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Abstract

Dialectica categories are a very versatile categorical model of linear logic. These have been
used to model many seemingly different things (e.g., Petri nets and Lambek’s calculus). In this
note, we expand our previous work on fuzzy petri nets to deal with fuzzy topological systems.
One basic idea is to use as the dualizing object in the Dialectica categories construction, the
unit real interval I = [0, 1], which has all the properties of a lineale. The second basic idea is to
generalize Vickers’s notion of a topological system.

1 Introduction

Fuzzy set theory and fuzzy logic have been invented by Lotfi ali Asker Zadeh. This is a theory that
started from a generalization of the set concept and the notion of a truth value (for an overview,
for example, see [8]). In fuzzy set theory, an element of a fuzzy subset belongs to it to a degree,
which is usually a number between 0 and 1. For example, if we have a fuzzy subset of white colors,
then all the gray-scale colors are white to a certain degree and, thus, belong to t his set with a
degree. The following definition by Zadeh himself explains what fuzzy logic is:1

Definition Fuzzy logic is a precise system of reasoning, deduction and computation in which the
objects of discourse and analysis are associated with information which is, or is allowed to be,
imprecise, uncertain, incomplete, unreliable, partially true or partially possible.

Categories, which were invented by Samuel Eilenberg and Saunders Mac Lane, form a very
high-level abstract mathematical theory that unifies all branches of mathematics. Category theory
plays a central role in modern mathematics and theoretical computer science, and, in addition, it
is used in mathematical physics, in software engineering, etc. Categories have been used to model
and study logical systems. In particular, the Dialectica categories of de Paiva [4] are categorical
model of linear logic [7]. These categories have been used to model Petri nets [2], the Lambek
Calculus [12], state in programming [3], and to define fuzzy petri nets [6]. Using some of the ideas
in our previous work on fuzzy petri nets, we wanted to develop the idea of fuzzy topological systems,
that is, the fuzzy counterpart of Vickers’s [13] topological systems. In this note, we present fuzzy
topological systems and discuss some of their properties.

∗This paper was accepted for presentation and it was read at the 8th Panhellenic Logic Symposium, July 4–8,
2011, Ioannina, Greece.

1The definition was posted to the bisc-group mailing list on 22/11/2008.
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2 The category DialI(Set)

The Dialectica categories construction (see for example [5]) can be instantiated using any lineale
and the basic category Set. As discussed in [11], the unit interval, since it is a Heyting algebra,
has all the properties of a lineale structure. Recall that a lineale is a structure defined as follows:

Definition The quintuple (L,≤, ◦, 1,() is a lineale if:

• (L,≤) is poset,

• ◦ : L×L→ L is an order-preserving multiplication, such that (L, ◦, 1) is a symmetric monoidal
structure (i.e., for all a ∈ L, a ◦ 1 = 1 ◦ a = a).

• if for any a, b ∈ L exists a largest x ∈ L such that a ◦ x ≤ b, then this element is denoted
a( b and is called the pseudo-complement of a with respect to b.

Now, one can prove that the quintuple (I,≤,∧, 1,⇒), where I is the unit interval, a∧b = min{a, b},
and a⇒ b =

∨
{c : c ∧ a ≤ b} (a ∨ b = max{a, b}), is a lineale.

Let U and X be nonempty sets. A binary fuzzy relation R in U and X is a fuzzy subset of
U × X, or U × X → I. The value of R(u, x) is interpreted as the degree of membership of the
ordered pair (u, x) in R. Let us now define a category of fuzzy relations.

Definition The category DialI(Set) has as objects triples A = (U,X, α), where U and X are sets
and α is a map U ×X → I. Thus, each object is a fuzzy relation. A map from A = (U,X, α) to
B = (V, Y, β) is a pair of Set maps (f, g), f : U → V , g : Y → X such that

α(u, g(y)) ≤ β(f(u), y),

or in pictorial form:

U × Y
idU × g- U ×X

≥

V × Y

f × idY

?

β
- I

α

?

Assume that (f, g) and (f ′, g′) are the following arrows:

(U,X, α)
(f,g)−→ (V, Y, β)

(f ′,g′)−→ (W,Z, γ).

Then (f, g) ◦ (f ′, g′) = (f ◦ f ′, g′ ◦ g) such that

α
(
u,
(
g′ ◦ g

)
(z)
)
≤ γ

((
f ◦ f ′

)
(u), z

)
.

Tensor products and the internal-hom in DialI(Set) are given as in the Girard-variant of the
Dialectica construction [4]. Given objects A = (U,X, α) and B = (V, Y, β), the tensor product
A⊗B is (U × V,XV × Y U , α× β), where the α× β is the relation that, using the lineale structure
of I, takes the minimum of the membership degrees. The linear function-space or internal-hom is
given by A → B = (V U × Y X , U × X,α → β), where again the relation α → β is given by the
implication in the lineale. With this structure we obtain:
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Theorem 2.1 The category DialI(Sets) is a monoidal closed category with products and coproducts.

Products and coproducts are given by A×B = (U × V,X + Y, γ) and A⊕B = (U + V,X × Y, δ),
where γ : U × V × (X + Y )→ I is the fuzzy relation that is defined as follows

γ
(
(u, v), z

)
=

{
α(u, x), if z = (x, 0)
β(v, y), if z = (y, 1)

Similarly for the coproduct A⊕B.

3 Fuzzy Topological Systems

Let A = (U,X, α) be an object of DialI(Set), where X is a frame, that is, a poset (X,≤) where

1. every subset S of X has a join

2. every finite subset S of X has a meet

3. binary meets distribute over joins, if Y is a subset of X:

x ∧
∨
Y =

∨{
x ∧ y : y ∈ Y

}
.

Given such a triple, we can view A as a fuzzy topological system, that is, the fuzzy counterpart of
Vickers’s [13] topological systems.

A topological system in Vicker’s monograph[13] is a triple (U, |=, X), where X is a frame whose
elements are called opens and U is a set whose elements are called points. Also, the relation |= is a
subset of U ×X, and when u |= x, we say that u satisfies x. In addition, the following must hold

• if S is a finite subset of X, then

u |=
∧
S ⇐⇒ u |= x for all x ∈ S.

• if S is any subset of X, then

u |=
∨
S ⇐⇒ u |= x for some x ∈ S.

Given two topological systems (U,X) and (V, Y ), a map from (U,X) to (V, Y ) consists of a
function f : U → V and a frame homomorphism φ : Y → X, if u |= φ(y)⇔ f(u) |= y. Topological
systems and continuous maps between them form a category, which we write as TopSystems.

In order to fuzzify topological systems, we need to fuzzify the relation “|=.” However, the
requirement imposed on the relation of satisfaction is too severe when dealing with fuzzy structures.
Indeed, in some reasonable categorical models of fuzzy structures (see, for example [1, 11]), the
authors use a weaker condition where the e quivalence operator is replaced by an implication
operator. Thus we suggest that the corresponding condition for morphisms of fuzzy topological
systems should become u |= φ(y)⇒ f(u) |= y.

Definition A fuzzy topological system is a triple (U,α,X), where U is a set, X is a frame and
α : U ×X → I a binary fuzzy relation such that:
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(i) If S is a finite subset of X, then

α(u,
∧
S) ≤ α(u, x) for all x ∈ S.

(ii) If S is any subset of X, then

α(u,
∨
S) ≤ α(u, x) for some x ∈ S.

(iii) α(u,>) = 1 and α(u,⊥) = 0 for all u ∈ U .

To see that fuzzy topological systems also form a category we need to show that given morphisms
(f, F ) : (U,X) → (V, Y ) and (g,G) : (V, Y ) → (W,Z), the obvious composition (g ◦ f, F ◦ G) :
(U,X) → (W,Z) is also a morphism of fuzzy topological systems. But we know DialI(Set) is
a category and conditions (i), (ii) and (iii) do not apply to morphisms. Identities are given by
(idU , idX) : (U,X)→ (U,X).

The collection of objects of DialI(Set) that are fuzzy topological systems and the arrows between
them, form the category FTopSystems, which is a subcategory of DialI(Set).

Proposition 3.1 Any topological system (U,X) is a fuzzy topological system (U, ι,X), where

ι(u, x) =

{
1, when u |= x
0, otherwise

Proof Consider the first property of the relation “|=”

u |=
∧
S ⇐⇒ u |= x for all x ∈ S.

This will be translated to
ι(u,

∧
S) ≤ ι(u, x) for all x ∈ S.

The inequality is in fact an equality since whenever u |= x, ι(u, x) = 1. Therefore, we can transform
this condition into the following one

ι(u,
∧
S) = ι(u, x) for all x ∈ S.

A similar argument holds true for the second property.

The following result is based on the previous one:

Theorem 3.2 The category of topological systems is a full subcategory of DialI(Set).

Obviously, it is not enough to provide generalization of structures—one needs to demonstrate
that these new structures have some usefulness. The following example gives an interpretation of
these structures in a “real-life” situation.

Example Vickers [13, p. 53] gives an interesting physical interpretation of topological systems. In
particular, he considers the set U to be a set of programs that generate bit streams and the opens
to be assertions about bit streams. For exanple, if u is a program that generates the infinite bit
stream 010101010101. . . and “starts 01010” is an assertion that is satified if a bit stream starts
with the digits “01010”, then this is expressed as follows:

x |= starts 01010.

Assume now that x′ is a program that produces bit streams that look like the following one
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0 1 0 1 0 1 0 1 0
The individuals bits are not identical to either “1” or “0,” but rather similar to these. One can
speculate that these bits are the result of some interaction of x′ with its environment and this is
the reason they are not identical. Then, we can say that x′ satisfies the assertion “starts 01010”
to some degree, since the elements that make up the stream produced by x′ are not identical, but
rather similar.

4 From Fuzzy Topological Systems to Fuzzy Topological Spaces

It is not difficult to map fuzzy topological systems to fuzzy topological spaces (for an overview of
the theory of fuzzy topologies see [14]). The following definition shows how to map an open to
fuzzy set:

Definition Assume that a ∈ A, where (U,α,X) is a fuzzy topological space. Then the extent of
an open x is a function whose graph is given below:{(

u, α(u, x)
)

: u ∈ U
}
.

Proposition 4.1 The collection of all fuzzy sets created by the extents of the members of A corre-
spond to a fuzzy topology on X.

Proof Assume that a and b are opens and let a(x) = α(x, a), b(x) = α(x, b), and ψ(x) = α(x, a∧b).
Then α(x, a∧b) ≤ α(x, a) and α(x, a∧b) ≤ α(x, b). In different words, ψ(x) ≤ a(x) and ψ(x) ≤ b(x),
which implies that ψ(x) ≤ min{a(x),b(x)} that is ψ = a ∩ b. Similarly, assume that {ai} is a
collection of opens such that ai(x) = α(x, ai) and φ(x) = α(x,

∨
i ai). The fact that there is one

φ(x) ≤ aj(x), while for all other ai it holds that φ(x) ≥ aj(x), implies that φ(x) = supi ai(x), that
is, φ =

⋃
i ai(x). Finally, the last conditions generate the sets 1(x) = 1 and 0(x) = 0. So, the opens

form a fuzzy topology on X.

5 Products and Sums of Fuzzy Topological Systems

In section 2 we described the categorical products and coproducts of any two objects of DialI(Set).
Given two fuzzy topological systems A = (U,X, α) and B = (V, Y, β), their topological product is
the space A × B = (U × V,X + Y, γ). Since X and Y are frames it is necessary to modify the
definition of X + Y and, consequently, the definition of γ.

Definition Assume that A = (U,X, α) and B = (V, Y, β) are two fuzzy topological systems. Then
their topological product A×B is the system (U ×V, γ,X⊗Y ), where X⊗Y is the tensor product
of the two frames X and Y (see [13, pp. 80–85] for details) and γ is defined as follows:

γ
(
(u, v),

∨
i

xi ⊗ yi
)

= max
{
α(u, x), β(v, y)

}
.

Obviously, the topological product is not the same as the categorical product. The topological sum
is more straigthtforward:
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Definition Assume that A = (U,X, α) and B = (V, Y, β) are two fuzzy topological systems. Then
their topological sum A+B is the system (U + V, γ,X × Y ), where γ is defined as follows:

γ
(
z, (x, y)

)
=

{
α(u, x), if z = (u, 0)
β(v, y), if z = (v, 1)

Comparing the topological sum with the categorical sum reveals that they are identical.

6 Conclusions

We have simply started thinking about the possibilities of using Dialectica-like models in the context
of fuzzy topological structures. Much remains to be done, in particular we would like to see if a
framework based on an implicational notion of morphism like ours can cope with embedding several
of the other notions of fuzzy sets considered by Rodabaugh [9]. Also seems likely that we could
extend the work of Solovyov [10] on variable-basis topological spaces using similar ideas.
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