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Abstract

Unsupervised aggregation of independently built univariate predictors is explored as an alterna-

tive regularization approach for noisy, sparse datasets. Bipartite ranking algorithm Smooth Rank

implementing this approach is introduced. The advantages of this algorithm are demonstrated on

two types of problems. First, Smooth Rank is applied to two-class problems from bio-medical field,

where ranking is often preferable to classification. In comparison against SVMs with radial and linear

kernels, Smooth Rank had the best performance on 8 out of 12 benchmark benchmarks. The second

area of application is survival analysis, which is reduced here to bipartite ranking in a way which

allows one to use commonly accepted measures of methods performance. In comparison of Smooth

Rank with Cox PH regression and CoxPath methods, Smooth Rank proved to be the best on 9 out

of 10 benchmark datasets.

Introduction

Most of efforts in “classical” machine learning were concentrated on classification problems, where number
of features is fixed, number of instances can be increased, classes can be smoothly separated in attribute
space. Real life biological problems are different in every aspect: number of features can be increased
almost without limit, new cases are very hard to get, observed outcome is influenced to a large degree by
unknown factors.

The main direction of adaptation of machine learning methods to this reality is regularization. The
goal of the regularization is to improve generalization by putting additional price on smoothness of the
model, to make modeling less sensitive to the peculiarities of sparse datasets, high dimensionality and
outliers. Most of time the regularization implies restrictions on weights in the model, and includes some
tuning hyper-parameters. However, finding the optimal values for these additional parameters on the
limited data may further increase method’s sample-sensitivity, contrary to the goal of the regularization
[1, 2]. We confirm this finding in our experiments.

The approach to regularization, explored here, is based on unsupervised aggregation of univariate pre-
dictors. The idea is that when there is not enough data to build a reliable multidimensional model, there
may be sufficient data to build independently and aggregate univariate models. Within this approach,
empirical formulas are used for tuning to a particular data to avoid optimization of the hyper-parameters.

The direction is not new in machine learning. It generalizes such methods as Naive Bayes and weighted
voting [3], which are known for good performance on difficult data [4–6] despite its “naivity”. In particular,
J. Friedman [4] suggested that success of the Naive Bayes can be explained by its smoothing properties.
Here these ideas are implemented in the new bipartite ranking method Smooth Rank. Effectiveness of
Smooth Rank comparing with SVMs with linear and radial kernels and Rank Boost is demonstrated on
12 datasets from bio-medical field, where ranking is often preferable to classification.

As another contributions of this work, we show that survival analysis can be effectively reduced to
a bipartite ranking problem as well, and successfully apply Smooth Rank to this difficult problem. In
comparison with leading survival analysis methods, Smooth Rank shows the best performance in 9 out
of 10 datasets in these experiments.

The article is organized as follows. In the Section 1, the bipartite ranking algorithm Smooth Rank is
defined and analyzed. In the Section 2, we present and discuss results of experiments on 12 benchmark
two-class datasets. In the next section, interpretation of survival analysis as bipartite ranking problem
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is introduced. In the fourth section, the performance of Smooth Rank is compared with other methods
on survival analysis datasets.

1 Smooth Rank

1.1 Definition of Smooth Rank

The main scheme of the algorithm can be described as two steps procedure:

1. Independently for each feature xi : build a predictor fi(x
i) and calculate its weight wi;

2. Calculate a scoring function F (x) =
∑n

1
wi · fi(x

i).

For a classification problem, there are two popular ensemble algorithms which follow this scheme.
One of them is Naive Bayes classifier [5] where all weights wi ≡ 1 and each predictor is built as a log-ratio
between densities of two classes: fi(x

i) = log(d1,i(x
i)/d−1,i(x

i)). Another example of an algorithm with
the same scheme is “weighted voting” [3].

There are several ways the general scheme can be implemented. Below is one of the possible imple-
mentations.

Algorithm Smooth Rank Given is sample {X,Y }, where the response variable Y has two values,
1 and 2.

1. For each feature xi:

(a) Build kernel approximations gi
1
, gi

2
of the density of each class on Ri = dom(xi);

(b) For each point r ∈ Ri calculate

qi(r) =
gi
1
(r) − gi

2
(r)

π1 · gi1(r) + π2 · gi2(r)
,

where π1, π2 are frequencies of the classes 1 and 2;

(c) Build marginal predictors q̃i(x) as LOESS approximation of the function qi(x)

(d) Calculate weights wi of the predictors based on their correlation with outcome

2. Calculate scoring function

F (x) =
∑

i: xi 6=NA

wi · q̃i(x
i)/

∑

i:xi 6=NA

wi

1.2 Implementation and parameters

1.2.1 Density evaluation

To improve generalization ability, the evaluation of density of each class is implemented as a two step
procedure: first, the density is approximated with cosine kernel (R function density ); then the density
function is smoothed using LOESS procedure.

To avoid “model selection bias” [1, 7], we fixed the parameters of these R functions in all our exper-
iments: density was evaluated on equally spaced default 512 points; the procedure loess was used with
polynomials of the degree 1.

It is well known that comparison of densities of two classes is not reliable in the intervals of low
density [5]. To deal with this issue, the function q(r) is not evaluated for r : π1 · g

i
1
(r) + π2 · g

i
2
(r) < 0.1.

The aggregation on the next step handles values of the predictors in these points as missing.
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1.2.2 Calculation of weights and post-filtering

The calculation of weights is implemented as a two step procedure.
First, weights of the predictors are calculated by the formula

wi = AUC(q̃i(x), Y )− 0.5.

The next step includes “post-filtering”, or “shrinkage”. The goal of this step is to improve learning on
the datasets where many correlated weak predictors combined would overweight few strong ones. Rather
than setting a hard threshold for selection of predictors, or use data to optimize the threshold, the filtering
is made based on comparison with the best available predictor. The updated weights are calculated by
the formula:

wi :=

{
wi, if wi > (maxj wj)/3
0, otherwise.

The empiric formula allows to filter out relatively weak predictors, making the filtering data-dependent
without additional optimization procedure.

1.3 Properties of the predictors

Since gi
1
, gi

2
approximate densities of both classes, according to Bayes theorem,

P (Y = j|xi = r) '
πj · g

i
j(r)

π1 · gi1(r) + π2 · gi2(r)
,

j = 1, 2. Then the marginal predictor q̃i(r) can be presented as

q̃i(r) '
P (Y = 1|xi = r)

π1

−
P (Y = 2|xi = r)

π2

.

If variable xi is conditionally independent of Y in xi = r, the conditional posterior probabilities of
both classes in this point are equal to their priors, and q̃i(r) ' 0. In each point r, the value of marginal
predictor function q̃i(r) indicates degree and direction of local association between the values of the
variable xi and the response variable. Then, q̃i(r) influences the scoring function F only for those points
xi = r which are predictive, and do not participate in ranking otherwise.

2 Experiments on Bipartite Ranking Data

Bipartite ranking problems can be approached with at least two types of methods: by the ranking methods
(as RankBoost [8], Rank SVM [9]), and by any classification method which produces a continuous output
(as probabilities) along with binary classification. Based on these considerations, SVMs with linear
and radial kernels and RankBoost were selected for comparison with Smooth Rank on bipartite data.
Function svm from R package e1071 was used with default parameters for both types of kernels. Rank
Boost was implemented with weak learners as binary functions. RankBoost was applied with the number
of iterations set to 80: preliminary experiments demonstrated that further increasing this parameter does
not improve learning.

Twelve of two-class biomedical benchmark datasets from UCI Machine Learning Repository were used
for testing. Biomedical area was selected because poorly separable classes, typical for such data, make
bipartite ranking especially useful.

The datasets Cleveland HD, VA HD, Switzerland HD, Hungrian HD represents samples from the same
collection, Heard Disease. Even though all the datasets have 13 independent variables, some variables
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Table 1. Comparison of Bipartite Ranking Methods

# Data Dimensions Smooth Rank SVM radial SVM linear RankBoost
1 Hepatitis 155 X 9 0.86 (12.7) 0.88 0.80 0.80
2 Cleveland HD 283 X 13 0.90 (10.3) 0.88 0.87 0.90

3 Indians 768 X 8 0.83 (6.6) 0.81 0.82 0.83

4 Statlog-Heart 270 X 13 0.90 (10.4) 0.89 0.88 0.90

5 Parkinsons 195 X 22 0.88 (21.7) 0.86 0.81 0.90

6 LjublianaBrCa 286 X 9 0.71 (6) 0.68 0.66 0.71

7 Hungarian HD 294 X 10 0.88 (6) 0.86 0.87 0.87
8 Switzerland HD 123 X 8 0.60 (5) 0.61 0.61 0.59
9 VA HD 200 X 6 0.64 (3) 0.69 0.66 0.66
10 Wpbc 198 X 33 0.67 (17.4) 0.7 0.74 0.63
11 Spine (Column) 310 X 6 0.86 (6) 0.91 0.89 0.71
12 SPECTF 267 X 44 0.85 (21) 0.80 0.70 0.47

Every cell contains mean value of AUC of the scoring function on 100 random split of the data on train
and test in proportion 2:1. The cells for Smooth Rank contain in brackets average number of features
used. The highest values in each row are marked by bold font.

have most of values missing. In each sample, the features with more than 20 % of missing values were
excluded.

Since SVM does not work with missing values, in all datasets, missing values were imputed using
k-NN method with k = 5.

The Table 1 shows that Smooth Rank has the best results on 6 datasets, SVM (radial) - on 4 datasets,
SVM (linear) - on 2 datasets, and RankBoost - on 5 datasets. However, RankBoost failed on the SPECTF;
and on two other datasets (Wpbc and Spine), it has average CI worse than the best method by 11 and 20
percents respectively, which can be considered a failure as well. Neither Smooth Rank nor SVM (radial)
have such failures. Overall, average CI for each method is: Smooth Rank - 0.8, SVM (radial) - 0.8, SVM
(linear) - 0.77, RankBoost - 0.75.

The results indicate that Smooth Rank is not worse than any other bipartite ranking method under
comparison on these benchmarks. It works on par with SVM with radial kernels and better than two
other methods.

3 Survival analysis as a bipartite ranking problem

Survival analysis deals with the datasets, where each observation has three components: covariate vector
x, a positive survival time t and an event indicator δ, which is equal to 1 if an event (failure) occurred,
and zero if the observation is (right) censored at time t.

The prediction in survival analysis is generally understood as an estimate of an individual’s risk of
failure, but the concept of the risk is open for interpretation. The commonly accepted criterion of the
risk modeling is Harrell’s concordance index [10] measuring agreement between the model’s scores and
the order of the failure times. The criterion is not directly related with any particular interpretation of
the scores. Concordance index measures proportion of pairs of observations, where direction of difference
in scores coincides with the direction of difference in times of failure. In absence of censored observations
and ties, concordance index equals AUC.

In the traditional approach associated with Sir David Cox [11], the research is concentrated on a
time-dependent “hazard function” Λ(x, t): event rate at time t conditional on survival of the individual x
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until time t or later (that is, T ≥ t). Cox proportional hazard (PH) regression, the most popular survival
analysis method so far, is based on the strong assumption that the hazard function has the form of

Λ(x, t) = λ(t) · exp(β(x)),

where λ(t) is unknown time-dependent function, common for all individuals in the population. The result
of the modeling is, actually, not the individual time-dependent hazard functions Λ(x, t), but rather these
“proportionality” scores.

As an alternative approach, we define the “risk” as a chance of having failure before certain time T .
The advantage of this interpretation is that it is natural and common among medical practitioners. In
this case, the model’s outcome indicates propensity of an individual to have an early failure. Splitting
observations on “early failure” vs “no early failure” reduces the problem to bipartite ranking.

Even though this interpretation does not take into account time differences within each class on the
training set, the models can be evaluated on the test data the same way, as in traditional survival analysis.
One can expect that the higher the risk of early failure, the earlier is actual failure time. Therefore, the
concordance index between the model’s scores and the failure times on the test data is a reasonable
criterion of the modeling success for this interpretation as well. This allows comparison in performance
between the Smooth Rank and existing survival analysis methods.

One may think that Smooth Rank is at disadvantage over survival analysis methods which use more
information from the training data, including the actual times of the events and multidimensional re-
lationship between the covariates and the outcome. However, our experiments show that discarding
unreliable, noisy information may, actually, benefit the generalization ability of the proposed method.

3.1 Application of Smooth Rank on survival analysis data

Reduction of the survival analysis to bipartite ranking requires introduction of the threshold time T ,
separating the observations in two classes. Given the threshold T , class of “early failure” comprises only
events which happened no later than T . The class “no early failure” includes all observations with time
beyond T .

According with this definition of the classes, the censored observations with time t ≤ T are excluded
from classification, since their “class” is unknown. They do not participate in learning.

Selecting the threshold T may be motivated by specifics of the applied problem. Here, the time
threshold is selected to balance the classes. Denote LT , HT sizes of two classes, obtained with threshold
T . Then, each threshold T can be characterized by the difference hT = |LT − HT |. The time T is
calculated as a time of an event which minimizes the criterion hT .

Unlikemedian survival time, which may not be reached on some datasets, the class-balancing threshold
T can be determined for every dataset, where there are events.

3.2 Methods for comparison in survival analysis

Cox PH regression implemented in the function coxph from the R package survival is used in our experi-
ments as a baseline method.

Cox PH regression has important limitations on input data. It can not be used when number of
features exceeds the number of instances. But actual field of application of this method is even narrower.
For example, the tutorial [10] suggests that the number of covariates should not exceed 1/10 of the number
of non-censored observations. Most of advanced methods for prediction in survival analysis are developed
to make this traditional approach more robust against overfitting on sparse data (see surveys in [6, 12]).
Overall, the two major directions for improvements involve (1) preliminary feature aggregation to lower
problem dimensionality and (2) regularization of the Cox regression to increase method’s robustness.
The shortcoming of feature aggregation is that it may produce uninterpretable decisions. Among the



6

regularization methods, L1 -penalized Cox regression is the most attractive because it produces concise
interpretable rules. Several authors [6, 12, 13] indicate that L1 -penalized Cox regression has robust
performance as well.

It is why L1 -penalized Cox regression was selected as a second approach for comparison with Smooth
Rank. The method CoxPath [14] builds L1 -penalized Cox regression models for several values of the
regularization parameter λ. The “best” model is selected. Used here is the function CoxPath implemented
in in the R package glmpath by the method’s authors. For each model, the function outputs values of
three criteria: AIC, BIC, loglik. The criterion AIC was chosen here to select the best model for the given
training set. All other parameters of the CoxPath procedure were taken as default.

4 Experiments on survival analysis data

The selected methods were applied on 10 survival analysis datasets.

• BMT: The dataset represents data on 137 bone marrow transplant patients [15] . The data allow
to model several outcomes. Here, the models are built for disease free survival time. The first
feature is diagnosis, which has three values: ALL; AML Low Risk; AML High Risk. Other features
characterize demographics of the patient and donor, hospital, time of waiting for transplant, and
some characteristics of the treatment. There are 11 features overall, among them two are nominal.

• Colon: These are data from one of the first successful trials of adjuvant chemotherapy for colon
cancer. Levamisole is a low-toxicity compound previously used to treat worm infestations in animals;
5-FU is a moderately toxic (as these things go) chemotherapy agent. There is possibility to model
two outcome: recurrence and death. The data can be found in R package survival. The features
include treatment (with three options: Observation, Levamisole, Levamisole+5-FU); properties of
the tumor, number of lymph nodes. There are total 11 features and 929 observations.

• Lung1: Survival in patients with advanced lung cancer from the North Central Cancer Treatment
Group [16]. Performance scores rate how well the patient can perform usual daily activities. Other
features characterize calories intake and weight loss. The dataset has 228 records with 7 features

• Lung2, the dataset from [17] Along with the patients’ performance scores, the features include cell
type (squamous, small cell, adeno, and large), type of treatment and prior treatment.

• BC : Breast cancer dataset [18]. It contains 7 tumor characteristics in 97 records of patients.

• PBC : This data is from the Mayo Clinic trial in primary biliary cirrhosis of the liver conducted
between 1974 and 1984 [19]. Patients are characterized by standard description of the disease
conditions. The dataset has 17 features and 228 observations.

• Al: The data [20] of the 40 patients with diffuse large B-cell lymphoma contain information about
148 gene expressions associated with cell proliferation from lympohichip microarray data. Since
there are more features than the observations, the Cox regression could not be applied on the data.
The missing values were imputed using the R program SVDImpute from the package imputation

• Ro02s: the dataset from [21] contains information about 240 patients with lymphoma. Using
hierarchical cluster analysis on whole dataset and expert knowledge about factors associated with
disease progression, the authors identified relevant four clusters and a single gene out of the 7399
genes on the lymphochip. Along with gene expressions, the data include two features for histological
grouping of the patients. The authors aggregated gene expressions in each selected cluster to create
a signatures of the clusters. The signatures, rather than gene expressions themselves were used for
modeling. The dataset with aggregated data has 7 features.
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Table 2. Comparison of Methods on Survival Analysis Data

# Data N × M N/M Smooth Rank Cox Cox Path
1 BMT 137 × 11 12.4 0.68 (6.4) 0.58 0.58
2 Colon 929 × 11 84.4 0.65 (4) 0.65 0.65

3 Lung1 228 × 7 32.6 0.63 (5.7) 0.62 0.62
4 Lung2 137 × 6 22.8 0.73 (2.16) 0.69 0.70
5 BCW 97 × 7 13.9 0.71 (5.9) 0.69 0.69
6 PBC 418 × 17 24.6 0.83 (12.6) 0.82 0.82
7 Al 40 × 148 0.27 0.63 (110) — 0.52
8 Ro02s 240 × 7 34.3 0.70 (7) 0.73 0.73

9 Ro03s 92 × 6 15.3 0.76 (3) 0.74 0.75
10 Ro03g 92 × 26 3.54 0.76 (23) 0.58 0.67

Every cell contains mean value of CI on the test data for 100 random splits in proportion 2:1. The
highest values in each row are marked by bold font. The number in brackets is average number of

features left after post-filtering in Smooth Rank

• Ro03g, Ro03s: the data [22] of 92 lymphoma patients. The input variables include data from
lymphochip as well as results of some other tests. The Ro03s data contain averaged values of
the gene expressions related with cell proliferation (proliferation signature). The Ro03g dataset
includes the values of the gene expressions included in the proliferation cluster, instead of their
average. Thus, the Ro03s dataset contains 6 features, and the dataset Ro03g contains 26 features.

The results are presented in the Table 2. The ratio N/M is included as a measure of the dataset
“sparsity”: generally, the smaller is the ratio, the less representative (more sparse) is the dataset.

The Table 2 shows that in 9 out of 10 cases the Smooth Rank has the best results.
In the three cases with the lowest ratio of N/M (lines 1,7,10) the advantage of Smooth Rank is the

most prominent. Its performance is higher than performance of other methods by 9%− 11%.
As an additional proof that Smooth Rank suffers less from the “curse of dimensionality”, one can

compare the results on the datasets R003s, Ro03g which have information on the same patients with
the same outcome. Dataset Ro03g contains original values of gene expression, while Ro03s includes
aggregated features, “signatures”. Smooth Rank has equally good (the best) results with or without
aggregation, while other methods require preliminary feature aggregation for comparable performance.

The results indicate that proposed approach is a valid robust method of regularization, suited for
particularly difficult and noisy data typical for survival analysis. Clear advantage of Smooth Rank on
these 10 datasets justifies proposed reduction of survival analysis to bipartite ranking problem.

For comparison, the regularization approach in CoxPath does not lead to significant performance
improvement over Cox PH regression in most of cases. A possible explanation is that optimal model
selection on the same small training set as part of the path method leads to “model selection bias” and
limits advantage of the regularization with fixed parameter.

5 Conclusions

Sparse noisy datasets present especial challenge for learning. Common regularization approach with re-
striction on model weights may not be helpful, especially when it requires using the same sparse data
for tuning method’s parameters. Well known “model selection bias” increases the method’s sensitivity
to peculiarities of noisy data [1]. Introduced here bipartite ranking method Smooth Rank represents an
alternative approach to regularization. The approach includes (1) unsupervised aggregation of indepen-
dently built predictors and (2) adjustment of hyper-parameters to the properties of the data by empiric
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formulas. The method was applied on two types of problems and compared with popular algorithms in
each field. The experiments demonstrated that Smooth Rank can be favorably compared with SVMs
and RankBoost on two-class benchmark datasets. On survival analysis data, the same method showed
significantly better generalization ability than Cox PH and CoxPath algorithm.
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