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We investigate the effects of the light vector U-boson that couples weakly to nucleons in relativistic
mean-field models on the equation of state and subsequently the consequence in neutron stars. It
is analyzed that the U-boson can lead to a much clearer rise of the neutron star maximum mass in
models with the much softer equation of state. The inclusion of the U-boson may thus allow the
existence of the non-nucleonic degrees of freedom in the interior of large mass neutron stars initiated
with the favorably soft EOS of normal nuclear matter. In addition, the sensitive role of the U-boson
in the neutron star radius and its relation to the test of the non-Newtonian gravity that is herein
addressed by the light U-boson are discussed.
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I. INTRODUCTION

Confronting nuclear physics, we should highlight the
great importance of the equation of state (EOS), for
it being significantly important to study the structure
of nuclei, the reaction dynamics of heavy-ion collisions,
and many issues in astrophysics [1–4]. The nuclear EOS
consists usually of two ingredients: the energy density
for symmetric matter and the density dependence of the
symmetry energy. For the former, the saturation prop-
erties are quite clear nowadays, though its high-density
behavior remains to be revealed in more details. How-
ever, the density dependence of the symmetry energy is
still poorly known especially at high densities [4–7], and
even the trend of the density dependence of the symme-
try energy can be predicted to be contrary. While most
relativistic theories [2, 3, 8–12] and some non-relativistic
theories [5, 7, 13, 14] predict that the symmetry energy
increases continuously at all densities, many other non-
relativistic theories (for instance, see [5, 13, 15, 16]),
in contrast, predict that the symmetry energy first in-
creases, then decreases above certain supra-saturation
densities, and even in some predictions [4–6] becomes
negative at high densities, referred as the super-soft
symmetry energy. Therefore, the experimental extrac-
tion is of necessity.

Recently, by analyzing the FOPI/GSI data on the
π−/π+ radio in relativistic heavy-ion collisions [17],
the evidence for a super-soft symmetry energy was
found [18]. This finding can result in many conse-
quences, while a direct challenge is how to stabilize a
normal neutron star with the super-soft symmetry en-
ergy. Conventionally, a mechanical instability may oc-
cur if the symmetry energy starts decreasing quickly
above the certain supra-saturation density [15, 19, 20].
To solve this problem, one possible way is to take into
account the hadron-quark phase transition which lifts
up the pressure in pure quark matter [21], while the
transition is expected to occur at much higher densi-
ties within a narrow region of parameters. Instead,
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one may consider the possible correction to the grav-
ity. Though the gravitational force was first discovered
in the history, it is still the most poorly characterized,
compared to three other fundamental forces that can be
favorably unified within the gauge theory. For the fur-
ther grand unification of four forces, the correction to
the conventional gravity seems necessary. The light U-
boson, which is proposed beyond the standard model,
can play the role in deviating from the inverse square
law of the gravity due to the Yukawa-type coupling,
see Refs. [20, 22–24] and references therein. This light
U-boson was used as the interaction propagator of the
MeV dark matter and was used to account for the bright
511 keV γ-ray from the galactic bulge [25–30]. As a
consequence of its weak coupling to baryons, the sta-
ble neutron star can be obtained in the presence of the
super-soft symmetry energy [20]. In addition, it is noted
that through the reanalysis of the FOPI/GSI data with
a different dynamical model another group extracted
a contrary density dependent trend of the symmetry
energy at high densities [31]. The solution of the con-
troversy is still in progress.

In pursuit of the covariance in addressing neutron
stars bound by the strong gravity, the relativistic mod-
els are favorable to obtain the EOS, though the fraction,
arisen from the relativistic effect of fast particles in the
compact core of neutron stars, is just moderate. Apart
from the non-relativistic models to obtain the EOS of
neutron stars in Ref. [20], we will adopt the relativis-
tic mean-field (RMF) models in this work. The RMF
theory which is based on the Dirac equations for nucle-
ons with the potentials given by the meson exchanges
achieved great success in the past few decades [32–41].
The original Lagrangian of the RMF model was first
proposed by Walecka more than 30 years ago [32]. The
Walecka model and its improved versions were charac-
teristic of the cancellation between the big attractive
scalar field and the big repulsive vector field. To soften
the EOS obtained with the simple Walecka model, the
proper medium effects were accounted with the inclu-
sion of the nonlinear self-interactions of the σ meson
proposed by Boguta et. al. [33]. A few successful non-
linear RMF models, such as NL1 [42], NL2 [43], NL-
SH [44], NL3 [45], and etc., had been obtained by fitting
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saturation properties and ground-state properties of a
few spherical nuclei. Later on, an extension to include
the self-interaction of ω meson was implemented to ob-
tain RMF potentials which were required to be consis-
tent with the Dirac-Brueckner self-energies [46]. In this
direction, besides the early model TM1 [46], there were
recent versions PK1 [47] and FSUGold [48].
Although various RMF models reproduce success-

fully the saturation properties of nuclear matter and
structural properties of finite nuclei, the corresponding
EOS’s may behave quite differently at high densities
especially in isospin-asymmetric nuclear matter. It was
reported in the literature [20, 23] that the light U-boson
can significantly modify the EOS in isospin-asymmetric
matter. However, the further systematic work to ana-
lyze the effect of the light U-boson on various nuclear
EOS’s is still absent. In this work, we will investigate in
detail the effect of light U-boson on the EOS and prop-
erties of neutron stars with various RMF models. In
particular, we will address the difference of the effects
induced by the U-boson in various RMF models.
The paper is organized as follows. In Sec. II, we

present briefly the formalism based on the Lagrangian
of the relativistic mean-field models. In Sec. III, nu-
merical results and discussions are presented. At last,
a summary is given in Sec. IV.

II. FORMALISM

In the RMF approach, the nucleon-nucleon inter-
action is usually described via the exchange of three
mesons: the isoscalar meson σ, which provides the
medium-range attraction between the nucleons, the
isoscalar-vector meson ω, which offers the short-range
repulsion, and the isovector-vector meson b0, which ac-
counts for the isospin dependence of the nuclear force.
The relativistic Lagrangian can be written as:

L = ψ[iγµ∂
µ −M + gσσ − gωγµω

µ − gργµτ3b
µ
0 ]ψ

−
1

4
FµνF

µν +
1

2
m2

ωωµω
µ −

1

4
BµνB

µν +
1

2
m2

ρb0µb
µ
0

+
1

2
(∂µσ∂

µσ −m2
σσ

2) + Ueff(σ, ω, b0) + Lu, (1)

where ψ, σ, ω,b0 are the fields of the nucleon, scalar,
vector, and neutral isovector-vector mesons, with their
massesM,mσ,mω, and mρ, respectively. gi(i = σ, ω, ρ)
are the corresponding meson-nucleon couplings. Fµν

and Bµν are the strength tensors of ω and ρ mesons
respectively,

Fµν = ∂µων − ∂νωµ, Bµν = ∂µb0ν − ∂νb0µ. (2)

The self-interacting terms of σ, ω mesons and the
isoscalar-isovector coupling are given generally as

Ueff(σ, ω
µ, bµ0 ) = −

1

3
g2σ

3 −
1

4
g3σ

4 +
1

4
c3(ωµω

µ)2

+4ΛV g
2
ρg

2
ωωµω

µb0νb
ν
0 . (3)

Here, the isoscalar-isovector coupling term is introduced
to modify the density dependence of the symmetry en-
ergy [2]. In addition, we include in Lagrangian Lu for

the U-boson that is beyond the standard model. A very
light U-boson can be utilized to interpret the deviation
from the Newton’s gravitational potential which is usu-
ally characterized in the form [20, 23]:

V (r) = −
G∞m1m2

r
(1 + αe−r/λ) (4)

where G∞ is the universal gravitational constant, α =
−g2u/4πG∞M

2
B is a dimensionless strength parameter

with gu and MB being the boson-nucleon coupling con-
stant and baryon mass, respectively, and λ = 1/mu is
the length scale with mu being the boson mass. Ac-
cording to the conventional view, the Yukawa-type cor-
rection to the Newtonian gravity resides at the matter
part rather than the geometric part. Thus, following
the form of the vector meson, Lu is written as:

Lu = −ψguγµu
µψ −

1

4
UµνU

µν +
1

2
m2

uuµu
µ, (5)

with u the field of U-boson. Uµν is the strength tensor
of U-boson,

Uµν = ∂µuν − ∂νuµ. (6)

With the standard Euler-Lagrange formala, we can
deduce from the Lagrangian the equations of motion
for the nucleon and mesons. They are given as follows:

[iγµ∂
µ−M + gσσ− gωγµω

µ− guγµu
µ− gργµτ3b

µ
0 ]ψ = 0

(7)

(∂2t −▽2 +m2
σ)σ = gσψψ − g2σ

2 − g3σ
3, (8)

(∂2t −▽2 +m2
ω)ωµ = gωψγµψ − c3ω

3
µ

−8ΛV g
2
ρg

2
ωb0νb

ν
0ωµ, (9)

(∂2t −▽2 +m2
ρ)b0µ = gρψγµτ3ψ

−8ΛV g
2
ρg

2
ωωνω

νb0µ, (10)

(∂2t −▽2 +m2
u)uµ = guψγµψ. (11)

In the mean-field approximation, all derivative terms
drop out and the expectation values of space-like com-
ponents of vector fields vanish (only zero components
survive) due to translational invariance and rotational
symmetry of the nuclear matter. In addition, only the
third component of isovector fields survives because of
the charge conservation. In the mean-field approxima-
tion, after the Dirac field of nucleons is quantized [35],
the fields of mesons and U-boson, which are replaced by
their classical expectation values, obey following equa-
tions:

m2
σσ = gσρs − g2σ

2 − g3σ
3, (12)

m2
ωω0 = gωρB − c3ω

3
0 − 8ΛV g

2
ρg

2
ωb

2
0ω0, (13)

m2
ρb0 = gρρ3 − 8ΛV g

2
ρg

2
ωω

2
0b0, (14)

m2
uu0 = guρB, (15)

where ρs and ρB are the scalar and baryon densities, re-
spectively, and ρ3 is the difference between the proton
and neutron densities, namely, ρ3 = ρp−ρn. The set of
coupled equations can be solved self-consistently using
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the iteration method. With these mean-field quanti-
ties, the resulting energy density ε and pressure P are
written as:

ε =
∑
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with E∗
i =

√

k2 + (M∗
i )

2.

Given above is the formalism for nuclear matter with-
out considering the β equilibrium. For asymmetric nu-
clear matter at β equilibrium, the chemical equilibrium
and charge neutrality conditions need to be additionally
considered, which are written as:

µn = µp + µe, (18)

ρe = ρp, (19)

ρB = ρn + ρp, (20)

where µn, µp, µe are the chemical potential of neutron,
proton and electron, respectively, and ρe is the number
density of electrons. In neutron star matter, the EOS
is obtained by adding in Eqs.(16) and (17) the contri-
bution of the free electron gas.

The neutron star properties are obtained from solving
the Tolman-Oppenheimer-Volkoff (TOV) equation [49,
50]:

dP (r)

dr
= −

[P (r) + ε(r)][M(r) + 4πr3P (r)]

r(r − 2M(r))
, (21)

M(r) = 4π

∫ r

0

d̃rr̃2ε(r̃), (22)

where r is the radial coordinate from the center of the
star, P (r) and ε(r) are the pressure and energy den-
sity at position r, respectively, and M(r) is the mass
contained in the sphere of the radius r. Note that
here we use units for which the gravitation constant
is G∞ = c = 1. The radius R and mass M(R) of a neu-
tron star are obtained from the condition p(R) = 0. Be-
cause the neutron star matter, consisting of neutrons,
protons, and electrons (npe) at β equilibrium in this
work, undergoes a phase transition from the homoge-
neous matter to the inhomogeneous matter at the low
density region, the RMF EOS obtained from the ho-
mogeneous matter does not apply to the low density
region. For a thorough description of neutron stars, we
thus adopt the empirical low-density EOS in the litera-
ture [51, 52].

III. RESULTS AND DISCUSSIONS

Among a number of nonlinear RMF parametriza-
tions, we select several typical best-fit parameter sets,
for instance NL1 [42], NL-SH [44], NL3 [45], TM1 [46]
and FSUGold [48], to investigate the effects of the U-
boson on the EOS of isospin-asymmetric nuclear matter
and properties of neutron stars. The nonlinear RMF
models usually include the nonlinear self-interactions
of the σ meson to simulate appropriate medium depen-
dence of the strong interaction. This is typical in RMF
parameter sets NL1, NL-SH and NL3. In addition to
the nonlinear σ meson self-interactions, in TM1 and
FSUGold the nonlinear self-interaction of the ω meson
is also included. Parameters and saturation properties
of these parameter sets are listed in Table I.
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FIG. 1: Energy density ε (upper panel) and pressure P
(lower panel) as a function of density with various RMF
parameter sets, NL3, NL1, NL-SH, TM1, and FSUGold in
npe matter at β equilibrium.

In Fig. 1, the energy density and pressure of npe mat-
ter at β equilibrium are shown as a function of nucleon
density for various models without the inclusion of the
U-boson. It is seen that the EOS with parameter sets
TM1 and FSUGold is clearly softer than that with the
NL1, NL-SH and NL3 with the increase of the density.
The softening stems from the inclusion of the nonlinear
self-interaction of the ω meson that lowers the repul-
sion provided by the ω meson at high densities, while
the excess softening with the FSUGold as compared to
that with the TM1 can be attributed dominately to the
larger parameter c3 in FSUGold.
Shown in Fig. 2 is the correlation between the pres-

sure and the energy density given in Fig. 1. This cor-
relation is usually regarded as the EOS that is used as
the input of the Tolman-Oppenheimer-Volkoff (TOV)
equation [49, 50] for the evaluation of the neutron star
properties. Once again, we see the large deviations in
the EOS with different RMF models especially at high
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TABLE I: Parameters and saturation properties for various parameter sets. Here, the NL3ΛV is the same as the original
parameter set NL3 but with the readjusted gρ after the ΛV is included to modify the density dependence of the symmetry
energy, and the TM1ΛV to the TM1 is the same as the NL3ΛV to the NL3. Meson masses, incompressibility and symmetry
energy are in units of MeV, and the density is in unit of fm−3.

gσ gω gρ mσ mω mρ g2 g3 c3 ΛV ρ0 κ M∗/M Esym

NL1 10.138 13.285 4.976 492.250 795.359 763 12.172 -36.265 - - 0.153 211.3 0.57 43.7
NL-SH 10.444 12.945 4.383 526.059 783.000 763 6.910 -15.834 - - 0.146 355.4 0.60 36.1
NL3 10.217 12.868 4.474 508.194 782.501 763 10.431 -28.890 - - 0.148 271.8 0.60 37.4
TM1 10.029 12.614 4.632 511.198 783.000 770 7.233 0.618 71.31 - 0.145 281.2 0.63 36.9

FSUGold 10.592 14.302 5.884 491.500 782.500 763 4.277 49.934 418.39 0.03 0.148 230.0 0.61 32.5
NL3ΛV 10.217 12.868 5.664 508.194 782.501 763 10.431 -28.890 - 0.03 0.148 271.8 0.60 31.8
TM1ΛV 10.029 12.614 5.720 511.198 783.000 770 7.233 0.618 71.31 0.03 0.145 281.2 0.63 32.1
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FIG. 2: The correlation between the pressure and the energy
density in npe matter at β equilibrium with various RMF
models.

densities. In the following, it is thus interesting to see
how the U-boson affects the EOS produced by various
RMF models that differs largely at high densities.

In the RMF approximation, the contribution of the
U-boson in a linear form is just decided by the ratio of
the coupling constant to its mass, i.e., gu/mu, as seen
in Eqs.(16) and (17). In Figs. 3 and 4, the EOS’s with
various models are depicted for a set of ratios (gu/mu)

2.
It is shown in Figs. 3 and 4 that the inclusion of the U-
boson stiffens the EOS. This is physically obvious since
the vector form of the U-boson provides an excess re-
pulsion in addition to the vector mesons, whereas an
interestingly large difference appears for different types
of models. As shown in Figs. 3 and 4, the EOS’s with
the TM1 and FSUGold acquires a much more appar-
ent stiffening than that with the NL1, NL-SH and NL3
by including the U-boson. This phenomenon can be
understood by the inherent feature of these models. In
models NL1, NL-SH and NL3, the repulsion is quadratic
in the density because the nonlinear self-interaction of
the ω meson is not considered. With the increase of the
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FIG. 3: Equation of state of neutron star matter with three
RMF models, NL3, NL1 and NL-SH with the inclusion of
the U-boson. The numbers in the legend are the values of
(gu/mu)

2 in units of GeV −2.

density, the repulsion provided by the ω meson dom-
inates the attraction provided by the σ meson. The
cancellation between the repulsion and attraction in the
pressure (see Eq.(17) is not prominent at high densities
so that the U-boson plays a similar role in the energy
density and pressure. Thus, these EOS’s are just mod-
erately modified by the U-boson, as shown in Fig. 3.
For models TM1 and FSUGold that feature a clearly
softer EOS at high densities, the cancellation between
the repulsion and attraction becomes significant and
thus sharpens the importance of the U-boson in the
pressure. Comparing to the addition of the big repul-
sion and attraction in the energy density, the U-boson
just plays a marginal role in modifying the energy den-
sity. Thus, the U-boson can modify appreciably the
correlation between the pressure and energy density in
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FIG. 4: The same as in Fig. 3 but for the RMF models TM1
and FSUGold.

the high-density region in favorably softened models, for
instance, the TM1 and FSUGold, as shown in Fig. 4.
Because in TM1 and FSUGold the nonlinear term of the
ω meson plays a decisive role in softening the EOS, the
larger the parameter c3, the more apparent the modifi-
cation, as shown comparatively in the upper and lower
panels of Fig. 4.
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FIG. 5: (Color online) The same as in Fig. 3 but to exhibit
the difference between the cases with and without the mod-
ification to the symmetry energy. Left panels represent the
results with the NL3 and NL3ΛV , and right panels are the
results with the TM1 and TM1ΛV . Different density depen-
dencies of the symmetry energy are drawn in the insets of
upper panels, while given in the insets of lower panels are
the EOS of two cases in the absence of the U-boson.

In addition, it is interesting to examine whether the

significant difference in the U-boson-induced modifica-
tion to the EOS can be created by softening the sym-
metry energy. The symmetry energy is softened by in-
cluding the isoscalar-isovector coupling term in RMF
models (see Eq.(3)). In Fig. 5, we depict the EOS with-
out (upper panels) and with (lower panels) the soften-
ing of the symmetry energy in NL3 and TM1. How-
ever, no visible difference in two cases with the NL3 is
observed, and with the TM1 the difference is not signif-
icant. This observation seems to show a contrast with
that in Ref. [20] where the fluffy EOS due to the super-
soft symmetry energy can be lifted up by the U-boson to
support a normal neutron star. In deed, the magnitude
of the modification to the EOS caused by the U-boson
relies on the softness of the EOS. As long as the EOS
is modified significantly by softening the symmetry en-
ergy, the stiffening role of the U-boson in the EOS can
be considerably enhanced accordingly. Given that the
stiff EOS with the NL3 is little modified by softening
the symmetry energy, as shown in the inset of the left
lower panel in Fig. 5, the softening of the symmetry
energy can scarcely affect the role of the U-boson. For
models with a softer EOS, the situation can turn out
to be different when the EOS is modified appreciably
by softening the symmetry energy. Indeed, the vital
role of the U-boson in the EOS of the non-relativistic
MDI model with a super-soft symmetry energy [20] is a
typical case that the role of the U-boson can be largely
amplified due to the softening of the symmetry energy.
In RMF models, for instance, the TM1 whose EOS is
softer than that with the NL3, the softening of the sym-
metry energy can also result in some visible difference in
the EOS and thereby the role of the U-boson, as shown
in right panels of Fig. 5.
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FIG. 6: The mass-radius relation of neutron stars with var-
ious models. The U-boson is included with various ratio
parameters of (gu/mu)

2.

Next, we turn to the consequences in hydrostatic neu-
tron stars with the EOS modified by the U-boson. Us-
ing Eqs.(21) and (22), the mass and radius of hydro-
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static neutron stars can be obtained with the given
EOS. In Fig. 6, the mass-radius (M-R) relation of neu-
tron stars is depicted with different ratio parameter
(gu/mu)

2 for the U-boson in various models. With the
inclusion of the U-boson, we can see that both the max-
imum mass and radius of neutron stars increase signif-
icantly. It is clearly seen that the star maximum mass
with the soft EOS is modified more significantly by
the U-boson. This is consistent with the corresponding
modification to the high-density EOS caused by the U-
boson, as shown in Figs. 3 and 4. The consistency is es-
tablished on the fact that the maximummass of neutron
stars is dominated by the high-density behavior of the
EOS. In the past, a few neutron stars with large masses
around 2M⊙ had been observed [53–55]. Though it
can have improvements in experimental aspects, the
observation of neutron stars with large masses is not
so scarce. Recently, the mass of the LMXB 4U1608-
52 is measured to be 1.74M⊙ [56], and most recently
a 2M⊙ neutron star J1614-2230 was measured through
the Shapiro delay [57]. Note that the model FSUGold
which is well consistent with the nuclear laboratory con-
straints just produces a maximum mass about 1.7M⊙

for the neutron star without hyperons, whereas the hy-
peronization can further reduce the maximum mass to
a value below 1.4M⊙. In this case, the role of the U-
boson is constructive in increasing the maximum mass
of neutron stars, either as the EOS is softened by the
creation of new degrees of freedom, or the EOS is too
soft to obtain a large maximum mass.

On the other hand, the radius of neutron stars is pri-
marily determined by the EOS in the lower density re-
gion of 1ρ0 to 2ρ0, see Refs.[1, 4] and references therein.
Because the symmetry energy in this density region of-
fers the most important ingredient of the pressure in
pure neutron matter, the density dependence of the
symmetry energy plays a crucial role in determining
the radius of neutron stars. While in the present case
the pressure in the lower density region is increased ap-
preciably by the U-boson, it is not surprising that the
sensitive variation of the neutron star radius is obtained
accordingly. This is similar to the non-relativistic case
in Ref. [20]. In fact, the radius of neutron stars re-
lies sensitively on the stiffness of the EOS. Thus, the
stiffening of the EOS caused by the U-boson gives rise
to a significant increase of the radius. Concretely, we
can see from Fig. 6 that the larger rise of the radius
comes up with the more apparent stiffening role of the
U-boson in softer models. It is known that the radius of
neutron stars extracted from the observation can have
a wide range due to the uncertainties of the distance
measurement and theoretical models used for the spec-
trum analyses [1, 58–60]. A more precise extraction
of the neutron star radius, probably through the co-
incident measurements, thus becomes very significant,
because it can test the non-Newtonian gravity due to
its promising sensitivity to the star radius.

To stress the role of the U-boson in the maximum
mass and radius of neutron stars, we depict in Fig. 7
the M-R relation for various models with and without
the U-boson. Here, for the case with the inclusion of the
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FIG. 7: Mass-radius relations for various models with the
(gu/mu)

2 = 0GeV −2 (left panel) and the (gu/mu)
2 =

100GeV −2 (right panel).

U-boson, the calculation is performed with (gu/mu)
2 =

100GeV −2. It is seen clearly that the large difference in
maximum masses with various types of models can be
reduced largely by the U-boson with suitable parameter
(gu/mu)

2. We can see once again that the reduction of
the difference is mainly attributed to the role of the
U-boson in the models featuring much softer EOS’s.
Interestingly, we see that the uncertainty of the radius
for a canonical neutron star (with the mass 1.4M⊙) can
also be reduced by the U-boson.

In view of interesting and significant roles of the U-
boson, we may say that the task to look for the U-
boson and further confirm the non-Newtonian gravity
is also confronted. The recent experimental constraints
on the relationship between parameters α (gu) and λ
(mu) can be found in Ref. [23]. To recover the stabil-
ity of neutron stars using the EOS constrained by the
FOPI/GSI data [18], the ratio (gu/mu)

2 ∼ 100GeV −2

was found to be needed [20]. In this work, the effect
of the U-boson is investigated within the parameter re-
gion (gu/mu)

2 = 0 ∼ 100GeV −2. To avoid the visi-
ble effect beyond low energy constraints in finite nuclei,
with these values of the ratio parameter we may esti-
mate that the mass of the U-boson should be of order
below 1MeV with the coupling strength being almost
or at least three orders less than the fine-structure con-
stant, while these estimated orders can be compatible
with parameter regions allowed by a few experimental
constraints, see Ref. [23]. We expect that more preci-
sion experiments will be performed to better determine
or exclude the parameter regions for the non-Newtonian
gravity.

At last, it is interesting to discuss the relevance be-
tween the parameters of the non-Newtonian gravity
touched upon in this work and the solution to the dark
matter problem. In order to explain the flatness of
the rotational curve of galactic spirals, one needs to
assume the non-luminous dark matter being the addi-
tional gravitational source. Alternatively, the Newto-
nian gravity that was well tested in the solar system
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may be assumed to fail at the large distance scales
of galaxies, and hence the Newtonian gravity should
be modified to be the non-Newtonian one [61]. The
Yukawa-type modification to the Newtonian gravity due
to the boson exchange may possibly be considered as a
candidate to solve the dark matter problem. In this
work, the vector coupling of the U-boson that is re-
strained by the U(1) symmetry produces a repulsion
other than the anticipated attraction. We may thus
suppose to solve the dark matter problem through the
introduction of light scalar bosons. However, since the
flatness of the rotational curve requires a supplemental
force roughly linear inversely in the distance from the
center of the galaxy, even if the light scalar boson is as-
sumed to provide the needed attraction in one region,
the exponential suppression factor of the Yukawa-type
potential (see Eq.(4)) actually inhibits the reproduction
of the rotational curve in other regions. In deed, in addi-
tion to the introduction of the light scalar boson, more
considerations are necessary to solve the dark matter
problem [62]. On the other hand, we may explore the
constraints from the effect of the U-boson on the dark
matter. However, the coupling of the U-boson with
the dark matter candidates should be assumed to be
much stronger than that with the normal particles to
explain the 511keV γ-ray observation while simultane-
ously compatible with the low-energy constraints [25–
28]. To sum up, we are presently not able to restrain
the parameters of the non-Newtonian gravity originated
from the U-boson exchange in this work directly by
using the effect of the U-boson on the dark matter
and/or the solution to the dark matter problem with
the modified Newtonian dynamics. Nonetheless, this
deserves further exploration. For instance, the further
first-principle understanding of the underlying origin of
the difference in the U-boson couplings to normal and
dark matter particles may open possibility to extract
constraints on the parameters of the non-Newtonian
gravity.

IV. SUMMARY

We have studied in this work the effects of the U-
boson in RMF models on the equation of state and sub-
sequently the consequence in neutron stars. All RMF

models are chosen to have similarly nice reproduction of
saturation properties and ground-state properties of fi-
nite nuclei, whereas they can give rise to a significantly
large difference in EOS’s at high densities and mass-
radius relations of neutron stars. Interestingly, we find
that the U-boson in models with much softer EOS plays
a much more significant role in increasing the maximum
mass of neutron stars. The distinction can be attributed
analytically to the different modification caused by the
U-boson in soft and stiff models to the pressure. Thus,
the inclusion of the U-boson may allow the existence
of the non-nucleonic degrees of freedom in the interior
of large mass neutron stars initiated with the favorably
soft EOS of normal nuclear matter. In addition, it is
worth notifying that the radius of canonical neutron
stars in all models can be sensitively modified by the
U-boson due to its stiffening role in the EOS. Mean-
while, the difference in the mass-radius relations pre-
dicted by various models can favorably be reduced by
increasing the coupling strength between the U-boson
and baryons. At last, constraints on the parameters
of the non-Newtonian gravity are discussed. Presently,
we have not found the direct relevance between the pa-
rameters of the non-Newtonian gravity originated from
the U-boson exchange and its effect on the dark mat-
ter concerning the dark matter problem. Together with
the future coincident measurements and more precise
extraction of the mass and radius of neutron stars, the
sensitive role of the U-boson in the M-R relation may
be helpfully used to test the physics beyond the stan-
dard model and consequently the existence of the non-
Newtonian gravity in the dense neutron star.
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