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Abstract: The simplified Lennard-Jones (LJ) potential minimization problem is

minimize f(x) = 4
N
∑

i=1

N
∑

j=1,j<i

(

1

τ6ij
−

1

τ3ij

)

subject to x ∈ R
n,

where τij = (x3i−2−x3j−2)
2+(x3i−1−x3j−1)

2+(x3i−x3j)
2, (x3i−2, x3i−1, x3i) is the co-

ordinates of atom i in R
3, i, j = 1, 2, . . . , N(≥ 2 integer), n = 3N and N is the whole

number of atoms. The nonconvexity of the objective function and the huge number
of local minima, which is growing exponentially with N , interest many mathematical
optimization experts. The global minimizer should be just at the point of the bottom
of the LJ potential well. Based on this point, this paper tackles this problem illumi-
nated by amyloid fibril molecular model building. The 3nhc.pdb, 3nve.pdb, 3nvf.pdb,
3nvg.pdb and 3nvh.pdb of PDB bank are used for the successful molecular modeling.
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1 At the Bottom of the L-J Potential Well

Neutral atoms are subject to two distinct forces in the limit of large distance and short
distance: a dispersion force (i.e. attractive van der Waals (vdw) force) at long ranges,
and a repulsion force, the result of overlapping electron orbitals. The Lennard-Jones (L-
J) potential represents this behavior (http://en.wikipedia.org/wiki/Lennard-Jones potential,
or [Locatelli and Schoen 2008] and references therein). The L-J potential is of the form

V (r) = 4ε
[

(
σ

r
)12 − (

σ

r
)6
]

, (1)

where r is the distance between two atoms, ε is the depth of the potential well and σ
is the atom diameter; these parameters can be fitted to reproduce experimental data
or deduced from results of accurate quantum chemistry calculations. The (σr )

12 term
describes repulsion and the (σr )

6 term describes attraction (Fig. 1). In Fig. 1 we may
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Figure 1: The Lennard-Jone Potential (formulas (1) and (7)) (This Figure can be found
in website http://homepage.mac.com/swain/CMC/DDResources/mol interactions/molecular interactions.html

).

see two points: (I) V (r) = 0 (but the value of V (r) is not the minimal value) when
r = σ (i.e. the distance between two atoms equals to the sum of atom radii of the
atoms); and (II) when r = 21/6σ (i.e. the distance between two atoms equals to the
sum of vdw radii of the atoms), the value of V (r) reaches its minimal value −ε (i.e.
the bottom of the potential well; the force between the atoms is zero at this point).
This paper is written based on (II). If we introduce the coordinates of the atoms whose
number is denoted by N and let ε = σ = 1 be the reduced units, the form (1) becomes

f(x) = 4

N
∑

i=1

N
∑

j=1,j<i

(

1

τ6ij
−

1

τ3ij

)

, (2)

where τij = (x3i−2 − x3j−2)
2 + (x3i−1 − x3j−1)

2 + (x3i − x3j)
2 = ||Xi − Xj ||

2
2 and

(x3i−2, x3i−1, x3i) is the coordinates of atom i, i, j = 1, 2, . . . , N(≥ 2). The minimization
of L-J potential f(x) on R

n (where n = 3N) is an optimization problem:

min
s.t.x∈R3N

f(x). (3)

For (3), when its global optimization solution is reached, the value r in (1) should be
the sum of two vdw radii of the two atoms interacted. The three dimensional structure of
a molecule with N atoms can be described by specifying the 3-Dimensional coordinate
positions X1,X2, . . . ,XN ∈ R

3 of all its atoms. Given bond lengths rij between a
subset S of the atom pairs, the determination of the molecular structure is

(P0) to find X1,X2, . . . ,XN s.t. ||Xi −Xj || = rij , (i, j) ∈ S, (4)
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where || · || denotes a norm in a real vector space and it is calculated as the Euclidean
distance 2-norm in this paper. (4) can be reformulated as a mathematical global opti-
mization problem (GOP)

(P) minP (X) =
∑

(i,j)∈S wij(||Xi −Xj ||
2 − r2ij)

2 (5)

in the terms of finding the global minimum of the function P (X), where wij , (i, j) ∈ S
are positive weights, X = (X1,X2, . . . ,XN )T ∈ R

N×3 [More et al. 1997] and usually S
has many fewer than N2/2 elements due to the error in the theoretical or experimen-
tal data [Zou et al. 1997, Grosso et al. 2009]. There may even not exist any solution
X1,X2, . . . ,XN to satisfy the distance constraints in (4), for example when data for
atoms i, j, k ∈ S violate the triangle inequality; in this case, we may add a perturbation
term −εTX to P (X):

(Pε) minPε(X) =
∑

(i,j)∈S wij(||Xi −Xj ||
2 − r2ij)

2 − εTX, (6)

where ε ≥ 0. Thus, the L-J potential optimization problem (3) is rewritten into the
optimization problem (6). In this paper we elegantly solve 6 (thus solve (3)) illuminated
by the prion AGAAAAGA amyloid fibril molecular modeling.

2 L-J Potential in Prion AGAAAAGA Amyloid Fibril

Molecular Modelling

In 2007, Sawaya et al. got a breakthrough finding: the atomic structures of all amyloid
fibrils revealed steric zippers, with strong vdw interactions (LJ) between β-sheets and
hydrogen bonds (HBs) to maintain the β-strands [Sawaya et al. 2007]. Similarly as (1),
i.e. the potential energy for the vdw interactions (Fig. 1) between β-sheets:

VLJ(r) =
A

r12
−

B

r6
, (7)

the potential energy for the HBs between the β-strands has a similar formula

VHB(r) =
C

r12
−

D

r10
, (8)

where A,B,C,D are constants given. Thus, the amyloid fibril molecular model build-
ing problem is reduced to well solve the optimization problem (3) or (6).

In this section, we will use suitable templates 3nvf.pdb, 3nvg.pdb and 3nvh.pdb
from the Protein Data Bank (http://www.rcsb.org/) to build some amyloid fibril mod-
els. The models were built by the mutations in the use of SPDBV.4.01.PC (which make
all the vdw contacts between the two β-sheets are very far), any Optimization Solver
(which will remove the bad vdw/HB contacts) and Optimization program of Amber 11
(which furthermore refines the models and removes all the bad contacts and relax the
models into a perfect way).
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The amyloid fibril models of prion AGAAAAGA segment lastly refined by Amber
11 are illuminated in Fig.s 2-6. All these models are without any bad contact now
(checked by package Swiss-PdbViewer), and the vdw interactions between the two β-
sheets are in a very perfect way now. All the initial structures after SPDBV.01.PC

Figure 2: Perfect 3nhc-Models 1-3 (from left to right respectively) for prion
AGAAAAGA segment 113-120.

Figure 3: Perfect 3nve-Models 1-3 (from left to right respectively) for prion
AGAAAAGA segment 113-120.

Figure 4: Perfect 3nvf-Models 1-3 (from left to right respectively) for prion
AGAAAAGA segment 113-120.

mutations have very far vdw contacts between the two β-sheets. Now the vdw contacts
come closer and reach a state with the lowest potential energy, which has perfect vdw
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Figure 5: Perfect 3nvg-Models 1-3 (from left to right respectively) for prion
AGAAAAGA segment 113-120.

Figure 6: Perfect 3nvh-Models 1-2 (from left to right respectively) for prion
AGAAAAGA segment 113-120.

contacts as shown in Fig.s 4-6.
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