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Abstract. A word w is called synchronizing (recurrent, reset, magic,
directable) word of deterministic finite automaton (DFA) if w sends all
states of the automaton to a unique state. In 1964 Jan Černy found a
sequence of n-state complete DFA possessing a minimal synchronizing
word of length (n − 1)2. He conjectured that it is an upper bound on
the length of such words for complete DFA. Nevertheless, the best upper
bound (n3

− n)/6 was found almost 30 years ago.
We reduce the upper bound on the length of the minimal synchronizing
word to n(7n2 + 6n− 16)/48.
An implemented algorithm for finding synchronizing word with restricted
upper bound is described. The work presents the distribution of all syn-
chronizing automata of small size according to the length of an almost
minimal synchronizing word.

Keywords: deterministic finite automaton, synchronizing word, Černy con-
jecture.

Introduction

The problem of synchronization of DFA is natural and various aspects of this
problem were touched upon the literature. Synchronization makes the behavior
of an automaton resistant against input errors since, after detection of an error,
a synchronizing word can reset the automaton back to its original state, as if
no error had occurred. Therefore different problems of synchronization draw the
attention.

A problem with a long story is the estimation of the minimal length of syn-
chronizing word. In 1964 Jan Černy found [3] n-state complete DFA with shortest
synchronizing word of length (n−1)2 for alphabet size q = 2. He conjectured that
it is an upper bound on the length of the shortest synchronizing word for any
n-state complete DFA. Best known now as a Černy’s conjecture, it was raised
independently not once.

The problem encourages a lot of investigations and generalizations [2] and
together with Road Coloring problem [10], [14] was considered as a most fasci-
nating old problem in finite automata theory.
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The conjecture holds true for a lot of automata, but in general the prob-
lem still remains open in spite the fact that over hundred papers consider this
problem from different points of view. Moreover, two conferences (”Workshop
on Synchronizing Automata” (Turku, 2004) and ”Around the Černy conjecture”
(Wroclaw,2008) were dedicated to this longstanding conjecture. The problem
was discussed in ”Wikipedia” - the popular Internet Encyclopedia and on some
other sites. // The problem can be reduced to automata with strongly connected

graph [3]. The best known upper bound is now equal to n3−n
6 [5], [9], [10]. This

estimation was not improved almost 30 years.
We reduce the upper bound on the length of a minimal reset word. This length

of n-state strongly connected automaton (and also for not necessary strongly
connected) is not greater than

n(7n2+6n−16)
48

The crucial estimation makes here the value 7n3/48. So the obtained result

improves known upper bound n3−n
6 . A modification of the old bound makes

here the coefficient 7
8 .

The search is essentially based on lemmas from [5] and [9]. The same lemmas
were used in a polynomial time algorithm described below for finding synchro-
nizing word. The algorithm is implemented in the package TESTAS [15]. The
time complexity of the algorithm is O(n3) and the space complexity is quadratic.
An important feature of the algorithm is that the length of the obtained syn-
chronizing word is restricted by some given upper bound. We propose a modi-
fication of the algorithm that reduces this bound to the above-mentioned value
of n(7n2 + 6n− 16)/48.

There are no examples of automata such that the length of the shortest
synchronizing word is greater than (n−1)2. Moreover, the examples of automata
with synchronizing word of length (n − 1)2 are infrequent. After the sequence
found by Černy and the example of Černy, Piricka and Rosenauerova [4] of 1971
for alphabet size q = 2, a next example was found by Kari [7] only in 2001 for
n = 6 and q = 2. Roman [11] had found an analogous example for n = 5 and
q = 3 in 2004.

The package TESTAS has studied all automata with strongly connected tran-
sition graph of size n ≤ 10 for q = 2, of size n ≤ 8 for q ≤ 3 and of size n ≤ 7 for
q ≤ 4 [15]. Our work presents the distribution of all considered synchronizing au-
tomata of small size according to the length of an almost minimal synchronizing
word.

Five new examples of DFA with shortest synchronizing word of length (n−1)2

from this class of automata were found. The size of the alphabet of these and
all presently known examples is two or three.

Preliminaries

We consider a complete n-state DFA with state transition graph Γ and transition
semigroup S over alphabet Σ (|Σ| = q). Let us exclude the trivial cases n ≤ 2
and q = 1.



The states of the automaton are considered also as vertices of the transition
graph Γ and let |Γ | = n be the number of states.

If there exists a path in an automaton from the state p to the state q and the
edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈
Σ+ let us write q = ps.

Let Ps be the set of states q = ps for all p from the subset P of states and
s ∈ Σ+. For the transition graph Γ of an automaton let Γs denote the set Ps
for the set P of all states of the automaton.

A word v ∈ Σ+ is called synchronizing word of an automaton A with transi-
tion graph Γ if |Γv| = 1. An automaton (and its transition graph) possessing a
synchronizing word is called synchronizing.

A state p will be called empty state by mapping of the word s if p ∈ Γ \Γs.
The direct product Γ 2 of two copies of the transition graph Γ over an alpha-

bet Σ consists of pairs (p,q) and edges (p,q) → (pσ,qσ) labelled by σ. Here
p,q ∈ Γ , σ ∈ Σ [13].

1 A state outside the image

Lemma 1 Suppose pi 6∈ Γs. Then pi 6∈ Γus for any word u.

Proof follows from Γu ⊆ Γ .

Lemma 2 Let Γ be transition graph of a DFA. If there are words s and t such
that ps 6∈ Γts for some p from Γ \ Γt then Γts is a proper subset of Γs.

Proof. One has Γs = ((Γ \ Γt) ∪ Γt)s = (Γ \ Γt)s ∪ Γts. The state ps from Γs
is outside Γts and also outside (Γ \Γt)s. Now from Γts ⊆ Γs follows Γts ⊂ Γs.

Lemma 3 Let Γ be a transition graph of a synchronizing strongly connected
n-state DFA. Then for any state q there exists a word t of length not greater
than n such that q 6∈ Γt. For any k < n there are at least k states qk and a
words uk of length not greater than k such that qk 6∈ Γuk.

Proof. The automaton is synchronizing, whence for some letter β, Γβ ⊂ Γ and
at least one state is empty by mapping β. The set Γ \ Γs is the set of empty
states by mapping of the word s. Let Rk be a union of all Γ \ Γt for all words
t such that |t| ≤ k. Obviously that Rk ⊆ Rm for k ≤ m. From Γβ ⊂ Γ follows
that R1 is non-empty.

For complement Ck of the set Rk we have Ck = ∩Γs for all words s of length
not greater than k.

The graph Γ is strongly connected. Therefore for non-empty complement Ck

of Rk there exists a letter γ such that Ckγ 6⊂ Ck, whence Ck \Ckγ is not empty.
Suppose r ∈ Ck \ Ckγ.

Ck+1 = ∩Γs for all words s of length not greater than k + 1 and r 6∈ Ckγ.
Therefore r 6∈ Ck+1. Thus r ∈ Rk+1, whence Rk ⊂ Rk+1 and |Rk| < |Rk+1|.

Consequently, for any k ≤ n there exists a state q and a word u of length not
greater than k such that q 6∈ Γu. One has |Rk| ≥ k, whence for given k there
are at least k such states q.



Lemma 4 Let Γ be a transition graph of synchronizing strongly connected n-
state DFA. Then for every k ≤ n+1

2 there exists a word s such that |s| ≤ k2 and
|Γs| ≤ n− k.

Proof. If |Γs| > n+1
2 for a word s then there is at least one state p ∈ Γs having

only one preimage q by mapping s. In opposite case every state p ∈ Γs has at
least two preimages by mapping s, whence |Γs| ≤ n

2 .
Let us consider for a word si the states from Γsi having only single preimage

by mapping si and let Qi be the set of such single preimages.
Our aim is now to find a short word s such that |Γs| ≤ n+1

2 . We construct
a sequence of mappings si that reduce the size of the set Qi and the size of Γsi
on every step i.

By Lemma 3 for every state q there exists a word tq such that q 6∈ Γtq and
for k ≤ n there are at least k states q with tq of length not greater than k.

There exists a letter α such that |Γα| < |Γ |. Let α be the word s1 = t1. Let
Q1 be the set of single preimages of Γt1. Then |Γt1| < n and |Q1| ≤ n − 2. If
n− |Γα| = m then m < n− |Q1| ≤ 2m.

On every next step, let us take the state q from Qi−1 with tq of minimal
length. Suppose ti−1 = tq and si = ti−1si−1. By Lemma 2, Γsi ⊂ Γsi−1 and so
|Γsi| < |Γsi−1|.

For mapping of defect j the size of corresponding Qj is at least n − 2j. In
virtue of Lemma 3, the length of minimal tq of q from Qj of size r is not greater
than n − r + 1. So for the defect j the length of minimal tq for Qj has upper
bound n− (n− 2j) + 1 = 2j + 1. This upper bound depends only on the defect
j of the mapping. The sequence of possible upper bounds grows together with
the defect and consists of consecutive odd integers (sometimes with gaps).

The process continues until the set Qi is not empty (in particular, if |Γsi| >
n/2). Thus the length of sk is restricted by the sum of k (or less) odd integers
for every k ≤ n+1

2 .
Consequently, for some word s and k ≤ n+1

2 the length of s in view of Lemma

3 is restricted by the sum
∑k

i=1(2i− 1) = k2 and |Γs| ≤ n− k.

2 Pairs of states

The next our step is based on the following result of Frankl and Klyachko et al.

Theorem 1 [5], [9] Let N be set of size n with subset D of size i > 1. Then
there exists a word s of length at most

C2
n−i+2 = (n− i+ 2) ∗ (n− i+ 1)/2

such that |Ds| < |D|.

The next lemma follows the ideas from [9].

Lemma 5 Let Γ be a transition graph of a strongly connected n-state automaton
and let Dk of size k be a subset of states of the automaton.

Then the word of length at most C3
n+1 − C3

n−k+2 synchronizes the set Dk.



Proof. By Theorem 1, every Di has a pair of states with a minimal synchronizing
word of length not greater than C2

n−i+2 = (n − i + 2)(n − i + 1)/2. So Dk has

synchronizing word of length at most S =
∑k

i=2 C
2
n−i+2.

Suppose j = n − i + 2. Then n ≥ j ≥ n− k + 2. Now S =
∑n

j=n−k+2 C
2
j =

∑n
j=2 C

2
j −

∑n−k+1
j=2 C2

j .

For every m > 2,
∑m

j=2 C
2
j = C3

m+1. So
∑n

j=2 C
2
j = C3

n+1 and
∑n−k+1

j=2 C2
j =

C3
n−k+2. Therefore S = C3

n+1 − C3
n−k+2.

Theorem 2 Let Γ be a transition graph of a strongly connected n-state automa-
ton. Then a word of length not greater than

n(7n2+6n−16)
48

synchronizes the automaton.

Proof. Let us combine the quadratic estimation from Lemma 4 and the cubic
estimation of Lemma 5. The length of some synchronizing word is not greater
than the sum of S1 = C3

n+1 − C3
n−k+2 (Lemma 5) and S2 = k2 (Lemma 4) for

k ≤ n+1
2 .

We must consider k ≤ n+1
2 . Hence the maximum of S = S1 + S2 exists for

even n and k = n
2 (the case of odd n and k = n+1

2 also will be calculated for
clarity). In the case of even n

S1 = C3
n+1 − C3

n−k+2 = C3
n+1 − C3

n/2+2 = n3−n
6 − (n/2+1)3−n/2−1

6 =

8n3−8n−n3−6n2−12n−8+4n+8
48 = n(7n2−6n−16)

48 .

S2 = k2 = n2

4 .
So the length of a minimal synchronizing word has in the case of even n the

following upper bound S1 + S2 = n(7n2−6n−16)
48 + n2

4 = n(7n2+6n−16)
48 .

In the case of odd n
S1 = C3

n+1−C3
n−k+2 = C3

n+1−C3
(n+1)/2+2 = n3−n

6 − ((n+1)/2+1)3−(n+1)/2−1
6 =

8n3−8n−n3−9n2−27n−27+4n+12
48 = 7n3−9n2−31n−15

48 .

S2 = k2 = n2+2n+1
4 .

So the length of a minimal synchronizing word has in the case of odd n the

following upper bound S1 + S2 = 7n3−9n2−31n−15
48 + n2+2n+1

4 = 7n3+3n2−7n−3
48 .

This value is less than n(7n2+6n−16)
48 for n > 2.

Thus the value n(7n2+6n−16)
48 is an upper bound on the length of the minimal

synchronizing word. The obtained result improves the old upper bound n(n2−1)
6

by factor 7
8 .

Remark 1 For odd n a word of length not greater than 7n3+3n2−7n−3
48 synchro-

nizes the automaton.

2.1 An algorithm for finding synchronizing word of restricted

length

The algorithm presents another useful application of the combinatorial ideas
from [9]. The Theorem 1 gives us an estimation of the length of the reset word.



Let us consider the inverse of the graph Γ 2. So the incoming edges of every
pair (p,q) from Γ 2 together with its ancestors are known. Then let us enumerate
the pairs of vertices. There are vertices p,q from Γ such that for some letter
α pα = qα. For every such pair (p,q) from Γ 2 suppose n(p,q) = 1. Let us
connect with the pair (p,q) the letter α.

Then for every enumerated pair (p,q) from Γ 2 with n(p,q) = k let us
consider all its ancestors without enumeration. These pairs obtain the number
k + 1 and are connected with the letter on the edge of the graph Γ 2 from this
pair to the pair (p,q).

We find a sequence of mappings of the graph of the automaton induced by
the letters on the labels. Let us consider the graph Γs for some word s and find
a pair (p,q) from Γs with a minimal number. The letter α of the pair is the
first letter of the word w we build. The next letter of the word w is the letter
of the pair pα,qα. The number of this pair is less than the number of (p,q).
We proceed on this way until the number of the pair exists. The last pair is
synchronizing by a letter. The obtained word w synchronizes the vertices p and

q. The length of the word w is at most (n−|Γs|+2)(n−|Γs|+1)
2 (theorem 1).

The search of the first letter of the word w needs O(|Γ |(|Γ | − 1)/2) steps.
Then the building of the word w needs |Γ | steps. The number of the words w
is less than n. Therefore the time complexity of considered procedure can be
estimated by O(|Γ |3) in the worst case. The space complexity of the algorithm
is O(|Γ |2) because of the size of Γ 2. The algorithm is correct in view of the
Lemma 5 and is implemented in the package TESTAS.

2.2 A modification of the algorithm

The modification is based on Lemmas 3 and 4. There exists a letter α and a
state p such that p 6∈ Γα. Let R1 be the set of such states p (as in Lemma 3).
We associate the word u1 = α of length one with every state.

Suppose the set Rk of states and its non-empty complement Ck with corre-
sponding words exist. From the proof of Lemma 3 follows that for some letter β
there exists a state q in Ck \Ckβ. For every state r from Ck with corresponding
word u we associate the word uk+1 = uβ and add q to Rk+1.

Let us keep with every state ps ∈ Γs its preimage by mapping s and fix the
case of more than one preimage. If psi has only one preimage by mapping si
then suppose p ∈ Qi.

All states of the graph belong to Q0, after the mapping v1 we have |Q1| ≤
n− 2. The set Qi lost states on every step. If |Γs| > |Γ |/2) then there exists a
state in Γs having only one preimage and so Qi is not empty by mapping s. We
proceed until Qi is not empty.

Let us choose a state p ∈ Qi with word uk of minimal length and suppose
vi+1 = ukvi. The length of the word vi is restricted according to Lemma 3. We
continue until Γvi has states with only one preimage (Qi is not empty). So we
obtain the set of states Γvi of size less than (n + 1)/2 (Lemma 4) and then
proceed by the main algorithm.



The upper bound on the length of the synchronizing word in virtue of The-

orem 2 is n(7n2+6n−16)
48 .

3 Distribution of the length of synchronizing word of

small automata

A program based on the synchronization algorithms of the package TESTAS
was used for a search of automata with a minimal reset word of relatively great
length. The program has investigated all complete DFA for n ≤ 10 over an
alphabet of size 2, n ≤ 8 over an alphabet of size 3 and for n ≤ 7 over an
alphabet of size 4 [14].

Maximal value of the length of a synchronizing word for n = 10 found by the
algorithm on the set of considered automata of size n is 93. The length found
by the minimal length algorithm is 81 (Err < 0.13). So the shift of the size of
the synchronizing word is relatively small.

The program consistently sifts non-synchronizing automata, the automata
with a very short reset word and a part of isomorphic automata. The following
table presents the distribution of all remaining automata of size 10 over an al-
phabet of two letters (see also [1]).

interval of size of the automata n - 2n 2n - 3n 3n - 4n 4n - 5n 5n - 6n 6n -7n
percent of automata in interval 81.01 16.2 1.82 0.8 0.05 0.006

The distribution for three and four letters does not differ noticeable and is omit-
ted.

The synchronizing words of minimal length are found only for automata
having great minimal reset words. The maximal number of considered n-state
automata has its length of the reset word near n+1.

Thus one can conclude that the polynomial synchronizing algorithms of the
package find synchronizing words of a length not far of the minimal, especially
for automata with very great reset words. The presented distribution does not
differ essentially from the distribution of the lengths of the minimal synchronizing
words.
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