles C1, C2 and C3. Without loss of generality assume that step "knok-the door and enter" has been performed for C1 before C2 and C3. Then theremust be two verties vy and vz of C1 suh that (vx, vy), (vx, vz) ∈ C1. Then wesee that both edges would be door-edges and the yle C1 is odd.3 Non-hamiltonian 3-onneted ubi planar graphsHolton et.al., have shown that all 3-onneted ubi planar graphs on 36 orfewer verties are hamiltonian and the only non-hamiltonian examples on 38verties whih are not ylially 4-onneted are the six graphs whih have beenfound by Lederberg, Barnette and Bosák [16℄. We have shown non-hamiltonianubi planar graphs with 42, 46 and 44 verties in Figure 7 [16℄ together withyles of length n−1. As shown in Figures 7(a) and (b), if we hoose right-dooredges in the hamber yles in the algorithm the resulting longest yles arein the shape of spiral S. We an alternatively selet two entrane door edgessymmetrially, the algorithm again results an (n − 1)-vertex yle in the forumof a double-spiral S1 and S2.Theorem 5. For every non-hamiltonian 3-onneted ubi planar graph,Algorithm 1 terminates with a yle of length n − 1.4 Conluding remarksIn this paper we have given an algorithmi proof of Barnette's onjeture9
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