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Abstract

The measure of the bullwhip effect, a phenomenon in which demand vari-
ability increases as one moves up the supply chain, is a major issue in Supply
Chain Management. Although it is simply defined (it is the ratio of the
unconditional variance of the order process to that of the demand process),
explicit formulas are difficult to obtain. In this paper we investigate the theo-
retical and practical issues of Zhang [Manufacturing and Services Operations
Management 6-2 (2004b) 195] with the purpose of quantifying the bullwhip
effect. Considering a two-stage supply chain, the bullwhip effect is measured
for an ARMA(p,q) demand process admitting an infinite moving average rep-
resentation. As particular cases of this time series model, the AR(p), MA(q),
ARMA(1,1), AR(1) and AR(2) are discussed. For some of them, explicit for-
mulas are obtained. We show that for certain types of demand processes, the
use of the optimal forecasting procedure that minimizes the mean squared
forecasting error leads to significant reduction in the safety stock level. This
highlights the potential economic benefits resulting from the use of this time
series analysis. Finally, an R function called SCperf is programmed to cal-
culate the bullwhip effect and other supply chain performance variables. It
leads to a simple but powerful tool which could benefit both managers and
researchers.
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1. Introduction

In recent years, companies in various industries have been able to signifi-
cantly improve their inventory management processes through the integration
of information technology into their forecasting and replenishment systems,
and by sharing demand-related information with their supply chain partners,
Aviv (2003). However, despite the benefits resulting from the implementation
of the above practices, inefficiencies still persist and are reflected in related
costs.

The bullwhip effect, defined as the increase in variability along the sup-
ply chain, is a frequent and expensive phenomenon identified as a key driver
of inefficiencies associated with Supply Chain Management (SCM). It dis-
torts the demand signals, which causes instability in the supply chain, and
increases the cost of supplying end-customer demand.

Forrester (1958) was the first to popularize this phenomenon. Inspired
by Forrester’s work, several researchers have studied the bullwhip effect.
Sterman (1989) used the Beer Game, the most popular simulation of a simple
production and distribution system, to demonstrate that the bullwhip effect
is a significant problem with important managerial consequences. It results
in unnecessary costs in supply chains such as inefficient use of production,
distribution and storage capacity, recruitment and training costs, increased
inventory and poor customer service levels (Metters (1997) and Lee et al.
(1997b)).

Lee et al. (1997a,b) identified four main causes of the bullwhip effect:
demand forecasting, order batching, price fluctuation and supply shortages.
Of these, demand forecasting is recognised as one of the most important since
the inventory system is directly affected by the forecasting technique chosen.
Three popular forecasting methods are commonly used: the Minimum Mean
Squared Error (MMSE), Moving Average (MA) and Exponential Smoothing
(ES).

Chen et al. (2000a) quantify the bullwhip effect considering the MA fore-
cast method for a simple two-stage supply chain and a first-order autoregres-
sive demand process, AR(1). The authors show that the bullwhip effect is in
part due to the effects of demand forecasting. Therefore, given complete ac-
cess to customer demand information for each stage of the supply chain, the
bullwhip effect can be significantly reduced. However, they also show that
the bullwhip effect will exist even when demand information is shared by all
stages of the supply chain and all stages use the same forecasting technique
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and the same inventory policy. In similar work Chen et al. (2000b) quantify
the bullwhip effect considering this time the ES forecast and two different de-
mand processes: AR(1) demand process and a demand process with a linear
trend. In both works, the authors recognize an important limitation of their
results: the models considers only non-optimal forecasting methods. The
authors justify this limitation saying that ES and MA are commonly used
in practice. Users are in general less familiar and less satisfied with more
sophisticated methods like time series techniques.

Zhang (2004a) investigates the impact of MMSE, MA and ES forecasting
methods on the bullwhip effect for a simple inventory system in which AR(1)
demand process describes the customer demand and an Order-Up-To (OUT)
inventory policy is used. The study shows that different forecasting methods
lead to bullwhip effect measures with distinct properties in relation to lead-
time and the underlying parameters of the demand process. The author
shows that MMSE forecasting method leads to the lowest inventory cost.
This result is not surprising since MMSE method is optimal when the demand
model is known to be an AR(1) process. On the other hand, if the demand
structure is not well known, the MA or ES method may perform better than
the MMSE method because they are more flexible.

Another aspect studied in relation of the bullwhip effect is the demand
process. A variety of time-series demand models have appeared in the liter-
ature of inventory control and SCM. By far, the AR(1) process is the most
frequently adopted demand model to study the bullwhip effect (Chen et al.
(2000a,b), Lee et al. (1997a,b) and Zhang (2004a)). Recent works use more
sophisticated time series models like ARMA and ARIMA (Box and Jenkins,
1970) to have more realistic demand models. Luong and Phien (2007) use
an AR(2) and a general AR(p) model; Duc et al. (2008) use an ARMA(1,1)
model. In all these models an analytical derivation of the bullwhip effect
measure is presented and the effects of the autoregressive coefficient on the
bullwhip effect is investigated.

Zhang (2004b) uses an ARMA(p,q) model to study the demand evolu-
tion in supply chains. The author shows that the order history preserves
the autoregressive structure of the demand. Zhang’s work identifies an im-
portant application of this result relating to the quantification of the bull-
whip effect. In this paper, inspired by Zhang’s work, we study the the-
oretical and practical issues in order to measure the bullwhip effect for a
generalized demand process. In addition, we programmed a function in R
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(R Development Core Team, 2010), called SCperf1, which implements the
bullwhip effect and others supply chain performance variables. It is well
known that measuring the bullwhip effect is difficult in practice but the
SCperf function overcomes this problem thanks to the help of an R func-
tion (ARMAtoMA) which converts an ARMA process into an infinite moving
average process. As far as practical applications are concerned, the economic
implications of this phenomenon on the inventory cost have been considered.

Our contributions to this subject can be described as follows: first, this
study hopes to improve the understanding of time series techniques. Second,
we show that for certain types of demand processes the use of the opti-
mal forecasting procedure that minimizes the mean squared forecasting error
leads to significant reduction in the safety stock level. This highlights the
potential economic benefits resulting from the use of this time series analysis.
Finally, the SCperf function leads to a simple but powerful tool which can
be helpful for the study of this phenomenom and other supply chain research
problems.

The structure of our paper is as follows. The next section presents
the inventory model. Section 3 presents a general ARMA(p,q) case with
ARMA(1,1), MA(q), AR(p), AR(1) and AR(2) as particular cases. Next the
economic implications are shown. The final section summarizes the main
results of the research.

2. Inventory model

In this paper we consider a simple supply chain model for a single item
and an OUT inventory policy in which the retailer determines a target level
or OUT level and, for every review period, places an order sufficient to bring
the inventory position back to this level. As did Chen et al. (2000b), we
consider that the ordered quantity made in period t is received at the start
of period t + L where L is defined to be a fixed lead time plus the review
period, i.e., L is the lead time plus 1. For instance, in the case of zero lead
time, L = 1. Shortages are back-ordered and no fixed ordering cost exists.
In the remainder of the paper L will call the lead time. This choise is made
for sake of brevity, and should not create confusion.

The sequence of events during a replenishment cycle for each period t can
be described as follows: the retailer receives orders made L periods ago; the

1See the supplementary material
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demand dt is observed and satisfied; the retailer observes the new inventory
level and finally places an order Ot to the supplier. As a consequence of this
sequence of events, the ordered quantity can be written as:

Ot = St − St−1 + dt, (1)

where St represents the OUT level in period t, i.e., the inventory position at
the beginning of period t. Note that in the above expression, we have implic-
itly assumed that the order quantity can be negative, i.e., returning items
are allowed at no costs. This unpleasant feature is needed for tractability.
However, the free-return assumption becomes negligible when the demand
mean is sufficiently large. Further detail about this assumption can be found
in Lee et al. (2000) and Chen and Lee (2009).

Under the OUT policy, the OUT level St can be estimated from the
observed demand as:

St = D̂L
t + zσ̂L

t , (2)

where D̂L
t =

∑L

τ=1 d̂t+τ is an estimate of the mean demand over L periods
after period t, z is the safety factor which is a fixed constant chosen to meet

a required service level and σ̂L
t =

√

V ar(DL
t − D̂L

t ) is an estimate of the
standard deviation of L periods forecast error. An OUT policy of this form
is optimal when the demand came from a normal distribution and there is
no setup or fixed order cost.

As Chen et al. (2000b) mention, if the retailer follows an OUT policy
of the form St = DL + zσL, where DL is the known mean and σL is the
standard deviation of the demand over L periods, then the OUT level in any
period is constant and, consequently, the order is equal to the last observed
demand. Therefore, there is no bullwhip effect. However, these values are, in
general, unknown and the retailer must estimate them using some forecasting
technique. Note that the introduction of forecasting values in the calculation
of St is one of the main causes for the variability increase along the supply
chain or, in other words, the bullwhip effect.

The demand forecast is performed here by using the MMSE method.
It was shown that, for an ARMA process, the MMSE forecast for period
t + τ is the conditional mean given the observed information2. Let ̥t =

2Box and Jenkins, 1970, pp.128.
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{dt, dt−1, ....} be the information set which represents all the information
available until period t. Hence, the demand forecast for τ periods ahead is
given by E(dt+τ |̥t).

In order to quantify the bullwhip effect we combine (1) and (2) to rewrite
the order quantity as:

Ot = (D̂L
t − D̂L

t−1) + z(σ̂L
t − σ̂L

t−1) + dt. (3)

We show later in the paper (see Lemma A.1) that the standard deviation
of lead-time forecast error remains constant over time for an ARMA(p,q)
demand process. Hence, σ̂L

t = σ̂L
t−1 and the order quantity given in (3)

becomes

Ot = (D̂L
t − D̂L

t−1) + dt. (4)

Let M be the measure for the bullwhip effect. Since M can be obtained
from the ratio between the unconditional variance of the order process to
that of the demand process, we have

M =
V ar(Ot)

V ar(dt)
. (5)

Note that M is calculated by using the variances from both side of Equation
(4). The fact thatM = 1 means that there is no variance amplification, while
M > 1 means that the bullwhip effect is present. On the other hand, M < 1
means that the orders are smoothed if compared with the demand. The last
case is less common since it is unlikely to have a situation where stages up
the supply chain have a better representation of the customer demand than
the first stage (i.e., the retailer).

In what follows, the corresponding bullwhip effect measure is derived for a
general ARMA(p,q) demand process and some particular cases are discussed.
Since the calculation is complex, we cannot always express this measure in a
closed form. In this context, the SCperf function was developed to overcome
this computational difficulty.
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3. ARMA(p,q) case

The demand process, dt, seen by the retailer, is described by a stationary
ARMA(p,q) process as follows3:

dt = µ+ φ1dt−1 + · · ·+ φpdt−p + ǫt + θ1ǫt−1 + · · ·+ θqǫt−q, (6)

where µ is a nonnegative constant, ǫt is i.i.d. normally distributed, with
mean zero and variance σ2

ǫ , p is the autoregressive order of the process, q is
the moving average order of the process, φj is the autoregressive coefficient,
and θj denotes the moving average coefficient. It is often useful to express
(6) in terms of the lag operator, B, where Bkdt = dt−k. In order to do so, let
φ(B) = 1− φ1B − · · · − φpB

p and θ(B) = 1 + θ1B + · · ·+ θqB
q. Hence, the

demand process in (6) can be expressed as:

φ(B)dt = µ+ θ(B)ǫt,

where φ(B) and θ(B) are known as the autoregressive and the moving average
polynomials in the lag operator of degree p and q. If we substitute the lag
operator by a constant z, we get the characteristic equations:

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p

and
θ(z) = 1 + θ1z + θ2z

2 + · · ·+ θqz
q.

The process is called the autoregressive process of order p, AR(p), if θ(z) = 1
and a moving average process of order q, MA(q), if φ(z) = 1. We assume
that the process described in (6) is invertible and covariance stationary, i.e.,
the roots of the equations θ(z) = 0 and φ(z) = 0 must be outside the unit
circle. To avoid the problem of parameter redundancy, it is assumed that the
two characteristic equations share no common roots.

It is important to note that the constant z in the above equations is
different from the constant used to define the safety factor. We have chosen

3Our representation differs from some works where the MA model is written with
negative coefficients, i.e., dt = µ + φ1dt−1 + · · · + φpdt−p + ǫt − θ1ǫt−1 − · · · − θqǫt−q.
We chose this representation to be in accordance with the R software which was used to
implement the bullwhip effect.
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this notation to be in accordance with time series notation and we hope
that this will not cause any future confusion. Using stationarity and taken
expectations in (6) directly it can be found that the mean of ARMA(p,q)
demand process is defined by

µd =
µ

1− φ1 − · · · − φp

. (7)

It is known from time series theory that a stationary ARMA(p,q) demand
process under the above conditions can be written as an infinite moving
average process of its errors, MA(∞), that is,

dt = µd + Σ∞
j=0ψjǫt−j , (8)

where µd is defined as in Equation (7) and the sequence {ψj} in (8) is de-

termined by the relation ψ(z) =
∑∞

j=0 ψjz
j = θ(z)

φ(z)
, or equivalently by the

identity

(ψ0+ψ1z+ψ2z
2+· · · )(1−φ1z−φ2z

2−· · ·−φpz
p) = (1+θ1z+θ2z

2+· · ·+θqzq).
Equating coefficients of zj , j = 0, 1, ..., we find that

ψj =

p
∑

k=1

φkψj−k + θj for j ≥ 1, (9)

where θ0 = 1, θj = 0 for j > q, and ψj = 0 for j < 0. Note that equation (9)
is a recursive equation. Therefore, the ψ-weights satisfy the homogeneous
difference equation given by

ψj −
p
∑

k=1

φkψj−k = 0, j ≥ max(p, q + 1), (10)

with initial conditions given by equation (9). From homogeneous difference
equation theory the general solution for equation (10) can be read off directly
as:

ψj = c1z
−j
1 + · · ·+ crz

−j
p , (11)

where z1, .., zp are distinct roots of the polynomial φ(z) and ck, for k =
1, 2, ..., p are constants which depend on the initial conditions.4 Now, from

4In the case of the repeated root, the solution is different. See Shumway and Stoffer
(2006) for a brief and heuristic account of the topic. For details about homogeneous
difference equation theory the reader is referred to Mickens (1987).
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equation (8), the variance of the demand process can be expressed as:

σ2
d = σ2

ǫ

∞
∑

j=0

ψ2
j . (12)

It is important to note that the MA(∞) representation depends on an
infinite number of parameters and, consequently, it is not directly useful in
practical applications. On the other hand, Zhang (2004b), using theMA(∞)
representation, shows a property, called by the author ARMA-in-ARMA-out
(AIAO), which reveals that the order history preserves the autoregressive
structure of the demand and transforms its moving average structure accord-
ing to a simple algorithm5. As the author remarks, the practical value of
the AIAO property lies in its ability to make simpler the measuring of the
bullwhip effect.

Proposition 1. (Zhang, 2004b) The retailer’s demand process can be rep-
resented by an MA(∞) process with respect to the retailer’s full information
shocks ǫt, as in equation (8). Hence, the retailer’s order Ot to its supplier is
given by:

Ot = µd +

L
∑

j=0

ψjǫt +

∞
∑

j=1

ψL+jǫt−j (13)

where the ψj = 0 for j < 0, ψ0 = 1, and ψj =
∑p

k=1 φkψj−k + θj for j ≥ 1.

Proof. See Zhang (2004b). �

Proposition 2. For a stationary ARMA(p,q) demand process, the measure
for the bullwhip effect is defined by:

M = 1 +
2
∑L

i=0

∑L

j=i+1 ψiψj
∑∞

j=0 ψ
2
j

, (14)

where the ψj = 0 for j < 0, ψ0 = 1, and ψj =
∑p

k=1 φkψj−k + θj for j ≥ 1.

Proof. Taking the variance of the order quantity, Equation (13), we have
V ar(Ot) = σ2

ǫ (
∑L

j=0 ψj)
2+σ2

ǫ

∑∞

j=1 ψ
2
L+j = σ2

ǫ (
∑∞

j=0 ψ
2
j+2

∑L

i=0

∑L

j=i+1 ψiψj).
We complete the proof by substituting this result and (12) in (5). �

5Zhang 2004b, pp. 197
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Proposition 3. The bullwhip effect increases when the lead-time L increases
if and only if ψL+1

∑L

j=0 ψj > 0.

Proof. From equation (14), it is straightforward to see that the bullwhip
effect exists, i.e., M > 1, if and only if

∑L

i=0

∑L

j=i+1 ψiψj > 0. Let g(L) =
∑L

i=0

∑L

j=i+1 ψiψj and △g(L) = g(L+ 1)− g(L). Then

△g(L) =
∑L+1

i=0

∑L+1
j=i+1 ψiψj−

∑L

i=0

∑L

j=i+1 ψiψj = ψ0(
∑L+1

j=1 ψj−
∑L

j=1 ψj)+

· · ·+ ψL−1(
∑L+1

j=L ψj − ψL) + ψLψL+1 = ψL+1

∑L

j=0 ψj . Hence, △g(L) > 0 if

and only if ψL+1

∑L

j=0 ψj > 0. Hence, g(L) is a non-decreasing function of

the lead-time L if and only if ψL+1

∑L

j=0 ψj > 0. �

3.1. ARMA(1,1) case
The stationary ARMA(1,1) demand process is described as follow:

dt = µ+ φdt−1 + ǫt + θǫt−1. (15)

Stationarity and invertible conditions impose |φ| < 1 and |θ| < 1. It can be
shown that the mean and variance of the demand process are µd =

µ

1−φ1

and

σ2
d = (1+θ2+2φθ)σ2

ǫ

1−φ2 , respectively.

Proposition 4. For a stationary ARMA(1,1) demand process the measure
for the bullwhip effect is defined by:

M(L, φ, θ) = 1 +
2(φ+ θ)(1− φL)

(1− φ)(1 + θ2 + 2φθ)

[

1− φL+1 + θφ(1− φL−1)
]

. (16)

Proof. Since the AR polynomial associated with (15) is φ(z) = 1−φz, and
its root, say z1, is z1 = φ−1, then the general solution for the ψ-weights can
be written directly from equation (11) as ψj = cφj. From (9) we find that
the initial conditions are ψ0 = 1 and ψ1 = φ + θ, which combining with the
general solution, results in c = (φ+ θ)/φ. Hence, ψj = (φ+ θ)φj−1 for j ≥ 1.
Since we know ψj , we can rewrite the follow relations as:

L
∑

i=0

L
∑

j=i+1

ψiψj = ψ0

L
∑

j=1

ψj +

L
∑

i=1

L
∑

j=i+1

ψiψj

= (φ+ θ)
1− φL

1− φ
+
φ(φ+ θ)2(1− φL)(1− φL−1)

(1− φ)(1− φ2)

=
(φ+ θ)(1− φL)

(1− φ)(1− φ2)

[

1− φL+1 + θφ(1− φL−1)
]

10



Figure 1: Bullwhip generated with ARMA(1,1) demand process when L=1

and
∞
∑

j=0

ψ2
j =

1 + θ2 + 2φθ

1− φ2
.

Substituting the two above results in equation (14) we complete the proof. �
Using a generalized formula for the variance ratio, we get a similar expression
to that obtained by Duc et al. (2008). There are two other results found by
the above authors which are easily verified.

Proposition 5. The bullwhip effect exists, i.e, M(L, φ, θ) > 1, if and only
if, φ+ θ > 0.

Proof. Duc et al. 2008, pp. 248-249. �
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Proposition 6. The bullwhip effect, measured by M(L, φ, θ), has the follow-
ing properties.

(a) If φ > 0, the bullwhip effect increases as L increases.
(b) If −θ < φ < 0 and L is an odd number, the larger L is, the smaller

the bullwhip effect is.
(c) If −θ < φ < 0 and L is an even number, the larger L is, the larger

the bullwhip effect is.

Proof. Duc et al. 2008, pp. 249. �

In conclusion the bullwhip effect occurs only when the sum of the AR
parameter and the MA parameter is larger than zero ( See Figure 1) and it
does not always increase when the lead time L increases. In fact, if φ+ θ > 0
and φ > 0 the bullwhip effect increases when the lead-time increase. However,
if −θ < φ < 0 and L is an odd number, the bullwhip effect becomes smaller
as L becomes larger; if −θ < φ < 0 and L is an even number, the bullwhip
effect becomes larger as L becomes larger. Figure 2 represents situations
where these facts are observed.

3.2. MA(q) case

The MA(q) demand process can be written as

dt = µ+

q
∑

j=0

θjǫt−j = µ+ (1 + θ1B + · · ·+ θqB
q)ǫt = µ+ θ(B)ǫt.

Since θ(B) is finite, no restrictions on the MA parameters are needed to
ensure stationarity. Considering q → ∞ the infinite MA representation is
written as:

dt = µd +
∞
∑

j=0

ψjǫt−j ,

where ψj = θj for j = 0, 1, .., q and ψj = 0 for j > q. It can be easily seen
that µd = µ and σ2

d = (1+θ21+ · · ·+θ2q)σ2
ǫ . Since the above demand process is

i.i.d. the OUT level, St, is constant across all periods. Hence, from Equation
(1), Ot = dt, consequently, the bullwhip ratio equals one.
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Figure 2: Effect of the AR coefficient on BE for different values of theta

3.3. AR(p) case

The stationary AR(p) demand process is described as follow:

dt = µ+ φ1dt−1 + · · ·+ φpdt−p + ǫt

Assume that the AR parameters are such that {dt} is stationary. It is
straightforward to verify that the MA(∞) representation is

dt = µd + ψ(B)ǫt,

where µd is defined as in (7) and ψ(B) = φ−1(B). The ψ-weights in the
MA(∞) representation of dt are found directly from (11) and it can be shown
that the constants are expressed by:

ci =
zp−1
i

∏p

k=1k 6=i(zi − zk)
, (17)
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where the constants terms ci sum to the unity, c1+ · · ·+cp = 1, see Hamilton
1994, pp. 33-36, for details.

3.4. AR(1) case

The stationary AR(1) demand process is described as follows:

dt = µ+ φdt−1 + ǫt. (18)

Stationarity condition imposes |φ| < 1. Using stationarity it can be shown

that the mean and the variance of the process are µd =
µ

1−φ1

and σ2
d = σ2

ǫ

1−φ2

1

,

respectively.

Proposition 7. For a stationary AR(1) demand process the measure for the
bullwhip effect is defined by:

M(L, φ) = 1 +
2φ(1− φL)(1− φL+1)

1− φ
(19)

Proof. As in the ARMA(1,1) case, the AR polynomial associated with (18)
is φ(z) = 1 − φz, and the root, say, z1, is z1 = φ−1. Using (11) the general
solution is ψj = c(z1)

−j = cφj
1 with ψ0 = 1 and ψ1 = φ as initial conditions.

Combining the general solution with the initial conditions we find ψj = φj .
Since ψj = φj , Equation (14) can be expressed as:

M(L, φ) = 1 +
2
∑L

i=0

∑L

j=i+1 φ
iφj

∑∞
j=0 φ

2j
, (20)

where

L
∑

i=0

L
∑

j=i+1

φiφj =

L
∑

i=0

L−i−1
∑

k=0

φiφk+i+1 =
φ

1− φ

L
∑

i=0

φ2i(1− φL−i)

=
φ

1− φ

[

1− φ2(L+1)

1− φ2
− φL(1− φL+1)

1− φ

]

=
φ

1− φ

[

(1− φL)(1− φL+1)

1− φ2

]

and
∑∞

j=0 φ
2j = 1

1−φ2 . Substituting the two above results in (20) complete
the proof. �
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Figure 3: Relationship between the bullwhip effect and demand autocorrelation

Proposition 8. For a stationary AR(1) demand process the bullwhip effect,
measured by Equation (19), has the following properties:

(a) The bullwhip effect exists, i.e, M(L, φ) > 1, if and only if φ > 0.
(b) For φ > 0, a longer lead-time leads to a more significant bullwhip

effect.

Proof. Since 1 − φ > 0, 1 − φL > 0 and 1 − φL+1 > 0 for |φ| < 1,
it is straightforward to see that M(L, φ) > 1, if and only if φ > 0. Let
f(L, φ) = φ(1 − φL)(1 − φL+1) and △f(L) ≡ f(L + 1, φ) − f(L, φ). Then,
△f(L) = (1 − φ2)(1 − φL+1)φL+1. It can be easily seen that △f(L) is an
increasing function with respect to L since φ > 0. Hence, the bullwhip effect,
i.e, M(L, φ), increases as L increases since φ > 0. �

Figure 3 depicts how the bullwhip effect generated by AR(1) demand process
increases for different lead-time values, L = 1, ..., 6. We can observe that the
increase of the lead-time has a strong impact on the bullwhip effect when
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φ > 0.5 and a less significant one when φ is positive and near zero and one.
Therefore, as it was already noted by Zhang (2004a), reduction on the lead-
time can reduce the bullwhip effect if the demand autocorrelation is positive
and away from zero and unity in the case of AR(1) demand process.

3.5. AR(2) case

The stationary AR(2) demand process satisfies:

dt = µ+ φ1dt−1 + φ2dt−2 + ǫt (21)

In the AR(2) case, stationarity implies that the roots of φ(z) = 0 lie outside
the unit circle or, equivalently, the parameters φ1 and φ2 must lie in the
triangular region restricted by φ1 + φ2 < 1, φ2 − φ1 < 1 and |φ2| < 1. It can
be shown that for a stationary AR(2) demand process the mean and variance

of the demand are µ

1−φ1−φ2

and (1−φ2)σ2
ǫ

(1+φ2)[(1−φ2)2−φ2

1
]
, respectively.

Proposition 9. Let z1 and z2 be the solutions for the characteristic equation
defined by the AR(2) process. For a stationary AR(2) demand process the
ψ-weights are defined by:

ψj =
z1+j
2 − z1+j

1

z1z2(z2 − z1)

Proof. From Equation (10), the general solution for ψj-weights for an
AR(2) process is described by:

ψj = c1(z1)
−j + c2(z2)

−j (22)

where

z1 =
−φ1 +

√

φ2
1 + 4φ2

2φ2

, (23)

and

z2 =
−φ1 −

√

φ2
1 + 4φ2

2φ2

(24)

are the solutions for the characteristic equation 1− φ1z − φ2z
2 = 0. On the

other hand, from Equation (17), the values of the constants are given by:

c1 =
z−1
1

z−1
1 − z−1

2

(25)
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and

c2 = − z−1
2

z−1
1 − z−1

2

(26)

Finally by replacing (23), (24), (25) and (26) in (22) we find the result. �

Note that the solution for the ψj-weights are a function of the roots of the
AR polynomial. In the AR(2) case, the roots can be real if φ2

1 + 4φ2 > 0,
or complex if φ2

1 + 4φ2 < 0. In both cases, from a computational point of
view, the solution for the ψj-weights can be found and, therefore, we can get
a measure for the bullwhip effect. Since an explicit form for the measure for
the bullwhip effect is difficult to obtain, we investigated the relation of the
autoregressive coefficients and lead-time by numerical experimentation. For
an analytical derivation the reader is referred to Luong and Phien (2007).

When φ1 < 0, the bullwhip effect does not exist for φ2 ≤ 0 and for φ2 > 0,
φ2 − φ1 < 1. On the other hand, when φ1 > 0 the bullwhip effect always
exists for φ2 > 0, φ1 + φ2 < 1 and for φ2 < 0, φ1 + φ2 < 1. The pattern
shown when the lead-time is equal to one does not seem to be the same when
the lead-time increases. Using the function SCperf, it can be verified that
the there is no bullwhip effect when φ1 < 0 and φ2 ≤ 0 and always does
when φ1 > 0, φ2 > 0 and φ1 + φ2 < 1. In the last case, we observe that the
bullwhip effect increases when the lead-time L increases, see Table 1.

Table 1 also shows that there is no clear relation between the autoregres-
sive parameters and the bullwhip effect when they have different signs. In
these situations the bullwhip effect may or may not exist depending on the
values of φ1, φ2 and L, and it does not always increase when lead-time in-
creases. These remarks confirm the results pointed out by Luong and Phien
(2007).

In conclusion, when both first-order and second-order AR parameters are
positive, the bullwhip effect exists and it increases as lead-time goes up.
However, when the AR parameters have different signs the behaviour of the
bullwhip effect is not clear. The bullwhip effect does not always exist and
it is not always correct that the bullwhip effect necessarily increases when
lead-time increases.

4. Economic implications

An important economic application of the use of time series methods can
be seen in the safety stock level, which is the amount of inventory that the
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Table 1: Bullwhip effect generated for different AR(2) demand pro-
cess.*

L AR(c(-0.2,0.7)) AR(c(0.6,-0.4)) AR(c(0.7,0.2))

1 0.886667 1.822857 1.315000
2 1.222133 1.735086 1.842850
3 0.970805 1.170277 2.512887
4 1.379174 0.917179 3.291280
5 1.051166 0.949074 4.141105
6 1.450366 1.060235 5.035836
7 1.097494 1.117111 5.953552
8 1.464249 1.103809 6.877221
9 1.117408 1.072652 7.793541
10 1.447477 1.059437 8.692330

* SL=0.95

retailer needs to keep in order to protect himself against deviations from
average demand during lead time.

Let SS = zσd
√
L and SSLT = zσ̂L

t be two safety stock measures. The
former is traditionally used in some operational research manuals and it is
based on the standard deviation of the demand over L periods, the latter is
the safety stock as defined in (2) and it is based on the standard deviation
of L periods forecast error.

Chen et al. 2000b, pp. 271, pointed out that SSLT will be greater than
SS, i.e., using time series analysis, the retailer will hold more safety stock to
achieve the same service level. According to the authors this is because SS
captures only the uncertainty due to the random error ǫ and SSLT captures
this uncertainty plus the uncertainty due to the fact that the mean demand
DL

t is estimated by D̂L
t , in our case using the MMSE forecasting method. We

show by numerical experiments that for some special cases SSLT is lower
than SS regarding lead-time and service level.

Using the SCperf function, it was verified that for ARMA and AR cases,
high values on AR parameters and small values of lead-time result in lower
SSLT . However, in general, there is a lead-time value for which this situation
is reversed. Table 2 shows the safety stock levels SS and SSLT generated
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Table 2: Bullwhip, SS and SSLT generated
by ARMA(0.95,0.4) demand process.*

L Bullwhip SS SSLT

1 1.13711 7.299 1.645
2 1.44321 10.323 4.201
3 1.89270 12.643 7.304
4 2.46294 14.598 10.817
5 3.13393 16.322 14.652
6 3.88802 17.879 18.745
7 4.70970 19.312 23.048
8 5.58531 20.645 27.522
9 6.50289 21.898 32.137
10 7.45199 23.082 36.867

* SCperf(0.95,0.4,L,0.95)

by ARMA(0.95, 0.4) demand process and service level equal to 0.95 for ten
different values of lead-time, L = 1, .., 10. For instance, for L = 2 we have
SS = 10.3 and SSLT = 4.2, a difference of 6 units which represents a saving
of 59.2% over SS. Note that this difference decreases when the lead-time
increases until L = 6 where we have SSLT larger than SS.

It is difficult to know for which value of lead-time SSLT becomes larger
than SS. In general, it depends on the AR parameters of the demand. For
negative values of the AR parameters, it occurs for lower values of lead-time.
Nevertheless, for the AR(2) case the AR parameters present a more complex
relation with the performance of the SSLT. When the first-order and second-
order AR parameters are positive, the pattern is the same as the AR and
ARMA case, that is, SSLT becomes larger than SS for high values of lead-
time. Moreover, when the first-order and second-order AR parameters have
different signs, it is difficult to determine when the SSLT is better than SS
as a measure for the safety stock level.

Table 2 shows that there is a benefit resulting from the use of SSLT
instead of SS as a measure for the safety stock level when regarding the lead-
time. This benefit was verified for special demand processes where the AR
parameters are high. Moreover, if for those lead-time values where SSLT
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Table 3: SS and SSLT generated by different demand processes

Models Service Level L=1 L=2 L=3
SL SS SSLT SS SSLT SS SSLT
0.90 5.687 1.282 8.043 3.273 9.850 5.691
0.91 5.950 1.341 8.414 3.424 10.305 5.954
0.92 6.235 1.405 8.818 3.588 10.800 6.239
0.93 6.549 1.476 9.262 3.769 11.343 6.553
0.94 6.899 1.555 9.757 3.971 11.950 6.904

ARMA(0.95, 0.4) 0.95 7.299 1.645 10.323 4.201 12.643 7.304
0.96 7.769 1.751 10.987 4.471 13.456 7.774
0.97 8.346 1.881 11.803 4.803 14.456 8.352
0.98 9.114 2.054 12.889 5.245 15.785 9.120
0.99 10.323 2.326 14.599 5.941 17.881 10.330

is smaller than SS, we consider the service level, it is verified that SSLT is
always smaller than SS when the service level increases.

Table 3 presents SSLT and SS generated by the same demand process for
L = 1, 2, 3 and ten different values of service level, SL = 0.9, 0.91, ..., 0.99.
Note that when considering the service level, the difference between SS and
SSLT increases for larger values of service level differently when lead-time is
regarded. For instance, for L = 1 and SL = 0.97 we have SS = 8.35 and
SSLT = 1.88. There is a difference of 6.47 units which represents a saving
of 77.46% over SS.

All of these facts suggest that there is a potential benefit resulting from
the use of time series analysis when regarding the lead-time for some demand
processes and, in this context, the benefit is even greater when the service
level is considered. On the other hand, the relationship between the bullwhip
effect measure and the safety stock level is more complex. Although Table
2 shows a positive relation between the bullwhip effect and the safety stock
level, this relationship is not completely clear as can be seen using the SCperf
function for the AR(2) case when φ1 = −0.2 and φ2 = 0.7.

In conclusion, when inventory cost and service level are of primary concern
the MMSE forecast should be used since it leads in some cases to lowest safety
stock level. Although the MMSE forecasting requires more computational
effort, the SCperf function implements this method in an easy way.
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5. Summary

In this paper we quantify the bullwhip effect using Zhang’s result for
a stationary ARMA(p,q) demand process which admits an MA(∞) repre-
sentation. It is well known that measuring the bullwhip effect is difficult
in practice. We show that using a generalized form of this measure, the
computation of this ratio is simplified if compared with traditional recursive
procedures. In some particular cases we obtain explicit formulas for this
ratio.

The SCperf function was programmed in R which implements the bull-
whip effect. We have evidenced that the use of this function makes possible
accurate estimations of the bullwhip effect and other supply chain perfor-
mance variables. We point out that no approximation is required. Moreover,
we show that for certain types of demand processes the use of MMSE con-
sidered in the model leads to a significant reduction in the safety stock level
regarding lead-time and service level. All of these observations highlight the
potential economic benefits resulting from the use of time series analysis but
it depends on the underlying demand process. For instance, if we consider
an ARMA(1,1) demand processes with a high AR parameter, the use of time
series techniques leads to a significant reduction in the safety stock level but
this is not the case when a low AR parameter is considered.

The SCperf function leads to a simple but powerful tool which gives exact
analytical solutions to a set of supply chain equations, opening up a whole
new range of research opportunities. Moreover, since the function presented
in this paper is easy to use, it might be used to complement other managerial
decision support tools. Finally, the code is given, which makes, together with
the fact that R is freeware, the whole research reproducible by everyone. It
may also be modified for specific tasks.
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Appendix A.

Lemma 1. For a stationary ARMA(p,q) demand process, the variance of
forecasting error for the lead-time demand remains constant over time and
is given by:

(σ̂L
t )

2 = V ar(DL
t − D̂L

t ) =

[

1 + (

1
∑

j=0

ψj)
2 + · · ·+ (

L−1
∑

j=0

ψj)
2

]

σ2
ǫ (A.1)

where ψj satisfy (9) and (10) and is given by (11).

Proof. SinceDL
t =

∑L

τ=1 dt+τ , D̂
L
t =

∑L

τ=1 d̂t+τ with τ = 1, .., L and d̂t+τ =
E(dt+τ |̥t) = µd +

∑∞
j=τ ψjǫt+τ−j , the variance for the lead-time demand

forecast error is

(σ̂L
t )

2 = V ar[DL
t − D̂L

t ] = V ar

[

L
∑

τ=1

(

dt+τ − d̂t+τ

)

]

= V ar

[

L
∑

τ=1

(

∞
∑

j=0

ψjǫt+τ−j −
∞
∑

j=τ

ψjǫt+τ−j

)]

= V ar

[

L
∑

τ=1

τ−1
∑

j=0

ψjǫt+τ−j

]

.

By expanding the above double sum and combining the same error terms, it
follows that:

L
∑

τ=1

τ−1
∑

j=0

ψjǫt+τ−j = ψ0ǫt+L +
1
∑

j=0

ψjǫt+L−1 + · · ·+
L−1
∑

j=0

ψjǫt+1

The independence of future error terms leads to the variance formula for
lead-time demand forecast. �
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