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Abstract

We derive the Poincaré model of the Lobachevsky geometry from the Fer-
mat principle. The Lobachevsky geometry is in relativity interpreted as the
Lobachevsky-Beltrami-Fok velocity space geometry of moving particles. The re-
lation of this geometry to the decay of the neutral π-meson is considered. The
generalization of the Lobachevsky geometry is performed and the new angle of
parallelism is derived. Then, we determine nonlinear transformations between co-
ordinate systems which are mutually in a constant symmetrical accelerated motion.
The maximal acceleration limit follows from the kinematic origin. Maximal accel-
eration is an analogue of the maximal velocity in special relativity. We derive the
dependence of mass, length, time, Doppler effect, on acceleration as an analogue
phenomena in special theory of relativity. Next we apply the derived nonlinear
Lorentz group to the so called Thomas precession. The total quantum energy loss
of binary is caused by the production of gravitons emitted by the rotation motion of
binary. We have calculated it in the framework of the Schwinger theory of gravity
for the situation where the gravitational propagator involves radiative corrections.
We also derive the finite-temperature gravitational Cherenkov radiation involving
radiative corrections. The graviton action in vacuum is generalized for the medium
with the constant gravitational index of refraction. From this generalized action
the power spectral formula of the Cherenkov radiation of gravitons is derived in
the framework of the Schwinger theory at zero and nonzero temperature. The next
text deals with non-relativistic quantum energy shift of H-atom electrons due to
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Gibbons-Hawking thermal bath. The seventh chapter deals with gravity as the
deformation of the space time and it involves the light deflection by the screw dislo-
cation. In conclusion, we consider the scientific and technological meaning and the
perspectives of the results derived. Some parts of the complex was published in the
reputable journals.

Key words: Geometry, the Fermat principle, light ray trajectories,
optics, the Poincaré model of the Lobachevsky geometry, Beltrami model,
Lobachevsky-Fok geometry, generalized Lobachevsky geometry, optical
black hole, mass shift, Thomas precession, Binary, gravitons, energy shift,
deformation, dislocations.

PREFACE

The discovery of Lobachevsky had a great impact on the development
of various parts of mathematics. The Lobachevsky discovery permeates
throughout the Poincaré and Beltrami entire remarkable creation.

The Euclid geometry is based on the five postulates, which are in
contemporary language in the following form.

1. Each pair of points can be joined by one and only one straight line
segment.

2. Any straight line segment can be indefinitely extended in either
direction.

3. There is exactly one circle of any given radius with any given center.
4. All right angles are congruent to one another.
5. If a straight line falling on two straight lines makes the interior

angles on the same side less than two right angles, the two straight lines, if
extended indefinitely, meet on that side on which the angles are less than
two right angles.

The fifth postulate can easily be seen to be equivalent to the following
parallel postulate. ”Given a line and a point not on it, there is exactly one
line going through the given point that is parallel to the given line”.

For two thousand years mathematicians attempted to deduce the fifth
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postulate of the Euclid geometry from the four simpler postulates. In each
case one reduced the proof of the fifth postulate to the conjunction of the
first four postulates forming in a such way the geometrical theorem and
not axion.

They tried to prove fifth postulate by reductio ad absurdum taking the
negation of fifth postulate as a hypothesis and to get a contradiction with
the rest of the axioms. However the desired contradiction did not show up.
Some people including Gauss, Bolyai and Lobachevsky guessed that the
specific negation of the fifth postulate opens a door into a vast unexplored
territory rather then leads to the expected dead line. Lobachevsky was
the first one who shared this opinion with public and explored some
parts of the new geometry which he called imaginary geometry (IG).
However, the components remained highly speculative until Beltrami in
1868 found some models of the Lobachevsky geometry, which proved that
the Lobachevsky geometry is consistent and so can be treated on equal
footing with Euclidean one. Finally Hilbert in 1899 put things in order
by modernising Euclidean axiomatic method and clarifying the logical
structure of non-Euclidean geometries.

The starting point was the analytical statement that basic terms, such as
”point”, ”line” and ”plane” are undefined and could just as well be replaced
with other terms without affecting the validity of results. Despite this
change in terms, the proof of all four theorems would still be valid, because
correct proofs do not depend on diagrams; they depend only on stated
axioms and the rules of logic. Thus, geometry is a purely formal exercise in
deducing certain conclusions from certain formal premises. Mathematics
makes statements of the form ”if ... then”. And according to Bertrand
Russell philosophy of mathematics, every mathematical statement is non-
existential. Or, it does not say anything about the physical meaning, or,
physical truthfulness of the statement.

Lobachevsky was one who deserted geometrical reasoning from intuition
and spatial experience, stopped asking whether or not usual axioms of
geometry are true and came to the notion of mathematics as playing with
axioms. Why Lobachevsky and not others? The obvious reason for it is
that fifth postulate looked for others dubious to begin with.

However, it may be easy to see that we are able to construct the Eu-
clidean geometry using the alternative approach. Namely, from definition
of an area and a volume. We know, that the point A and B can be joined
by the infinite number of lines going from A to B. However, there is the
shortest distance between A and B forming the segment of the straight
line going from A to B. The segment AB of a straight line can be prolon-
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gated in the direction AB, or BA in order to generate the straight line.
The prolongation can be easily performed by the following construction. If
point C is a such point that it does not lie on the segment AB, then if we
define AB = c, BC = a, CA = b, then the area P of the triangle ABC is
given by the Heron formula

P =
√
s(s− a)(s− b)(s− c) s =

1

2
(a+ b+ c). (1)

The segment of a straight line is a triangle with zero area. If P = 0, then
point C lies between A and B, or, on the prolongation of AB. If P ̸= 0,
the point C does not lies on the prolongation of AB. The prolongation can
be repeated infinite times to create the straight line. The Euclid plane is
formed by three points. It means, if the point C is not on the prolongation
of line AB, then ABC is an triangle and triangle is the element of Euclid
plane. The Euclidean sheet constructed in such a way is the mathematical
object composed from infinite number of triangles. In other words, the
Euclidean plane can be constructed by the triangulation. Adding the point
D to the system of ABC we get tetrahedron with triangles sides dik and
then it is valid the following Theorem: The volume of the tetrahedron
ABCD is given by the Euler formula:

288V 2
E =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 d12 d13 d14
1 d21 0 d23 d24
1 d31 d32 0 d34
1 d41 d42 d43 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2)

where

dik = (xi − xk)2 + (yi − yk)2 + (zi − zk)2, (3)

where xi, yi, zi are Cartesian coordinates of point with index i = 1, 2, 3,
4. Then, if a point D is placed in the space in such a way that VE = 0
then point D lies in the plane ABC. At the same time, it is possible
to construct all points of the Euclid plane using the Euler formula with
VE = 0. If point D has a such position with regard to triangle that
VE ̸= 0, then point D belongs to the 3-dimensional space. We can see that
using the above operations, we can construct total Euclidean geometry,
where the Lobachevsky definitions cannot be involved in the system of our
construction elements. The Poincaré invention is only the model of the
Lobachevsky geometry in the half plane.
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At present time we know, that we have three geometries. Namely:
Euclidean one, where the sum of the angles in a triangle is 2π, spherical
geometry, where the sum of the angles in triangle is greater than 2π and
the geometry of the pseudosphere (i.e. the surface with the Lobachevsky
geometry) with the sum of the angles in the triangle on such psedosphere
is less than 2π.

The area of the triangle in the Lobachevsky geometry is

S = r2(π − α− β − γ), (4)

where r is the radius of a sphere and formula (4) follows from the the
spherical triangle area S = r2(α + β + γ − π), after application of the
Beltrami operation r −→ ir.

From the formula (3) it is evident that in the Lobachevsky geometry sim-
ilar triangles do not exist. Now we can put a question, if the Lobachevsky
geometry is the physical one, or, if it is only mathematical construct with-
out physical meaning. We show later that there is the physical meaning of
the Lobachevsky geometry with the experimental consequences.

By discovering the group of transformations not altering the Maxwell-
Lorentz equations, Poincaré introduced the notion of four-dimensional
space-time exhibiting pseudo-Euclidean geometry. This concept of geome-
try was later developed by Minkowski with the line element.

ds2 = (dx0)
2 − (dx1)

2 − (dx2)
2 − (dx3)

2. (5)

This element is the basic mathematical object of the special theory
of relativity with postulates: 1) Principle of constant light velocity, 2)
Maxwell equations, 3) Invariance of physical laws in inertial systems.

In case of noninertial systems the principle 1) cannot be accepted.
Mandelstam wrote in his book (Mandelstam, 1972): ... ”special relativity
theory cannot answer the question, how a clock behaves when moving with
acceleration and why it slows down, because it does not deal with reference
systems moving with acceleration”.

According to Einstein - within the framework of special relativity theory
there is no place for a satisfactory theory of gravity. Free motion of a test
body in an arbitrary reference system takes place along a geodesic line of
Minkowski space. So, there is no force in Einstein theory and if we want
to accept the notion of force, then we must deduce this phenomenon from
the Einstein theory.

In the article Geometry and experiment, Einstein wrote: ”The issue
of whether this continuum has an Euclidean, Riemannian, or, any other
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structure is a physical issue, which can only be settled by experiment, and
not an issue of convention concerning a choice of simple experience...”
(Einstein, 1924).

On the other hand, there are alternative theories to Einstein gravity
constructed in the Minkowski space-time, where the Riemann metric is not
involved. One such theory is the vector theory of gravitation as the analog
of the electromagnetic theory of Maxwell. It is based on the continuation
of the Heaviside theory of gravitation. Other theory is the Schwinger
quantum theory of gravity, where gravity force is caused by gravitons as an
analog of quantum electrodynamic which is based on photons and electrons
and their interactions. We consider the application of this theory to the
emission of gravitons by binary. The other alternative theory of gravity is
based on the explanation of gravity in such a way that massive body causes
the deformation of space-time, which is the origin of the gravitational force.

In the first chapter the Poincaré model of the Lobachevsky geometry
is derived from the Fermat principle. The Lobachevsky geometry can be
physically interpreted as the Lobachevsky-Fok velocity space geometry of
moving particles. The relation of this geometry to the decay of the neutral
π-meson is considered. The generalization of the Lobachevsky geometry is
performed and the new angle of parallelism is derived (Pardy, 2013). The
light confined circularly in the optical medium is defined as the optical
black hole. The existence of the centrifugal force acting on the photon is
discussed.

In the second chapter we determine nonlinear transformations be-
tween coordinate systems which are mutually in a constant symmetrical
accelerated motion. The maximal acceleration limit follows from the kine-
matical origin. Maximal acceleration is an analogue of the maximal veloc-
ity in special relativity. We derive the dependence of mass, length, time,
Doppler effect, on acceleration as an analogue phenomena in special theory
of relativity.

The third chapter deals with the application of the derived non-
linear transformations between coordinate systems in mutually constant
symmetrical accelerated motion to the so called Thomas precession.

The fourth chapter deals with the total quantum loss of energy caused
by production of gravitons emitted by the binary system. The effect is
calculated in the framework of the Schwinger theory of gravity for the
situation with the gravitational propagator involving radiative corrections.

The fifth chapter concerns the finite-temperature gravitational
Cherenkov radiation involving radiative corrections. The graviton action
in vacuum is generalized for the medium with the constant gravitational
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index of refraction. From this generalized action the power spectral for-
mula of the Cherenkov radiation of gravitons is derived in the framework
of the source theory at zero and nonzero temperature.

The sixth chapter deals with energy shift of H-atom electrons due to
Gibbons-Hawking thermal bath. The electromagnetic shift of energy levels
of H-atom electrons is determined by calculating an electron coupling to
the Gibbons-Hawking electromagnetic field thermal bath. Energy shift
of electrons in H-atom is determined in the framework of non-relativistic
quantum mechanics.

The seventh chapter deals with gravity as the deformation of the
space time and it involves the light deflection by the screw dislocation.
We also explain the geometrical meaning of the metric of space-time and
discuss the problem of the dimensionality of space.

The last chapter is conclusion and discussion, where we consider the
scientific and technological meaning and the perspectives of the results
derived in our contribution.

1 From Fermat optical theorem to the Lobachevsky-

Fok space-time

1.1 Introduction

The Fermat optical theorem is based on the the physical trajectories.
Trajectories of elementary particles in the Wilson chamber, ATLAS in
LHC, or in the further terrestrial and cosmical detectors are the basic
ingredients of physics of elementary particles and cosmical rays. No
elementary particle can exist without its trajectory. While in the particle
physics the trajectories of particle are determined by their parameters as
mass, charge, spin, velocity and by the influence of the magnetic and
electric fields on its motion, some trajectories of bodies are also determined
as a result of cybernetic and physical laws. We apply here the notion
of trajectory also in geometry to define not only straight line, but all
geometrical curves. We follow here the article by author (Pardy, 2013).

The Fermat optical theorem states that the trajectory of light from
point A to B in the optical medium is the trajectory performed during
the minimal time. At the same time the trajectory of the optical ray from
point A to point B with reflection on the mirror in the reflection point C is
also performed during the minimal time. This principle can be generalized
for an arbitrary number of reflection points.

The trajectory of light passing from point A(x1, y1) to point B(x2, y2)
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can be determined by the variational principle (Lavrentyev et al., 1950). It
is the mathematical formulation of the Fermat principle and it states that
the minimal time T of light passing from point A(x1, y1) to point B(x2, y2)
is the result of the minimization of the functional

T (y, y′) =
∫ x2

x1

ds

v(y)
=
∫ x2

x1

√
1 + y′2

v(y)
dx, (1)

where v(y) is the velocity of light.
The functional T (y, y′) is the solution of the Euler-Lagrange equations

with y′ = dy/dx:

∂T

∂y
− d

dx

(
∂T

∂y′

)
= 0. (2)

If v = Ay, the solutions of eq. (2) are the circles forming the Poincaré
model of the Lobachevsky geometry:

(x− C)2 + y2 = r2. (3)

Let us remark that the above method can be applied for determination
of the trajectory of light in the stratified medium, or, in medium with
reflections on the boundary.

1.2 The Poincaré optical model of the Lobachevsky geometry

The Lobachevsky geometry is the integral part of the general geometry
called non-euclidean geometry, or, hyperbolic geometry. The name non-
Euclidean was used by Gauss to describe a system of geometry which differs
from Euclid’s in its properties of parallelism. Such a system was developed
also independently by Bolyai in Hungary and Lobachevsky in Russia, many
years ago. Another system, differing more radically from Euclid’s, was
suggested later by Riemann in Germany and Schlafli in Switzerland. The
subject was unified by Klein, who gave the names parabolic, hyperbolic,
and elliptic to the respective systems of Euclid, Gauss-Bolyai-Lobachevsky,
and Riemann-Shlafli (Coxeter, 1998).

The substantial mathematical object in the Lobachevsky geometry is
the angle of parallelism defined by Lobachevsky as follows. Given a point
P and a line q. The intersection of the perpendicular through P let be Q
and PQ = x. The intersection of line p passing through P , with q, let be
R and QR = k. Then, the angle RPQ for perpendicular distance x

Π(x) = 2 tan−1 e−x/k. (4)
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is known as the Lobachevsky formula for the angle of parallelism (Coxeter,
1998; Lobachevsky, 1914).

The Poincaré model of the Lobachevsky geometry is the physical model
of the optical trajectories in a medium with the velocity of light v = Ay.

According to Hilbert (Hilbert, 1903; McCleary, 1994), it is not possible
to realize the Lobachevsky geometry globally on surface with the constant
negative curvature. The Beltrami realization of the Lobachevsky geometry
is only partial one. The famous Russian mathematician Ostrogradsky
never acknowledged the Lobachevsky geometry.

Following Bukreev (1951), we can investigate the Lobachevsky geometry
and the Poincaré model of it using the pseudosphere (2D manifold) with
metric

ds2 = du2 + e
2u
r dv2. (5)

By relations

v = x, re−
u
r = y, (6)

we get the line element as

ds2 =
r2

y2
(dx2 + dy2), (7)

which was used during the application of the Fermat principle of the
minimal time.

The transformation (6) is the conformal mapping of the pseudo-spherical
abstract surface (2-dimensional continuous differentiable manifold) into the
upper Poincaré half plane in the Cartesian coordinates x, y. As an analogue
to this situation it is possible to consider the conformal transformation
of the 4-dimensional Einstein-Riemann gravitational manifold to the 4-
dimensional Cartesian coordinates x, y, z, t of space-time. Let us still
remark that there are many inversion transformation from the Cartesian
Poincaré metric to the 2-dimensional manifold ds2, to form the integral
part of the optical models of the Lobachevsky geometry.

The trajectory of light in the Poincaré model is a trajectory passing from
A(x1, y1) to B(x2, y2) and determined by the minimal time from A(x1, y1)
to B(x2, y2). It is the result of the minimum of the functional (1).

The Poincaré circles (pseudo-straight lines) in his model are analogue
of the straight lines in the Euclidean geometry.

The theorems following from the metric (7) (Bukreev, 1951) are valid
in the Poincaré model of the Lobachevsky geometry:
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Theorem 1: Only one half-circle passes through two points A,B in the
Poincaré plane.

Theorem 2: The curvilinear segment AB in the Poincaré plane is of
the shortest length.

Theorem 3: The parallels are two half-circles with the intersections on
the x-axis.

Theorem 4: If point A /∈ q, then there are q1 ∥ q, q2 ∥ q passing
through A, with q1 ̸= q2.

Theorem 5: If point A /∈ q, q1 ∥ q, q2 ∥ q, then q1, q2 divide the Poincaré
plane in four different sectors I, II, III, IV.

Let us remark that the optical distance between point A and B is not
equivalent to the mechanical distance realized by the nonelastic flexible
fibre as the shortest distance between point A and B. The Poincaré model
of geometry where the light velocity is v = Ay is the interaction model of
light with the optical medium.

It is elementary to see that if we define the Poincaré problem on a
sphere, then we get so called spherical Poincaré model of the Lobachevsky
geometry.

1.3 The Lobachevsky angle of parallelism from trigonometry

It is well known that Beltrami showed that the Lobachevsky trigonometry
is the spherical trigonometry with the imaginary radius of the sphere. Or,
r → ir. Then instead of the trigonometrical cosine and sine relation on
sphere,

cos
a

r
= cos

b

r
cos

c

r
+ sin

b

r
sin

c

r
cosA, (8)

sinA

sin a/r
=

sinB

sin b/r
=

sinC

sin c/r
, (9)

cosA = − cosB cosC + sinB sinC cos(a/r) (10)

where r is the radius of sphere and a, b, c are lengths of sides of the triangle
on the sphere and A,B,C are corresponding angles, the following relations
of the Lobachevsky imaginary pangeometry follows from the Beltrami
operation r → ir:

cosh
a

r
= cosh

b

r
cosh

c

r
− sinh

b

r
sinh

c

r
cosA (11)

and
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sinA

sinh a
r

=
sinB

sinh b
r

=
sinC

sinh c
r

, (12)

cosA = − cosB cosC + sinB sinC cosh
a

r
. (13)

Now, we are prepared to derive the Lobachevsky function Π(a), where
a is BC in the Lobachevsky triangle ABC and the angle B is ̸ B = π/2
and ̸ C = Π(a).

We have from (13)

1 = sinΠ(a) cosh
a

r
. (14)

On the other hand,

cosΠ(a) =
√
1− sin2Π(a) =

√√√√√1− 1

cosh2 a
r

=

√
cosh2 a

r − 1

cosh a
r

=
sinh a

r

cosh a
r

= tanh
a

r
. (15)

Then, with tanΠ = sinΠ/ cosΠ, we have

tan2
Π(a)

2
=

1− cosΠ(a)

1 + cosΠ(a)
=

1− tan a
r

1 + tan a
r

=
cosh a

r − sinh a
r

cosh a
r + sinh a

r

=
e−

a
r

e
a
r

= e−
2a
r . (16)

Or,

tan
Π(a)

2
= e−

a
r . (17)

The last formula is the famous one for the Lobachevsky angle Π(a).
Let us remark that the angle of parallelism is immediately related to

the decay of the neutral π-meson to two gamma-photons, detected by the
coincidence experimental method (Steinberger, et al., 1950). Or,

π0 → γ + γ. (18)

The angle between velocities of the gamma photons in the rest system
of neutral meson is evidently π. However according to the special theory
of relativity the angle is transformed in the laboratory system according
to the Lorentz transformation and it is smaller than π. It is equivalent
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to the statement that the Lobachevsky angle Π is smaller than π/2, or,
Π < π/2. Such experiment can be considered as the confirmation of the
Lobachevsky geometry in the elementary particle physics. Similarly the
decay of the neutral η-meson η0 → γ + γ, axion A0 → γ + γ, or, the
Higgs boson decay H0 → γ + γ, are the confirmation of the Lobachevsky
geometry in the elementary particle physics and at present time can be
tested in CERN.

The statement which is valid for the decay channel of the π0-meson is
valid by analogy also for all decay channels described in the Review of the
Particle physics (Amsler et al., 2008).

1.4 The generalized Lobachevsky geometry

Theorem: The generalized Lobachevsky formulas for triangles in gener-
alized Lobachevsky geometry follow from the spherical formulas (8), (9),
(10) by transformation r → r + iϱ:

cosφa coshχa + i sinφa sinhχa =

[cosφb coshχb + i sinφb sinhχb][cosφc coshχc + i sinφc sinhχc] +

[sinφb coshχb+ i cosφb sinhχb][sinφc coshχc+ i cosφc sinhχc] cosA, (19)

sinA

sinφa coshχa + i cosφa sinhχa
=

sinB

sinφb coshχb + i cosφb sinhχb
=

sinC

sinφc coshχc + i cosφc sinhχc
, (20)

cosA = − cosB cosC +sinB sinC[cosφa coshχa+i sinφa sinhχa], (21)

where

φa;φb;φc; =
ar

r2 + ϱ2
;

br

r2 + ϱ2
;

cr

r2 + ϱ2
(22)

and
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χa;χb;χc; =
aϱ

r2 + ϱ2
;

bϱ

r2 + ϱ2
;

cϱ

r2 + ϱ2
. (23)

and ϱ is the new parameter of the new triangle on the 2D manifold and
A,B,C are corresponding triangle angles.

It follows fro eq. (21) that when A,B,C are real quantities, then it is
necessary to be sinφa = 0, or, φa = lπ, l = 1, 2, 3.... Similarly, sinφb = 0,
or, φb = mπ,m = 1, 2, 3..., sinφc = 0, or, φc = nπ, n = 1, 2, 3.... It means
that from the generalized Beltrami operation r → r+ iϱ, the quantization
of the generalized Lobachevsky geometry of the 2D-manifold follows.

Now, we can derive the generalized Lobachevsky function Π(a), where
a is BC in the generalized Lobachevsky triangle ABC, ̸ B = π/2 and
̸ C = Π(a).

We have from eq. (21) for the generalized rectangular triangle:

1 = sinΠ(a) coshχa, (24)

where

χa =
aϱ

r2 + ϱ2
=
ϱ

r
φa =

ϱ

r
lπ; l = 1, 2, 3... (25)

We have from eq. (24):

tan
Π(a)

2
= e−χa (26)

It is evident that in the limiting case ϱ→ 0, we get the Euclidean angle
Π(a) = π/2. While the original Lobachevsky angle Π(a) was confirmed
in decay of the neutral π-meson, the generalized Lobachevsky angle Π(a)
is expected to be confirmed in the high energy physics by experiments in
CERN and it is not excluded that the new geometry will be revealed in
the Little Bang (Dusling et al., 2011) if performed by LHC in CERN, or,
in the vicinity of the galactical nucleus.

1.5 The Lobachevsky-Beltrami-Fok velocity space

We know from the special theory of relativity that the relative velocity of
two particles with velocities v1,v2 is given by the formula (Landau et al.,
1987) (c =1, for the velocity of light):

v′ =

√
(v1 − v2)2 − (v1 × v2)2

1− v1 · v2
. (27)

13



The last formula can be easily transformed for v1 = v and v2 = v+ dv
to get new differential form which can be considered as the length element
in the velocity space, where v1, v2, v3 are so called the Beltrami coordinates
(Fok, 1955; Kagan, 1947; ibid., 1948). Or,

dl2v =
(dv)2 − (v × dv)2

(1− v2)2
=

dv2

(1− v2)
+

v2

(1− v2)
(dθ2 + sin2 θdφ2), (28)

where θ and φ are polar and the azimutal angles of the velocity v in the
spherical coordinate system.

Using the substitution v = tanhχ, we get the line element in the velocity
space as

dl2v = dχ2 + sinh2 χ(dθ2 + sin2 θdφ2). (29)

The last line element is from the geometrical point of view the element
of the Lobachevsky space with the constant negative Gauss curvature.

The Lobachevsky space follows from the spherical element (Landau et
al. 1987)

dl2 =
dr2

1− r2

a2

+ r2(dθ2 + sin2 θdφ2). (30)

if we replace in the spherical metric the variable r by r = a sinhχ and
a→ ia. Then

dl2v = a2[dχ2 + sinh2 χ(dθ2 + sin2 θdφ2)]. (31)

The area of the sphere is A = 4πa2 sinh2 χ and volume V goes to
infinity for r goes to infinity. So the Lobachevsky abstract space is identical
with the Friedmann solution of the Einstein equations with the negative
curvature.

Let us remark that if we perform transformation r → ir + ρ in formula
(30) where we write r2 = r.r = r.r∗, where r∗ = ρ− ir , in the form

dl2 =
dr2

1− r2+ρ2

a2

+ (r2 + ρ2)(dθ2 + sin2 θdφ2), (32)

which is the elementary generalization of the Lobachevsky geometry line
element.

Now, if we perform the substitution
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r2 + ρ2 = a2 sin2 χ, (33)

then the element (32) can be transformed into the form:

dl2 =
a4 sin2 χdχ2

a2 sinh2 χ− ρ2
+ a2 sin2 χ(dθ2 + sin2 θdφ2) (34)

It may be easy to see that the last formula is adequate to the metric of
the exotic cosmology with the new geometrical term ρ which should not
be identified with the Einstein cosmological constant Λ.

1.6 The geodesic line in the Lobachevsky-Beltrami-Fok space of
velocities

If we put dv = v̇dt, for the line element in the Lobachevsky space we get
from eq. (28) relation

(
dlv
dt

)2
=

v̇2

1− v2
+

(v · v̇)2

(1− v2)2
= 2F, (35)

where the symbol 2F is introduced by definition.
Then we write (Fok, 1955):

dlv =
∫ t2

t1

√
2Fdt, (36)

where L =
√
2F is the Lagrange function, or

L =

√√√√√ v̇2

1− v2
+

(v · v̇)2
(1− v2)2

. (37)

The geodetic line from time t1 to time t2 is the solution of the Lagrange
equations

d

dt

(
∂L

∂v̇k

)
− ∂L

∂vk
= 0; k = 1, 2, 3, (38)

or,

d

dt

(
1√
2F

∂F

∂v̇k

)
− 1√

2F

∂F

∂vk
= 0; k = 1, 2, 3. (39)

We use here the parameter t which is an arbitrary parameter. The
interpretation of it as time is of course possible. We choose it in such a
way that
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dF

dt
= 0; F = const. (40)

Then equations (39) will be equivalent to

d

dt

(
∂F

∂v̇k

)
− ∂F

∂vk
= 0; k = 1, 2, 3. (41)

As the function F is not the function of parameter t, then we can write:

∑
k

v̇k
∂F

∂v̇k
− F = const. (42)

Eq. (42) is an analogue of the definition of energy in classical mechanics
in generalized coordinates if we replace F by the Lagrange function of the
massive point.

It follows from eq. (39):

∂F

∂v̇k
=

v̇k
1− v2

+
vk(v · v̇)
(1− v2)2

; k = 1, 2, 3 (43)

∂F

∂vk
= vk

 v̇2

(1− v2)2
+ 2

(v · v̇)2

(1− v2)3

+
v̇k(v · v̇)
(1− v2)2

; k = 1, 2, 3. (44)

Let us introduce the vector w by the definition

wk =
v̇k

(1− v2)
. (45)

Then eqs. (43), (44) can be evidently written in the form

∂F

∂v̇k
= wk +

vk(v ·w)

(1− v2)
; k = 1, 2, 3 (46)

∂F

∂vk
= vk

w2 +
2(v · v̇)2

(1− v2)

+ vk(v ·w); k = 1, 2, 3. (47)

After t-derivation of eq. (47) and expressing v̇ as a function of w, we
get

d

dt

∂F

∂v̇k
= ẇk +

vk(v · ẇ)

(1− v2)
+

vk

w2 +
2(v ·w)2

(1− v2)

+ vk(v ·w); k = 1, 2, 3. (48)
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After insertion of ∂F/∂vk (47) and equation (48) into Lagrange equation
(41), we get

ẇk +
vk(v · ẇ)

(1− v2)
= 0. (49)

After multiplication of the last equation by vk we get

v · ẇ = 0, (50)

from which equation follows ẇ = 0, or, w = const. However, w is collinear
with v̇, then w · v̇ = 0, Or,

w · v = const. (51)

It gives still two linearly independent integrals of the Lagrange equations.

1.7 The length of the straight segment in the Lobachevsky-
Beltrami-Fok space

We consider the length AB as the shortest line segment from A to B in
the Lobachevsky space. Let us introduce two vectors v = v1 and v = v2.
Then the parametric form of the segment is

v = v1 + µ(v2 − v1); 0 < µ < 1. (52)

After insertion of (52) into F in (35), we get

2F =
(v2 − v1)

2 − (v1 × v2)
2

(1− v2)2
µ̇2. (53)

Putting

a =
√
(v2 − v1)2 − (v1 × v2)2, (54)

we get from eq. (36) the time integral from t1 to t2

dlv =
∫ 1

0

adµ

1− v2
(55)

Using substitution

µ =
(1− v21)ξ

1− v1 · v2 + (v1 · v2 − v21)ξ
, (56)

we get
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lv =
∫ 1

0

abdξ

b2 − a2ξ2
=

1

2
ln
b+ a

b− a
, (57)

where b = 1− v1 · v2 and

a

b
= tanh lv;

(
a

b

)2
= tanh2 lv. (58)

Or,

(v2 − v1)
2 − (v1 × v2)

2

(1− v1 · v2)
= tanh lv. (59)

The left side of (59) is the relative velocity, So

|v′| = tanh lv. (60)

Putting

v1 = tanh l1v, v2 = tanh l2v (61)

we get for v1 ∥ v2

V ′ = tanh(l2v − l1v) =
tanh l2v − tanh l1v

1− tanh l2v · tanh l1v
, (62)

Or,

V ′ =
v2 − v1
1− v1.v2

, (63)

which is the famous Einstein formula for the addition of velocities.

1.8 The Lobachevsky-Beltrami-Fok triangle in particle physics

Let us investigate the angle between vectors of the velocities velocities of
the two bodies. Let the vectors are taken with regard to the point which is
in the state of rest. The vectors are v1 and v2. Then the obligate formula
for cosine of the angle of the two vectors is:

cos(v1,v2) =
v1 · v2

|v1| · |v2|
. (64)

However if the reference point of vectors is moving with the velocity u,
then the angle between vectors are given by the relativistic formula:

cosα = cos(v′1,v
′
2) =

v′1 · v′2
|v′1| · |v′2|

, (65)
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where the prime symbols are vectors after the Lorentz transformations of
the velocities. The Lorentz transformation of the velocities is as follows:

v′ =
v − u+ (a00 − 1) u

u2

(
(u · v − u2)

)
a00 (1 + u · v)

. (66)

If we express v′1 and v′2 and by v1 and by v2, we then get cosine of the
angle α as it follows:

cosα =
(v1 − u) · (v2 − u)− (v1 × u) · (v2 × u)√

(v1 − u)2 − (v1 × u)2 ·
√
(v2 − u)2 − (v2 × u)2

. (67)

This is the expression for the cosine of the angle of the triangle in the
space of Lobachevsky. In other words, this is cosine of the angle in the
vertex u in the triangle with the vertexes at points u,v1,v2 where the
relative velocities v1− u and v2− u are sides of the triangle and form the
angle α.

It can be explained by the different way. The length element in the
Lobachevsky space corresponding to dv is

dl2v =
(dv)2 − (v × dv)2

(1− v2)2
, (68)

And the length element in the Lobachevsky space corresponding to δv is

δl2v =
(δv)2 − (v × δv)2

(1− v2)2
. (69)

Then we can define the relation for the cosine between dv and δv by
the relation:

dlvδlv cosα =
dvδv − (v × dv)(v × δv)

(1− v2)2
. (70)

The angle between the relative velocities can be considered as the
angle of the Lobachevsky triangle. If we have three bodies moving with
velocities v1,v2,v3, then the corresponding triangle will have the vertexes
in points v1,v2,v3, and the relative velocities are the sides of the triangle.
This construction is the analogue of the non-relativistic case, but we
have here the Lobachevsky triangle on the Lobachevsky 2D manifold.
The generalization of the Lobachevsky triangle to the Euler-Lobachevsky
tetrahedron is evident.

Lobachevsky, in his pangeometry, presents the idea (many years before
Einstein) that his geometry is probably realized in the near vicinity of
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atoms and molecules and also in the cosmical space (Norden, 1956). Now,
we see that his geometry is realized in particle physics of LHC in CERN.

2 The nonlinear Lorentz group for accelerated sys-

tems

We determine here the nonlinear transformations between coordinate sys-
tems which are mutually in a constant symmetrical accelerated motion.
The maximal acceleration limit follows from the kinematical origin. Maxi-
mal acceleration is an analogue of the maximal velocity in special relativity.
We derive the dependence of mass, length, time, Doppler effect on accelera-
tion as an analogue phenomena in special theory of relativity. The derived
addition theorem for acceleration can play crucial role in modern particle
physics and cosmology.

In case of noninertial systems the principle of the constant light velocity
cannot be accepted. An outstanding physicist Mandelstam wrote in his
book (Mandelstam, 1972): ”... special relativity theory cannot answer the
question, how a clock behaves when moving with acceleration and why it
slows down, because it does not deal with reference systems moving with
acceleration ”.

The problem of acceleration of charged particles or systems of particles
is the permanent and the most prestige problem in the accelerator physics.
Particles can be accelerated by different ways. Usually by the classical
electromagnetic fields, or, by light pressure of the laser fields (Baranova et
al., 1994; Pardy, 1998, 2001, 2002). The latter method is the permanent
problem of the laser physics for many years.

Here, we determine transformations between coordinate systems which
moves mutually with the same acceleration. We determine transformations
between non relativistic and relativistic uniformly accelerated systems.

Let us remind the special theory of relativity velocity and accelera-
tion The Lorentz transformation between two inertial coordinate systems
S(0, x, y, z) and S ′(0, x′, y′, z′) (where system S ′ moves in such a way that
x-axes converge, while y and z-axes run parallel and at time t = t′ = 0 for
the origin of the systems O and O′ it is O ≡ O′) is as follows:

x′ = γ(v)(x− vt), y′ = y, z′ = z′, t′ = γ(v)

(
t− v

c2
x

)
, (1)

where
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γ(v) =

1− v2

c2

−1/2 . (2)

The infinitesimal form of this transformation is evidently given by
differentiation of the every equation. Or,

dx′ = γ(v)(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ(v)

(
dt− v

c2
dx

)
.

(3)
It follows from eqs. (3) that if v1 is velocity of the inertial system 1 with

regard to S and v2 is the velocity of the inertial systems 2 with regard to
1, then the relativistic sum of the two velocities is

u2 =
v1 + v2
1 + v1v2

c2
. (4)

The mathematic object called four-velocity follows from the Lorentz
transformation after some additional operations. From the ordinary
three-dimensional velocity vector one can form a four-vector. This four-
dimensional velocity (four-velocity) of a particle is the vector

uµ =
dxµ

ds
, (5)

where, according to Landau et al. (1987)

ds = cdt

√√√√1− v2

c2
(6)

with v being the ordinary three-dimensional velocity of the particle and c
being the velocity of light. Thus

u1 =
dx1

ds
=

dx

cdt
√
1− v2

c2

=
vx

c
√
1− v2

c2

. (7)

Then,

uµ =

 1√
1− v2

c2

,
v

c
√
1− v2

c2

 . (8)

Note, that the four-velocity is a dimensionless quantity. The compo-
nents of the four-velocity are not independent. Noting that dxµdxµ = ds2,
we have
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uµuµ = 1. (9)

Geometrically, uµ is a unit four-vector tangent to the world line of the
particle.

Similarly to the definition of the four-velocity, the second derivative

aµ =
d2xµ

ds2
=
duµ

ds
(10)

may be called the four-acceleration. Differentiating formula (9), we find:

uµaµ = 0, (11)

i.e. the four-vectors of velocity and acceleration are ”mutually perpendic-
ular”.

Now, let us determine the relativistic uniformly accelerated motion, i.e.
the rectilinear motion for which the acceleration aµ in the proper reference
frame (at each instant of time) remains constant. We proceed as follows.

In the reference frame in which the particle velocity is v = 0, the
components of the four-acceleration aµ = (0, a/c2, 0, 0) (where a is the
ordinary three-dimensional acceleration, which is directed along the x axis).
The relativistically invariant condition for uniform acceleration must be
expressed by the constancy of the four-scalar which coincides with a2 in
the proper reference frame:

aµaµ = const = −a
2

c4
. (12)

In the ”fixed” frame, with respect to which the motion is observed,
writing out the expression for aµaµ gives the equation:

d

dt

v√
1− v2

c2

= a, (13)

or,

v

c
√
1− v2

c2

= at+ const. (14)

Setting v = 0 for t = 0, we find that const = 0, so that

v =
at√

1 + a2t2

c2

, (15)

Integrating once more and setting x = 0 for t = 0, we find:
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x =
c2

a


√√√√1 + a2t2

c2
− 1

 . (16)

For at≪ c, these formulas go over the classical expressions v = at, x =
a
2t

2. For at→∞, the velocity tends toward the constant value c.
The proper time of a uniformly accelerated particle is given by the

integral (Landau et al., 1987)

∫ t

0

√√√√1 + v2(t)

c2
dt =

c

a
arcsinh

at

c
. (17)

At the limit t→∞ it increases much more slowly than t, according to
the law

c

a
ln

2at

c
. (18)

The infinitesimal form of Lorentz transformation (3) evidently gives the
Lorentz length contraction and time dilation. Namely, if we put dt = 0
in the first equation of system (3), then the Lorentz length contraction
follows in the infinitesimal form dx′ = γ(v)dx. Or, in other words, if in
the system S ′ the infinitesimal length is dx′, then the relative length with
regard to the system S is γ−1dx′. Similarly, from the last equation of (3)
it follows the time dilatation for dx = 0. Historical view on this effect is in
the Selleri article (Selleri, 1997).

2.1 Uniformly accelerated frames with space-time symmetry

Let us take two systems S(0, x, y, z) and S ′(0, x′, y′, z′), where system S ′

moves in such a way that x-axes converge, while y and z-axes run parallel
and at time t = t′ = 0 for the beginning of the systems O and O′ it is
O ≡ O′. Let us suppose that system S ′ moves relative to some basic system
B with acceleration a/2 and system S ′ moves relative to system B with
acceleration −a/2. It means that both systems moves one another with
acceleration a and are equivalent because in every system it is possibly to
observe the force caused by the acceleration a/2. In other words no system
is inertial.

Now, let us consider the formal transformation equations between two
systems. At this moment we give to this transform only formal meaning
because at this time, the physical meaning of such transformation is
not known. On the other hand, the consequences of the transformation
will be shown very interesting. The first published derivation of such
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transformation by the standard way was given by author (Pardy, 2003;
2004; 2005), and the same transformations were submitted some decades
ago (Pardy, 1974). The old results can be obtained if we perform
transformation

t→ t2, t′ → t′2, v → 1

2
a, c→ 1

2
α (19)

in the original Lorentz transformation (1). We get:

x′ = Γ(a)(x− 1

2
at2), y′ = y, z′ = z, t′2 = Γ(a)

(
t2 − 2a

α2
x

)
(20)

with

Γ(a) =
1√

1− a2

α2

. (21)

We used practically new denotation of variables in order to get the
transformation (20) between accelerated systems.

The transformations (20) form the one-parametric group with the
parameter a. The proof of this mathematical statement can be easy
performed if we perform the transformation T1 from S to S ′, transformation
T2 from S ′ to S ′′ and transformation T3 from S to S ′′. Or,

x′ = x′(x, t; a1), t′ = t′(x, t; a1), (22)

x′′ = x′′(x′, t′; a2), t′′ = t′′(x′, t′; a2), (23)

After insertion of transformations (22) into (23), we get

x′′ = x′′(x, t; a3), t′′ = t′′(x, t; a3), (24)

where parameter a3 is equal to

a3 =
a1 + a2
1 + a1a2

α2

. (25)

The inverse parameter is −a and parameter for identity is a = 0. It may
be easy to verify that the final relation for the definition of the continuous
group transformation is valid for our transformation. Namely (Eisenhart,
1943):

(T3T2)T1 = T3 (T2T1) . (26)
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The physical interpretation of this nonlinear transformations is the same
as in the case of the Lorentz transformation only the physical interpretation
of the invariant function x = (1/2)αt2 is different. Namely it can be
expressed by the statement. If there is a physical signal in the system S
with the law x = (1/2)αt2, then in the system S ′ the law of the process
is x′ = (1/2)αt′2, where α is the constant of maximal acceleration. It is
new constant and cannot be defined by the game with known physical
constants.

Let us remark, that it follows from history of physics, that Lorentz
transformation was taken first as physically meaningless mathematical
object by Larmor, Voigt and Lorentz and later only Einstein decided to put
the physical meaning to this transformation and to the invariant function
x = ct. We hope that the derived transformation will appear as physically
meaningful.

Using relations t ← t2, t′ ← t′2, v ← 1
2a, c ← 1

2α, the nonlinear
transformation is expressed as the Lorentz transformation forming the one-
parametric group. This proof is equivalent to the proof by the above direct
calculation. The integral part of the group properties is the so called
addition theorem for acceleration.

a3 =
a1 + a2
1 + a1a2

α2

. (27)

where a1 is the acceleration of the S ′ with regard to the system S, a2 is
the acceleration of the system S ′′ with regard to the system S ′ and a3
is the acceleration of the system S ′′ with regard to the system S. The
relation (27), expresses the law of acceleration addition theorem on the
understanding that the events are marked according to the relation (20).

If a1 = a2 = a3 = .... + an = a, for n accelerated carts which rolls in
such a way that the first cart rolls on the basic cart, the second rolls on
the first cart and so on, then we get for the sum of n accelerated carts the
following formula

asum =
1−

(
1−a/α
1+a/α

)n
1 +

(
1−a/α
1+a/α

)n , (28)

which is an analogue of the formula for the inertial systems (Lightman et
al., 1975).

In this formula as well as in the transformation equation (20) appears
constant α which cannot be calculated from the theoretical considerations,
or, constructed from the known physical constants (in analogy with the
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velocity of light). What is its magnitude can be established only by
experiments. The notion maximal acceleration was introduced some
decades ago by author (Pardy, 1974). Caianiello (1981) introduced it as
some consequence of quantum mechanics and Landau theory of fluctuations
(Landau, et al., 1982 ). Revisiting view on the maximal acceleration was
given by Papini (2003). At present time it was argued by Lambiase et
al. (1999) that maximal acceleration determines the upper limit of the
Higgs boson and that it gives also the relation which links the mass of W -
boson with the mass of the Higgs boson. The LHC and HERA experiments
presented different answer to this problem.

2.2 Transformation with constant acceleration in the fixed
frame

In the ”fixed” frame, with respect to which the motion is observed, we use
the equation (16) to derive the adequate transformation: Or,

ξ(a, t) =
c2

a


√√√√1 + a2t2

c2
− 1

 . (29)

For at≪ c, these formulas go over the classical expressions v = at, x =
1
2at

2. For at→∞, the velocity tends toward the constant value c.
The transformation equations between S and S’ can be easily derived.

Let us give some instructions.
It may be easy to see, that

x′ = Γ(a)(x− ξ(a, t)), y′ = y, z′ = z, (30)

with

Γ(a) =
1√

1− a2

α2

. (31)

Then,

x = Γ(a)(x+ ξ(a, t′)) (32)

and

ξ(a, t′) = Γ−1x− x′ = x/Γ− Γx+ Γξ(a, t) (33)

It follows from the last equation the variable t′ and the identity ξ(α, t′) =
ξ(α, t).
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Let us remark, that if we use the infinitesimal transformation (3) with
the velocity depending on time (15), then we obtain after integration the
new original transformation for accelerated systems (Pardy, 2003, 2004,
2005) with the new physical meaning.

2.3 Mass shift by acceleration

If the maximal acceleration is the physical reality, then it should have the
similar consequences in a dynamics as the maximal velocity of motion has
consequences in the dependence of mass on velocity. We can suppose in
analogy with the special relativity that mass depends on the acceleration
for small velocities, in the similar way as it depends on velocity in case
of uniform motion. Of course such assumption must be experimentally
verified and in no case it follows from special theory of relativity, or, general
theory of relativity (Fok, 1961). So, we postulate ad hoc, in analogy with
special theory of relativity:

m(a) =
m0√
1− a2

α2

; v ≪ c, a =
dv

dt
. (34)

Let us derive as an example the law of motion when the constant force
F acts on the body with the rest mass m0. Then, the Newton law reads
(Landau et al., 1987):

F =
dp

dt
= m0

d

dt

v√
1− a2

α2

. (35)

The first integral of this equation can be written in the form:

Ft

m0
=

v√
1− a2

α2

; a =
dv

dt
, F = const.. (36)

Let us introduce quantities

v = y, a = y′, A(t) =
F 2t2

m2
0α

2
. (37)

Then, the quadratic form of the equation (36) can be written as the
following differential equation:

A(t)y′2 + y2 − A(t)α2 = 0, (38)
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which is nonlinear differential equation of the first order. The solution of
it is of the form y = Dt, where D is some constant, which can be easily
determined. Then, we have the solution in the form:

y = v = Dt =
t√

m2
0

F 2 +
1
α2

. (39)

For F→∞, we get v = αt. This relation can play substantial role at the
beginning of the big-bang, where the accelerating forces can be considered
as infinite, however the law of acceleration has finite nonsingular form.

At this moment it is not clear if the dependence of the mass on
acceleration can be related to the energy dependence on acceleration
similarly to the Einstein relation uniting energy, mass and velocity (Okun,
2001, 2002; Sachs, 1973 ).

The infinitesimal form of author transformation (20) evidently gives the
length contraction and time dilation. Namely, if we put dt = 0 in the
first equation of system (20), then the length contraction follows in the
infinitesimal form dx′ = Γ(a)dx. Or, in other words, if in the system S ′

the infinitesimal length is dx′, then the relative length with regard to the
system S is Γ−1dx′. Similarly, from the last equation of (20) it follows the
time dilatation for dx = 0.

The relativistic Doppler effect is the change in frequency (and wave-
length) of light, caused by the relative motion of the source and the ob-
server (as in the classical Doppler effect), when taking into account effects
described by the special theory of relativity.

2.4 Doppler effect due to an acceleration

The relativistic Doppler effect is different from the non-relativistic Doppler
effect as the equations include the time dilation effect of special relativity
and do not involve the medium of propagation as a reference point (Rohlf,
1994).

The Doppler shift caused by acceleration can be also derived immedi-
ately from the original relativistic equations for the Doppler shift. We only
make the transformation v → a/2, c→ α/2 to get

λ′

λ
=

√√√√√1− a/α
1 + a/α

(40)

when the photons of the wave length λ are measured toward photon source,
and
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λ′

λ
=

√√√√√1 + a/α

1− a/α
(41)

when the photons of the wave length λ are measured in the frame that is
moving away from the photon source. Different approach used Friedman
et al. (2010).

2.5 The Cherenkov effect and the transition radiation due to an
acceleration

Concerning the Cherenkov radiation, it is based on the fact that the speed
of light in the medium with the index of refraction n is c/n. A charged
particle moving in such medium can have the speed greater than it is
the speed of light in this medium. When a charged particle moves faster
than the speed of light in this medium, a portion of the electromagnetic
radiation emitted by excited atom along the path of the particle is coherent.
The coherent radiation is emitted at a fixed angle with respect to the
particle trajectory. This radiation was observed by Cherenkov in 1935.
The characteristic angle was derived by Tamm and Frank in the form
(Rohlf, 1994)

cos θ =
c

vn
. (42)

The Cherenkov angle caused by acceleration cannot be derived imme-
diately from the original Frank-Tamm equations for this effect.

In case of the Ginzburg transition radiation the radiation in concen-
trated in the angle

1/γ =
1√

1− v2

c2

(43)

The transition radiation angle caused by acceleration cannot be derived
immediately from the original Ginzburg formula for this effect.

2.6 The rotating systems

It is defined by equations

x = r cos(φ+ ωt), y = r sin(φ+ ωt). (44)

The corresponding space-time element is as follows:
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ds2 =

1− ω2r2

c2

 (cdt)2 − 2ωr2

c
dφ(cdt)− dz2 − dr2 − r2dφ2. (45)

Although the rotating system cannot be considered as equivalent to the
linear accelerated system, nevertheless, the radial component of every part
of this system is in the permanent acceleration. The application in the
galactic space is evident. In other words, if the radial coordinate of Earth
with regard to Sun is rE and its radial acceleration wE and the radial
coordinate of Moon with regard to Earth is rM and acceleration wM , then
the relative acceleration wr of Moon with regard to Sun is not wE + wM ,
but it is given by the formula

wr =
wE + wM

1 + wEwM

α2

. (46)

The last formula is an analogue of the formula which determines the
relative velocities in case of the inertial motion in the special theory
of relativity. The last formula is true only if the transverse effects do
not influence the radial effects. It can be verified optically, because we
know that the optical frequency of the emission source is influenced by
acceleration.

Similarly, it is possible to verify the dependence of mass on acceleration,
also by the ultracentrifuge, or immediately by physics in LHC, or ELI.

3 The Thomas precession by an uniform acceleration

Thomas precession, named after Llewellyn Thomas, is a relativistic motion
of a particle following a curvilinear orbit. Algebraically, it is a result of
the non-commutativity of Lorentz transformations. Thomas precession is
a kinematic effect in the flat spacetime of special relativity. This rotation is
called Thomas rotation, Thomas and Wigner rotation or Wigner rotation.
The rotation was discovered by Thomas (Thomas, 1926) and derived by
Wigner (Wigner, 1939). If a sequence of non-collinear boosts returns an
object to its initial velocity, then the sequence of Wigner rotations can
combine to produce a net rotation called the Thomas precession (Rhodes
et al., 2005).

Thomas precession is always accompanied by dynamical effects (Ma-
lykin, 2006). We calculate here Thomas precession caused by accelerated
motion of the systems. In other words we show that Thomas precession can
be initiated by acceleration of a point particle. The problem of acceleration
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of charged particles or systems of particles is the permanent and the most
prestige problem in the accelerator physics. Particles can be accelerated
by different ways. Usually by the classical electromagnetic fields, or, by
light pressure of the laser fields (Baranova et al., 1994; Pardy, 1998, 2001,
2002). The latter method is the permanent problem of the laser physics
for many years.

We have determined transformations between coordinate systems which
moved mutually with the uniform acceleration (Pardy, 2003, 1974, 2004,
2005). They involved so called maximal acceleration discussed also in
journals (Caianiello, 1981; Lambiase et al., 1998; Papini, 2003).

The Lorentz transformation between two inertial coordinate systemssys-
tems S(0, x, y, z) and S ′(0, x′, y′, z′) (where system S ′ moves in such a way
that x-axes converge, while y and z-axes run parallel and at time t = t′ = 0
for the origin of the systems O and O′ it is O ≡ O′) is as follows:

x′ = γ(v)(x− vt), y′ = y, z′ = z′, t′ = γ(v)

(
t− v

c2
x

)
, (1)

where

γ(v) =

1− v2

c2

−1/2 . (2)

The infinitesimal form of this transformation is evidently given by
differentiation of the every equation. Or,

dx′ = γ(v)(dx− vdt), dy′ = dy, dz′ = dz, dt′ = γ(v)

(
dt− v

c2
dx

)
.

(3)
It follows from eqs. (3) that if v1 is velocity of the inertial system 1 with

regard to S and v2 is the velocity of the inertial systems 2 with regard to
1, then the relativistic sum of the two velocities is

v1 ⊕ v2 =
v1 + v2
1 + v1v2

c2
. (4)

The infinitesimal form of Lorentz transformation (3) evidently gives the
Lorentz length contraction and time dilation. Historical view on this effect
is in the Selleri article (Selleri, 1997).

With regard to the previous chapter, the results in uniformly accelerated
systems can be obtained from the old relativistic form f(v/c) if we use
transformation v ← 1

2a, c← 1
2α.
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So, let us first remind the relativistic derivation of the Thomas angle,
which has form f(v/c). In other words, we consider the inverse transfor-
mations to T1 from S to S ′ with velocity v||x, inverse transformation to T2
from S ′ to S ′′ with velocity u||y and inverse transformation T3 from S to
S+ with velocity v⊕u where mathematical symbol ⊕ is the expression for
the relativistic addition of the velocities v,u. Then S = S+, if S+ is turned
in the xy plane with angle φ, which is given by the formula (Tomonaga,
1997):

φ = arctan
uv(

√
1− u2

c2

√
1− v2

c2 − 1)

u2
√
1− v2

c2 + v2
√
1− u2

c2

. (5)

Now, let us perform the transformations gradually. Let be S →
S ′, v = (v, 0, 0), transformation. Or,

x = γv(x
′ + vt′), y = y′, t = γv(t

′ +
v

c2
x′); γv =

1− v2

c2

−1/2 . (6)

Then, let be S ′ → S ′′, u = (0, u, 0). Or,

x′ = x′′, y′ = γu(y
′′ + ut′′), t′ = γu(t

′′ +
u

c2
y′′); γu =

1− u2

c2

−1/2 .
(7)

The transformation from S to S ′′ is S → S ′′. Or,

x = γvx
′′ + γvγu

vu

c2
y′′ + γvγuvt

′′, y = γuy
′′ + γuut

′′, (8)

t = γv
v

c2
x′′ + γvγu

u

c2
y′′ + γvγut

′′. (9)

Now, let us perform transformation from S to S+, where S+ moves with
regard to S with velocity, which is the relativistic sum of v and u, which
is the velocity v ⊕ u. Or, using formula (Batygin et al., 1970)

k = v ⊕ u =
v + u+ (γv − 1) v

v2

[
v · u+ v2

]
γv
(
1 + v·u

c2

) , (10)

we get

k = v ⊕ u =

(
v,
u

γv
, 0

)
; γk =

1− k2

c2

−1/2 . (11)
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Then we have for radius vector r and time t we have transformations
(Batygin et al., 1970):

r̃ = r+ + kt+ + (γk − 1)
k

k2
[
kr+ + k2t+

]
(12)

and

t̃ = γk

t+ +
kr+

c2

 . (13)

The t-transformation (13) can be expressed in variables t+, x+, y+ as
follows:

t̃ = γkt
+ + γk

v

c2
x+ +

γu
γv

u

c2
y+. (14)

The last equation can be compared with the time transformation from
S to S ′′, which is

t = γvγut
′′ + γv

v

c2
x′′ + γvγu

u

c2
y′′. (15)

Using γk = γvγu, we get two transformation of time following from eqs.
(9) and (14):

S → S ′′ : t = γkt
′′ + γv

v

c2
x′′ + γk

u

c2
y′′, (16)

S → S+ : t̃ = γkt
+ + γk

v

c2
x+ +

γk
γv

u

c2
y+. (17)

Now, let us perform rotation

x′′ = x+ cosφ+ y+ sinφ, y′′ = −x+ sinφ+ y+ cosφ. (18)

Then equation (17) is identical with eq. (18), if the angle φ is determined
by equation

φ = arctan
(1− γvγu) vu
γvv2 + γuu2

. (19)

The angle of rotation (19) is so called the Thomas angle of so called
Thomas precession. With regard to the derived transformation of quan-
tities u,v, c to the uniformly accelerated system, or, v → a/2, u → w/2
c→ α/2, we get immediately from the last formula (19) the Thomas pre-
cession angle:
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φ = arctan
aw(

√
1− a2

α2

√
1− w2

α2 − 1)

a2
√
1− w2

α2 + w2
√
1− a2

α2

, (20)

which has the physical meaning of the Thomas precession caused by
uniform acceleration. The last formula with uniform acceleration a and
w can be used for the uniform equivalent gravity according to the principle
of equivalence. It is not excluded that this formula will play the crucial
role in modern physics with application for LHC in CERN.

4 The graviton energy loss of the binary

with radiative corrections

4.1 Introduction

At present time the existence of the gravitational waves is confirmed
thanks to the experimental proof of Taylor and Hulse who performed the
systematic measurement of motion of the binary with pulsar PSR 1913+16.
They found that the energy loss formula which follows from he Einstein
general theory relativity is in accordance with their measurement.

The success was conditioned by the fact that the binary with the pulsar
PSR 1913+16 is the gigantic system of two neutron stars emitting sufficient
gravitational radiation for influencing the orbital motion of the binary at
the observable scale.

Taylor and Hulse, working at the Arecibo radiotelescope, discovered the
radiopulsar PSR 1913+16 in a binary in 1974 and it is now considered as
the best general relativistic laboratory (Taylor, Jr., 1993).

Pulsar PSR 1913+16 is the massive body of the binary system where
each of rotating pairs is of 1,4 times the mass of the Sun. These neutron
stars rotate around each other in an orbit not much bigger than the Sun’s
diameter, with a period 7,8 hours. Every 59 ms the pulsar emits a short
signal that is so clear that the arrival time of a 5-min string of the set of
such signals can be resolved to within 15 µs.

A pulsar model based on strongly magnetized, rapidly spinning neutron
stars was soon established as consistent with most of the known facts (Lyne,
et al. 1968; Orsten et al., 1968) and the electrodynamical properties of it
were studied (Gold, 1968) and shown to be plausibly capable of generating
broadband radio noise detectable over interstelar distances. The binary
pulsar PSR 1913+16 is now recognized as the harbinger of a new class of
unusually short-period pulsars with numerous important applications.
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Because the velocities and gravitational energies in a high-mass binary
pulsar system can be significantly relativistic, strong-field and radiative
effects come into play. The binary pulsar PSR 1913+16 provides significant
tests of gravitation beyond the weak-field, slow-motion limit (Goldreich, et
al., 1969; Damour, et al., 1992).

The goal of this article is not to repeat the derivation of the Einstein
quadrupole formula, bacause it was performed many times in general rela-
tivity and also in source theory in the weak field limit at zero temperature
(Manoukian, 1990). We will to show that in the framework of the source
theory it is easy to determine the quantum energy loss formula of the bi-
nary system both in case with free graviton propagator and with graviton
propagator with radiative corrections. It involves arbitrary strong gravity
which overcomes all obstacles of the clasical gravity derivation.

Because the measurement of motion of the binaries goes on, we hope
that the future experiments will verify the quantum version of the energy
loss formula following from the source theory and that sooner or later the
confirmation this formula will be established.

4.2 The source theory formulation of the problem

Source theory (Schwinger et al., 1976; Dittrich, 1978; Schwinger, 1976) was
initially constructed for description of the particle physics situations occur-
ring in the high-energy physics experiments. However, it was found that
the original formulation simplifies the calculations in the electrodynamics
and gravity where the interactions are mediated by photon or graviton
respectively. The source theory of gravity forms the analogue of quan-
tum electrodynamics because while in QED the interaction is mediated
by the photon the gravitational interaction is mediated by the graviton
(Schwinger, 1976). The basic formula in the source theory is the vacuum-
to-vacuum amplitude (Schwinger, et al., 1976):

⟨0+|0−⟩ = e
i
h̄W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels,
referring to any time before and after space-time region where sources
are manipulated. The exponential form is introduced with regard to
the existence of the physically independent experimental arrangements
which has a simple consequence that the associated probability amplitudes
multiply and corresponding W expressions add (Schwinger et al., 1976;
Dittrich, 1978).
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In the flat space-time the field of gravitons is described by the amplitude
(1) with the action (c = 1, in the following text) (Schwinger, 1976):

W (T ) =

4πG
∫
(dx)(dx′)[T µν(x)D+(x− x′)Tµν(x′)−

1

2
T (x)D+(x− x′)T (x′)], (2)

where the dimensionality of W (T ) is the same as the dimensionality of
the Planck constant h̄. Tµν is the tensor of momentum and energy, and for
particle moving along the trajectory x = x(t) it is defined by the equation
(Weinberg, 1972)

T µν(x) =
pµpν

E
δ(x− x(t)), (3)

where pµ is the relativistic four-momentum of a particle with a rest mass
m and

pµ = (E,p) (4)

pµpµ = −m2, (5)

and the relativistic energy is defined by the known relation

E =
m√
1− v2

, (6)

where v is the three-velocity of the moving particle.
Symbol T (x) in the formula (2) is defined as T = gµνT

µν and D+(x−x′)
is the graviton propagator whose explicit form will be determined later.

4.3 The power spectral formula in general

The probability of the persistence of vacuum is given by the following
formula (Schwinger et al., 1976):

|⟨0+|0−⟩|2 = exp

{
−2

h̄
ImW

}
d= exp

{
−
∫
dtdω

1

h̄ω
P (ω, t)

}
, (7)

where the so called power spectral function P (ω, t) has been introduced
(Schwinger et al., 1976). In order to extract this spectral function from
Im W , it is necessary to know the explicit form of the graviton propagator
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D+(x − x′). The physical content of this propagator is analogical to the
photon propagator. It involves the property of spreading of the gravitons
with velocity c. It means that its explicit form is just the same as of the
photon propagator. With regard to Schwinger et al. (Schwinger et al.,
1976) the x-representation of D(k) in eq. (2) is as follows:

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x

′)D(k), (8)

where

D(k) =
1

|k2| − (k0)2 − iϵ
, (9)

which gives

D+(x− x′) =
i

4π2

∫ ∞
0
dω

sinω|x− x′|
|x− x′|

e−iω|t−t
′|, (10)

Now, using formulas (2), (7) and (10), we get the power spectral formula
in the following form:

P (ω, t) = 4πGω
∫
(dx)(dx′)dt′

sinω|x− x′|
|x− x′|

cosω(t− t′)×

[T µν(x, t)Tµν(x
′, t′)− 1

2
gµνT

µν(x, t)gαβT
αβ(x′, t′)]. (11)

Because of definition (9), the general formula does not involve radiative
corrections. In order to get the production of gravitons with the radiative
corrections we must replace D+(x − x′) by the more general propagator
which involves radiative corrections.

4.4 The radiative corrections

We will investigate how the spectrum of the gravitational radiation is
modified if we involve radiation correction corresponding to the virtual
pair production and annihilation in the graviton propagator. Our analogue
is the application of the photon propagator with radiative corrections
for production of photons by the Cerenkov mechanism (Pardy, 1994).
According to (Dittrich, 1978; Weinberg, 1972; Schwinger, 1973) the photon
propagator in the Minkowski space-time with radiative correction is in the
momentum representation of the form:

D̃(k) = D(k) + δD(k), (12)
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D̃(k) =
1

|k|2 − (k0)2 − iϵ
+

+
∫ ∞
4m2

dM 2 a(M2)

|k|2 − (k0)2 + M2c2

h̄2 − iϵ
, (13)

where m is mass of electron and the last term in equation (13) is derived
on the virtual photon condition

|k|2 − (k0)2 = −M
2c2

h̄2
. (14)

The weight function a(M 2) has been derived in the following form
(Schwinger et al., 1976; Pardy, 1994):

a(M 2) =
α

3π

1

M 2

1 + 2m2

M 2

1− 4m2

M 2

1/2

(15)

We suppose that the graviton propagator with the radiative correction
forms the analogue of the photon propagator.

Now, with regard to the definition of the Fourier transform

D+(x− x′) =
∫ (dk)

(2π)4
eik(x−x

′)D(k), (16)

we get for δD+ the following relation (c = h̄ = 1):

δD+(x− x′) =
i

4π2

∫ ∞
4m2

dM 2a(M 2)×

×
∫
dω

sin[ω2 −M 2]1/2|x− x′|
|x− x′|

e−iω|t−t
′|. (17)

The function (17) differs from the the gravitational function ”D+” in
(15) especially by the factor

(
ω2 −M 2

)1/2
(18)

in the function ’sin’ and by the additional mass-integral which involves
the radiative corrections to the original power spectrum formula.

In order to determine the additional spectral function of produced
gravitons, corresponding to the radiative corrections, we insert D+(x −
x′) + δD+(x− x′) into eq. (2), and using eq. (14) we obtain:
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δP (ω, t) =
2Gω

π

∫
(dx)(dx′)dt′

∫ ∞
4m2

dM 2a(M2)×

× sin[ω2 −M 2]1/2|x− x′|
|x− x′|

cosω(t− t′)×

[T µν(x, t)gµαgνβT
αβ(x′, t′)− 1

2
gµνT

µν(x, t)gαβT
αβ(x′, t′)]. (19)

4.5 The power spectral formula for the binary system

In case of the binary system with masses m1 and m2 we suppose that they
move in a uniform circular motion around their centre of gravity in the xy
plane with corresponding kinematical coordinates:

x1(t) = r1(i cos(ω0t) + j sin(ω0t)) (20)

x2(t) = r2(i cos(ω0t+ π) + j sin(ω0t+ π)) (21)

with

vi(t) = dxi/dt, ω0 = vi/ri, vi = |vi|, i = 1, 2 (22)

For the tensor of energy and momentum of the binary we have:

T µν(x) =
pµ1p

ν
1

E1
δ(x− x1(t)) +

pµ2p
ν
2

E2
δ(x− x2(t)), (23)

where we have omit tensor tGµν which is associated with the massles
gravitational field distributed all over space and which is proportional to
the gravitational constant G (Cho, et al., 1976):

After insertion of eq.(23) into eq. (11), we get (Pardy, 1983):

Ptotal(ω, t) = P1(ω, t) + P12(ω, t) + P2(ω, t), (24)

where (t′ − t = τ)

P1(ω, t) =
Gω

r1π

∫ ∞
−∞

dτ
sin[2ωr1 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

E2
1(ω

2
0r

2
1 cosω0τ − 1)2 − m4

1

2E2
1

 , (25)
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P2(ω, t) =
Gω

r2π

∫ ∞
−∞

dτ
sin[2ωr2 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

E2
2(ω

2
0r

2
2 cosω0τ − 1)2 − m4

2

2E2
2

 , (26)

P12(ω, t) =
4Gω

π

∫ ∞
−∞

dτ
sinω[r21 + r22 + 2r1r2 cos(ω0τ)]

1/2

[r21 + r22 + 2r1r2 cos(ω0τ)]1/2
cosωτ×

E1E2(ω
2
0r1r2 cosω0τ + 1)2 − m2

1m
2
2

2E1E2

 . (27)

Formulae (24)–(27) represent the power spectrum of gravitons without
radiative corrections. The radiative correction contribution to those for-
mulas can be expressed as follows:

δP1(ω, t) =
Gω

r1π

∫ M2
2

M2
1

dM 2 a(M 2)×

∫ ∞
−∞

dτ
sin[2r1[ω

2 −M 2]1/2 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

E2
1(ω

2
0r

2
1 cosω0τ − 1)2 − m4

1

2E2
1

 , (28)

δP2(ω, t) =
Gω

r2π

∫ M2
2

M2
1

dM 2 a(M 2)×

∫ ∞
−∞

dτ
sin[2r2[ω

2 −M 2]1/2 sin(ω0τ/2)]

sin(ω0τ/2)
cosωτ×

E2
2(ω

2
0r

2
2 cosω0τ − 1)2 − m4

2

2E2
2

 , (29)

δP12(ω, t) =
4Gω

π

∫ M2
2

M2
1

dM2 a(M 2)

∫ ∞
−∞

dτ
sin[ω2 −M 2]1/2[r21 + r22 + 2r1r2 cos(ω0τ)]

1/2

[r21 + r22 + 2r1r2 cos(ω0τ)]1/2
cosωτ×

E1E2(ω
2
0r1r2 cosω0τ + 1)2 − m2

1m
2
2

2E1E2

 . (30)
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4.6 The quantum energy loss of the binary

In this section we determine the quantum energy loss of the binary caused
by its production of gravitons in case the graviton Green function does
not involve radiative corrections and with radiative corrections. We follow
here the derivation of Pardy (Pardy, 1983). We will show that while the
quantum energy loss without radiative corrections can be solved exactly in
the framework of the source theory, the presence of radiative corrections
makes the problem more complex and the solution of it can be achieved
with the arbitrary accuracy. First, let us approach the problem with the
non-modified propagator of graviton.

Using the following relations

ω0τ = φ+ 2πl, φ ∈ (−π, π), l = 0, ±1, ±2, ... (31)

l=∞∑
l=−∞

cos 2πl
ω

ω0
=

∞∑
l=−∞

ω0δ(ω − ω0l), (32)

defining Pl by relation

P (ω, t) =
∞∑
l=1

δ(ω − ω0l)Pl(ω, t), (33)

and using the definition of the Bessel function J2l(z)

J2l(z) =
1

2π

∫ π

−π
dφ cos

(
z sin

φ

2

)
cos lφ, (34)

from which the derivatives and integral of it follow, we get for P1l and P2l

the following formulas:

Pil =
2Gω

riπ
((E2

i (v
2
i − 1)− m4

i

2E2
i

)
∫ 2vil

0
dx J2l(x) +

4E2
i (v

2
i − 1)v2i J

′
2l(2vil) + 4E2

i v
4
i J
′′′
2l (2vil)), i = 1, 2. (35)

Using r2 = r1 + ϵ, where ϵ is supposed small in comparison with radii
r1 and r2 we get

[r21 + r22 + 2r1r2 cosφ]
1/2 ≈ 2a cos

(
φ

2

)
, (36)

a = r1

(
1 +

ϵ

2r1

)
. (37)

Using the alternative definition of the Bessel function J2l(z),
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J2l(z) =
(−1)l

2π

∫ π

−π
dφ cos

(
z cos

φ

2

)
cos lφ, (38)

we easily derive the corresponding derivatives and integral which we can use
for evaluation of interference term P12l. We get the following approximative
formula (v = aω0):

P12l = (−1)l4Gω
aπ

(
AJ ′′′2l (2vl)−BJ ′2l(2vl) + C

∫ 2vl

0
dy J2l(y)

)
(39)

with

A = E1E2v
2
1v

2
2 (40)

B = 4E1E2v1v2(1− v1v2) (41)

C = E1E2

(
1− 2v1v2 + v21v

2
2

)
− m2

1m
2
2

E1E2
. (42)

Now, we can approach the evaluation of the energy loss formula for the
binary from the power spectral formulas (35) and (39). The energy loss is
defined by the relation

−dU
dt

=
∫
P (ω)dω =

∫
dω

∑
l

δ(ω − ω0l)Pl = −
d

dt
(U1 + U2 + U12). (43)

According to [17] we have:

∑
l=1

J2l(2lv)

l2
=
v2

2
. (44)

After derivation of the last relation with regard to v we have

∑
l=1

lJ ′′′2l (2lv) = 0. (45)

The second and the third relation which is necessary to know are

∑
l=1

2lJ ′2l(2lv) =
v

(1− v2)2
(46)

and
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∑
l=1

l
∫ 2lv

0
J2l(x)dx =

v2

3(1− v2)3
. (47)

So, after application of sums (45), (46) and (47) to equations (35) and (39),
we get:

−dUi

dt
=

Gm2
i v

2
iω0

3πri(1− v2i )3
[6v3i + v2i − 6vi − 3] (48)

and

−dU12

dt
=
∑
l=1

(−1)l4Glω0

aπ

(
AJ ′′′2l (2vl)−BJ ′2l(2vl) + C

∫ 2vl

0
dy J2l(y)

)
,

(49)
where we did not evaluate here the corresponding Kapteyn’s series. In ref.
(Prudnikov, et al., 1983) is shown the second method of evaluation of the
energy loss by the direct ω-integration.

Let us remark finally that derived formulas for the energy loss of the
binary (48) and (49) are general and therefore their sum which forms the
total produced gravitational energy need not to be in coincidence with the
Einstein quadrupole formula because the Einstein derivation is based on
the linearized version of classical gravity.

The evaluation of the additional energy loss corresponding to the ex-
tension of the gravitational propagator involving the radiative corrections
consists in exact evaluation of eqs. (29)–(30). However because of the
specific form of the integrals in these formulas the problem can be solved
only approximately. The very simple method is to use Taylor expansion in
the argument

zi = 2[v2i l
2 −M 2r2i ]

1/2 (50)

or

z12 = 2[v2l2 −M 2a2]1/2 (51)

or

zi ≈ 2vil + δzi, z12 ≈ 2vl + δz12 (52)

with

δzi = −
M2r2i
vil

, δz12 = −
M 2a2

vl
(53)
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From the inequality [v2l2 −M 2r2]1/2 ≥ 0 we get the minimal l is given
by the condition l = 2mr/v where m is the mass of electron and r and v
are corresponding radii and velocities. It may be easy to show that l ≫ 1
and therefore δz are sufficiently small quantities. At the same time the
fine structure constant α which is involved in the mass integral is also very
small. So we can let only the first term in the Taylor expansion. So in our
approximation we obtain the following formulas for the additional power
spectrum :

δPil =
∫ M2

2

M2
1

a(M2)dM2Pil (54)

with

M 2
1 = 4m2, M 2

2 =
l2v2i
r2i

(55)

and

δP12l =
∫ M2

2

M2
1

a(M2)dM2P12l (56)

with

M 2
1 = 4m2, M 2

2 =
l2v2

a2
(57)

Using the substitution

t =
(
1− 4m2/M2

)1/2
(58)

we get the mass integrals in the form (Pardy, 1994; Schwinger, 1973):

Ii =
∫ M2

2

M2
1

a(M2)dM2 =
α

3π

s
2
i

3
− 2si + ln

∣∣∣∣∣1 + si
1− si

∣∣∣∣∣
 (59)

I12 =
∫ M2

2

M2
1

a(M 2)dM 2 =
α

3π

s
2
12

3
− 2s12 + ln

∣∣∣∣∣1 + s12
1− s12

∣∣∣∣∣
 (60)

where

si =

1− 4m2r2i
v2i l

2

1/2

(61)

and
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s12 =

1− 4m2a2

v2l2

1/2

(62)

Then

δPil ≈ Ii(l)Pil (63)

δP12l ≈ I12(l)P12l (64)

and also

−δdUi

dt
≈

∞∑
li=li(min)

Ii(l)Pi, (65)

−δdU12

dt
≈

∞∑
l12=l12(min)

I12(l)P12l, (66)

where for the minimal values of quantities l we have the following relations:

li(min) =
4m2r2i
v2i

, l12(min) =
4m2a2

v2
. (67)

Because of the minimal values of l being very large in comparison with
1, we can use the asymptotical evaluation of the spectrum of gravitons. In
other words we shall consider the so called high-energy gravitons, which
can generate the one-loop radiative corrections.

The evaluation of the power spectral formulas for high-energy gravitons
corresponds to evaluation of the Bessel functions, their derivatives and
integrals for large l.

Using the formulas

J ′′′2l (2lv) ∼ −
(
1− 1

v2

)
J ′2l(2lv), l ≫ 1 (68)

J ′2l(2lv) ∼
1√
3

1

π

(
3

2l1

)2/3
K2/3(l/l1), l≫ 1 (69)

∫ 2lv

0
J2l(y)dy ∼

1√
3

1

π

∫ ∞
l/l1

K1/3(y)dy, l ≫ 1 (70)

l1 =
3

2
(1− v2)−3/2 (71)

K ′2/3 = −
1

2
(K1/3 +K5/3) (72)
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∫ ∞
ξ

K5/3dy ∼
(
π

2ξ

)1/2
e−ξ, ξ = l/l1, ξ ≫ 1 (73)

Kν ∼
(
π

2ξ

)1/2
e−ξ, ξ = l/l1, ξ ≫ 1, (74)

we get explicit asymptotic forms of the power spectral formulas:

Pil(ω) ∼
Gωm2

ri

(
1

6πξi

)1/2
e−ξi(v2i − 3), (75)

where

ξi =
2

3

ω

ω0
(1− v2i )3/2, l = ω/ω0. (76)

Similarly,

P12l(ω, t) ∼
4Gω

a
(−1)l

A(1− v2)2

v2
−B(1− v2) + C

( 1

6πξ

)1/2
e−ξ, (77)

where

ξ =
2

3

ω

ω0
(1− v2)3/2, l = ω/ω0, a = r1 + ϵ/2, v = aω0, (78)

and finally,

P(total)l = P1l + P2l + P12l. (79)

The partial spectral formulas Pil and P12 have the following simple
forms:

Pil ∼ KiL
−l
i l

1/2, (80)

with

Ki =
Gω0m

2

2ri

(
1

π

)1/2 (
1− v2i

)−3/4 (
v2i − 3

)
(81)

and with

Li = exp

{
2

3
(1− v2i )3/2

}
. (82)

For interference term, we have:
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P12l ∼ (−1)lK12L
−l
12 l

1/2 (83)

with

K12 =
Gω0m

2

a

[
A

v2
(1− v2)2 −B(1− v2) + C

] (
1

4π

)3/2 ( 1

1− v2
)9/4

(84)

and with

L12 = exp

{
2

3
(1− v2)3/2

}
(85)

So

−δdEi

dt
≈ Ki

∞∑
l=li(min)

Ii(l)L
−l
i l

1/2, (86)

and

−δdE12

dt
≈ K12

∞∑
l=l12(min)

(−1)lI12(l)L−l12 l
1/2 (87)

and the additional quantum loss of energy caused by the radiative processes
in the graviton propagator is in such a way given approximately by the last
formulas.

The explicit evaluation of sums in the formulas (86) and (87) can be
performed approximately using the so called Euler-McLaurin formula:

l=b∑
l=a

f(l) =
∫ b

a
f(x)dx+

1

2
(f(b) + f(a)) +

1

12
(f ′(b)− f ′(a)) + ...., (88)

where in our case it is a = li(min) or a = l12(min) and b =∞.
It is possible to show that δPi(li(min)) = 0, δP ′i (li(min)) ≈ 0, and At

point l =∞, we get Pil(l =∞) = 0. So, we can transcribe eq. (86) in the
following approximation:

−δdUi

dt
≈ Ki

∫ ∞
l=li(min)

dlIi(l)L
−l
i l

1/2. (89)

The sum in the right-side of equation (87) is evidently zero because of
of the oscillating terms in the right-hand series. So The additional energy-
loss of the binary, which is generated by the switching one loop radiative
corrections in the graviton propagator is reduced to the formula (89). To
our knowledge this formulas was never derived in any version of quantum
gravity.
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5 The Cherenkov radiation of gravitons in the

Schwinger gravity

5.1 Introduction

The fast moving charged particle in a medium when its speed is faster than
the speed of light in this medium produces electromagnetic radiation which
is called the Vavilov-Cherenkov radiation. The prediction of the Cherenkov
radiation came long ago. Heaviside in (1889) investigated the possibil-
ity of a charged object moving in a medium faster than electromagnetic
waves in the same medium becomes a source of directed electromagnetic
radiation. Kelvin (1901) presented an idea that the emission of particles
is possible at a speed greater than that of light. Somewhat later, Som-
merfeld (1904) proposed the hypothetical radiation with a sharp angular
distribution. However, in fact, from experimental point of view, the elec-
tromagnetic Cherenkov radiation was first observed in the early 1900s by
experiments developed by Marie and Pierre Curie when studying radioac-
tivity emission. In essence they observed the emission of a bluish-white
light from transparent substances in the neighborhood of strong radioac-
tive source. But the first attempt to understand the origin of this was
made by Mallet (Mallet, 1926; 1929a; 1929b) who observed that the light
emitted by a variety of transparent bodies placed close to a radioactive
source always had the same bluish-white quality, and that the spectrum
was continuous, with no line or band structure characteristic of fluores-
cence. Unfortunately, these investigations were forgotten for many years.
Cherenkov experiments (Cherenkov, 1934) were performed at the sugges-
tion of Vavilov who opened a door to the true physical nature of this effect
(Bolotovsky, 2009).

This radiation was first theoretically interpreted by Tamm and Frank
(Tamm et al., 1937) in the framework of the classical electrodynamics. The
source theoretical description of this effect was given by Schwinger et al.
(1976) at the zero temperature regime and the classical spectral formula
was generalized to the finite temperature situation and for the massive
photons by author Pardy (1989; 2002). The Vavilov-Cherenkov effect
was also used by author (1997) to possible measurement of the Lorentz
contraction.

The gravitational Cherenkov radiation as the analogue of the electro-
magnetic effect is obviously conditioned by the existence of the gravita-
tional index of refraction. There is a number of discussions concerning
of the propagation of the gravitational waves in the bulk matter with the
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gravitational index of refraction. Szekeres (1971) has found the index of
refraction of the gravitational waves propagating through matter which is
composed of particles in which the incident wave induces quadrupole mo-
ments. Polnarev (1972) and Chesters (1973) have discussed the interaction
of the gravitational waves in a hot gas and Peters (1974) has calculated
the index of refraction of a cold gas of free particles.

In classical electrodynamics, the existence of the Cherenkov radiation
is the natural consequence of the existence of the index of refraction
of a medium. In the analogical gravitational situation the gravitational
Cherenkov radiation is the natural consequence of the existence of the
gravitational index of refraction.

In our article we do not consider the microscopical mechanism generat-
ing the gravitational index of refraction, however, we define the index of
refraction by metric gµν which is involved in the equation for the Green
function in the background gravitational field with metric gµν:

∂µ(
√
−g∂µ)D+g(x) = −

1√
−g

δ(x) (1)

where g is the determinant of the gµν. Now, if we define the background
metric by the following equations

gk0 = 0, gkl = δkl, g00 = −n2 (2)

then, the left side of equation (1) is just the left side of the wave equation
with the index of refraction n and obviously the Green function defined by
eq. (1) is the Green function for propagation of massless particles in the
background medium with velocity c′ = c/n and not c.

On such conditions we derive in this article the power spectral formula
of gravitons in the framework of the Schwinger source theory (Schwinger
et al., 1976; Schwinger, 1970) at zero temperature and using the finite-
temperature graviton propagator we generalize the result for the nonzero
temperature situation.

First, we generalize the graviton action to the situation with the
general metric gµν and then we specify the metric by relations (2). The
derivation of the power spectral formula is analogical to the electromagnetic
case. The obtained result is the gravitational analogue of the Frank-
Tamm formula for the electromagnetic Cherenkov radiation. The finite-
temperature gravitational Cherenkov radiation is derived here by the finite
temperature procedure (Pardy, 1989).
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5.2 The source theory formulation of the problem in the Rie-
mann space-time

Source theory (Schwinger et al., 1976; Schwinger, 1970) is the the-
oretical construction which uses quantum-mechanical particle language.
Initially it was constructed for description of the particle physics situa-
tions occurring in the high-energy physics experiments. However, it was
found that the original formulation simplifies the calculations in the elec-
trodynamics and gravity where the interactions are mediated by photon
or graviton respectively. The special values of mass and spin of photon
or graviton combined with the general laws of quantum mechanics and
special relativity are so restrictive that the essential frameworks of these
fundamental theories are such analogical that it is possible to speak of the
methodological unification of electromagnetism and gravity (Schwinger,
1976). It means that the analogy can be expected also in case of the spe-
cific situation of production of gravitons by motion of particles in medium
of the gravitational index of refraction n.

The basic formula of the source theory is the vacuum to vacuum
amplitude (Schwinger, 1970):

< 0+|0− >= e
i
h̄W (S) (3)

where the minus and plus tags on the vacuum symbol are causal la-
bels,referring to any time before and after space-time region where sources
are manipulated. The exponential form is introduced with regard to the ex-
istence of the physically independent experimental arrangements which has
a simple consequence that the associated probability amplitudes multiply
and corresponding W expressions add (Schwinger et al., 1976; Schwinger,
1970).

In the flat space-time the field of gravitons is described by the amplitude
(3) with the action

W (T ) =

4πG

c4

∫
(dx)(dx′)[T µν(x)D+(x− x′)Tµν(x′)−

1

2
T (x)D+(x− x′)T (x′)] (4)

where the dimensionality of W (T ) is the same as the dimensionality of
the Planck constant h̄. Tµν is the tensor of momentum and energy and for
particle moving along the trajectory x = x(t) it is defined by the equation
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T µν(x) = c2
pµpν

E
δ(x− x(t)) (5)

where pµ is the relativistic four-momentum of a particle with a rest mass
m and

pµ = (E/c,p) (6)

pµpµ = −m2c2 (7)

and the relativistic energy is defined by the known relation

E =
mc2√

1− v2/c2
(8)

where v being the three velocity of the moving particle.
Symbol T (x) in the formula (4) is defined as T = gµνT

µν and symbol
D+(x − x′ ), is the graviton propagator and its explicit form will be
determined later.

In case of the non-flat space-time with the general metric gµν there
exists the system of rules how to transcribe the action W (T ). It follows
from the general relativity theory (Weinberg, 1972) that all equations and
formulas are influenced by gravity in the presence of the gravitational field
expressed by the metrical tensor gµν .The general method how to involve
the effect of gravity on mechanics and electrodynamics consists first in
formulating the equations of motion from the viewpoint of the special
theory of relativity and then in formulating them in the general covariant
way which is equivalent to the situation with the gravitational field on
condition that the system is sufficiently small in comparison with the scale
of the fields. According to Weinberg (1972) the rules generating the general
covariance are as follows:

(dx) −→
√
−g(dx) (9)

Tµν −→
1√
−g

Tµν (10)

Tµν −→ gµαgνβT
αβ (11)

D+ −→ D+g(x, x
′), (12)
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where g is the determinant of the metric tensor gµν. Function D+g(x, x
′) is

the graviton propagator in the gravitational field and in our case it is the
graviton propagator in the metric corresponding to the gravitational index
of refraction n.

In such a way we get the action W (T ) embedded into the space-time
with metric gµν has the following form:

W (T ) =
4πG

c4

∫
(dx)(dx′)[T µν(x)gµαgνβT

αβ(x′)D+g(x, x
′)−

−1
2
gµνT

µν(x)D+g(x, x
′)gαβT

αβ(x′)] (13)

The formula (13) describes the interaction of the particle with zero
mass and spin 2 and spirality ±2—(graviton)—with the metric field
of the external gravity. The procedure of derivation of the general
covariant action is in agreement with discussion in the Yilmaz (1975) article
concerning gravity and source theory.

5.3 The power spectral formula

It may be easy to show that the probability of the persistence of vacuum
is given by the following formula (Schwinger et al., 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d= exp{−

∫
dtdω

c

h̄ω
P (ω, t)} (14)

where we have introduced the so called power spectral function
(Schwinger et al., 1976) P (ω, t). In order to extract this spectral func-
tion from ImW , it is necessary to know the explicit form of the graviton
propagator D+g(x− x′).The physical content of this propagator is analog-
ical to the photon propagator . It involves the property of spreading of
the gravitons with velocity c/n. It means that its explicit form is just the
same as of the photon propagator. With regard to Schwinger et al. (1976)
and eq. (1) with metric (2), we can therefore write for our problem:

D+g(x− x′) =
1

n2

∫ ∞
0

(dk)

(2π)4
eik(x−x

′

|k|2 − n2(k0)2 − iϵ
=

i

4π2cn2

∫ ∞
0
dω

sin nω
c |x− x′|
|x− x′|

e−iω|t−t
′| (15)

Now, using formulas (13), (14) and (15), we get the power spectral
formula in the following form:
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P (ω, t) =
4πG

c4n2

∫
(dx)(dx′)dt′

sin nω
c |x− x′|
|x− x′|

cosω(t− t′)×

[T µν(x, t)gµαgνβT
αβ(x′, t′)− 1

2
gµνT

µν(x, t)gαβT
αβ(x′, t′)] (16)

The Cherenkov radiation in electrodynamics is produced in the linear
case by uniformly moving charge with the constant velocity v = (v, 0, 0).
In the gravitational situation the gravitational Cherenkov radiation is
generated by the energy-momentum tensor of the uniformly linearly moving
particle with the rest mass m and with the constant velocity v. If we
insert the tensor of the energy-momentum of the particle moving along
the trajectory x = vt into eq. (16), then using the metric tensor (2) and
τ = t − t′, and β = v/c, we get instead of the formula (16) the following
relation:

P (ω, t) =
Gω

πvn2
m2

1− β2
β4[1 +

n2

β2
]2
∫ ∞
−∞

dτ
sinnωβτ

τ
cosωτ (17)

The formula (17) contents the known integral:

∫ ∞
−∞

dτ
sinnωβτ

τ
cosωτ =

 π nβ > 1
0 nβ < 1

(18)

Using the integral (18) we finally get the power spectral formula of the
produced gravitons:

P (ω, t) =
Gω

vn2
m2

1− β2
β4[1 +

n2

β2
]2; nβ > 1 (19)

and P (ω, t) = 0 for nβ < 1.
The power spectral formula (19) is the gravitational analogue of the

Frank-Tamm formula for the Cherenkov radiation in electrodynamics.
The dimensionality of P (ω, t) is erg because [G] = cm3g−1s−2, [ω] =

s−1, [m2] = g2, [v−1] = cm−1s. This is in agreement with the definition
of the power spectral formula involved in the energy loss equation of the
produced radiation:

−dE
dt

=
∫
dωP (ω, t) (20)
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5.4 Finite-temperature contribution

The finite-temperature quantum field theory (QFT) was developed a
decade ago and at present time is intensively studied. The first formula-
tion of the finite-temperature QFT was presented by Dolan and Jackiw
(1974), Weinberg (1974) and Bernard (1974) and the first application of it
concerned the effective potential in Higgs theories.

The quantum chromodynamics (QCD) was also studied at finite tem-
perature and densities using the temperature Green functions (Kalash-
nikov, 1984). The systematic examination of the finite temperature effects
in quantum electrodynamics (QED) at one loop order was elaborated by
Donoghue et al. (1985) and by Johansson et al. (1986). The finite temper-
ature Cherenkov electrodynamical power spectral formula in source theory
was also derived (Pardy, 1989).

Here we use the Pardy procedure in order to generalize the formula (19)
to the finite-temperature regime. It consists in the real-time formulation
in the following transformation in the graviton propagator (15):

1

|k|2 − n2(k0)2 − iϵ
−→ 1

|k|2 − n2(k0)2 − iϵ
+

2πi

e
|E|
kBT − 1

δ(|k|2 − n2(k0)2)

(21)
where E = h̄ω is the energy of graviton, kB is the Boltzmann constant
and T is temperature of the graviton gas in the gravitational medium with
the index of refraction n. In such a way the considered situation is the
analogue of the electrodynamic one.

The transformation (21) enables immediately separate the finite-
temperature part of the Green function. After inserting eq. (21) into eq.
(15) we get using some obvious matematical operations the temparature
part of the D+g-function in the following form:

D+gT (x− x′) =
i

2π2cn2

∫ ∞
0
dω

sin nω
c |x− x′|
|x− x′|

cosω(t− t′)
exp(h̄ω/kBT )− 1

(22)

It is obvious that D+gT is pure imaginary. Using definition (14), we
get for the finite-temperature part of the spectral function the following
formula:

PT (ω, t) =
2

exp(h̄ω/kBT )− 1
×

4πG

c4n2

∫
(dx)(dx′)dt′

sin nω
c |x− x′|
|x− x′|

cosω(t− t′)×
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[T µν(x, t)gµαgνβT
αβ(x′, t′)− 1

2
gµνT

µν(x, t)gαβT
αβ(x′, t′)] (23)

The last formula differs from the zero-temperature formula only by the
multiplicative factor 2/[exp(h̄ω/ckBT ) − 1]. The total spectral formula is
given obviously by the relation

Ptotal = PT=0 + PT = PT=0

1 + 2

exp(h̄ω/kBT )− 1

 (24)

or, after some algebra and using formula (19):

Ptotal =
Gω

vn2
m2

1− β2
β4[1 +

n2

β2
]2 coth

(
h̄ω

2kBT

)
; nβ > 1 (25)

and Ptotal = 0 for nβ < 1.
The power spectral formula (25) is the finite-temperature generaliza-

tion of the power spectral formula for the zero-temperature gravitational
Cherenkov radiation (19). This formula was never derived in the conven-
tional gravity and at the same time is original in the Schwinger source
theory.

6 Energy shift of H-atom electrons due to Gibbons-

Hawking thermal bath

6.1 Introduction

The Gibbons-Hawking effect is the statement that a temperature can be
associated to each solution of the Einstein field equations that contains
a causal horizon. It is named after Gary Gibbons and Stephen William
Hawking.

Schwarzschild spacetime contains an event horizon and so can be
associated with temperature. In the case of Schwarzschild spacetime this
is the temperature T of a black hole of mass M , satisfying T/M .

De Sitter space which contains an event horizon has the temperature T
proportional to the Hubble parameter H. We consider here the influence
of the heat bath of the Gibbons-Hawking photons on the energy shift of
H-atom electrons.

The considered problem is not in the scientific isolation, because some
analogical problems are solved in the scientific respected journals. At
present time it is a general conviction that there is an important analogy
between black hole and the hydrogen atom. The similarity between black
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hole and the hydrogen atom was considered for instance by Corda (2015a),
who discussed the precise model of Hawking radiation from the tunneling
mechanism. In this article an elegant expression of the probability of
emission is given in terms of the black hole quantum levels. So, the
system composed of Hawking radiation and black hole quasi-normal modes
introduced by Corda (2015b) is somewhat similar to the semiclassical Bohr
model of the structure of a hydrogen atom.

The time dependent Schrödinger equation was derived for the sys-
tem composed by Hawking radiation and black hole quasi-normal modes
(Corda, 2015c). In this model, the physical state and the correspondent
wave function are written in terms of an unitary evolution matrix instead of
a density matrix. Thus, the final state is a pure quantum state instead of a
mixed one and it means that there is no information loss. Black hole can be
well defined as the quantum mechanical systems, having ordered, discrete
quantum spectra, which respect ’t Hooft’s assumption that Schrödinger
equations can be used universally for all dynamics in the universe.

Thermal photons by Gibbons and Hawking form so called blackbody,
which has the distribution law of photons derived in 1900 by Planck (1900,
1901), (Schöpf, 1978). The derivation was based on the investigation of
the statistics of the system of oscillators inside of the blackbody. Later
Einstein (1917) derived the Planck formula from the Bohr model of atom
where electrons have the discrete energies and the energy of the emitted
photons are given by the Bohr formula h̄ω = Ei−Ef , Ei, Ef are the initial
and final energies of electrons.

6.2 The modified Coulomb potential

Now, let us calculate the modified Coulomb potential due to blackbody.
The starting point of the determination of the energy shift in the H-atom
is the potential V0(x), which is generated by nucleus of the H-atom. The
potential at point V0(x+ δx), evidently is (Akhiezer, et al., 1953; Welton,
1948):

V0(x+ δx) =

{
1 + δx∇+

1

2
(δx∇)2 + ...

}
V0(x). (1)

If we average the last equation in space, we can eliminate so called the
effective potential in the form

V (x) =

{
1 +

1

6
(δx)2T∆+ ...

}
V0(x), (2)

56



where (δx)2T is the average value of te square coordinate shift caused by
the thermal photon fluctuations. The potential shift follows from eq. (2):

δV (x) =
1

6
(δx)2T∆V0(x). (3)

The corresponding shift of the energy levels is given by the standard
quantum mechanical formula (Akhiezer, et al., 1953)

δEn =
1

6
(δx)2T (ψn∆V0ψn). (4)

In case of the Coulomb potential, which is the case of the H-atom, we
have

V0 = −
e2

4π|x|
. (5)

Then for the H-atom we can write

δEn =
2π

3
(δx)2T

e2

4π
|ψn(0)|2, (6)

where we used the following equation for the Coulomb potential

∆
1

|x|
= −4πδ(x). (7)

Motion of electron in electric field is evidently described by elementary
equation

δẍ =
e

m
ET , (8)

which can be transformed by the Fourier transformation into the following
equation

|δxTω|2 =
1

2

 e2

m2ω4

E2
Tω, (9)

where the index ω concerns the Fourier component of above functions.
On the basis of the Bethe idea of the influence of vacuum fluctuations

on the energy shift of electron (Bethe, 1947), the following elementary re-
lations was used by Welton (1948), Akhiezer et al. (1953) and Berestetzkii
et al. (1999):

1

2
E2

ω =
h̄ω

2
(10)
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and in case of the thermal bath of the blackbody, the last equation is of
the following form (Isihara, 1971):

E2
Tω = ϱ(ω) =

 h̄ω3

π2c3

 1

e
h̄ω
kT − 1

, (11)

because the Planck law in (11) was written as

ϱ(ω) = G(ω) < Eω >=

 ω2

π2c3

 h̄ω

e
h̄ω
kT − 1

, (12)

where the term

< Eω >=
h̄ω

e
h̄ω
kT − 1

(13)

is the average energy of photons in the blackbody and

G(ω) =
ω2

π2c3
(14)

is the number of electromagnetic modes in the interval ω, ω + dω.
Then,

(δxTω)
2 =

1

2

 e2

m2ω4

 h̄ω3

π2c3

 1

e
h̄ω
kT − 1

, (15)

where (δxTω)
2 involves the number of frequencies in the interval (ω, ω+dω).

So, after some integration, we get

(δx)2T =
∫ ω2

ω1

1

2

 e2

m2ω4

 h̄ω3

π2c3

 dω

e
h̄ω
kT − 1

=
1

2

 e2
m2

( h̄

π2c3

)
F (ω2 − ω1),

(16)
where F (ω) is the primitive function of the omega-integral

J =
1

ω

1

e
h̄ω
kT − 1

, (17)

which cannot be calculated by the elementary integral methods and it is
not involved in the tables of integrals.

Frequencies ω1 and ω2 will be determined with regard to the existence
of the fluctuation field of thermal photons. It was determined in case of the
Lamb shift (Bethe, 1947 ; Welton, 1947) by means of the physical analysis
of the interaction of the Coulombic atom with the surrounding fluctuation
field. We suppose here that the Bethe and Welton arguments are valid
and so we take the frequencies in the Bethe-Welton form. In other words,
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electron cannot respond to the fluctuating field if the frequency which is
much less than the atom binding energy given by the Rydberg constant
(Rohlf, 1994) ERydberg = α2mc2/2. So, the lower frequency limit is

ω1 = ERydberg/h̄ =
α2mc2

2h̄
, (18)

where α ≈ 1/137 is so called the fine structure constant.
The specific form of the second frequency follows from the elementary

argument, that we expect the effective cutoff, since we must neglect the
relativistic effect in our non-relativistic theory. So, we write

ω2 =
mc2

h̄
. (19)

If we take the thermal function of the form of the geometric series

1

e
h̄ω
kT − 1

= q(1 + q2 + q3 + .....); q = e−
h̄ω
kT , (20)

∫ ω2

ω1

q(1 + q2 + q3 + .....)
1

ω
dω = ln |ω|+

∞∑
k=1

(− h̄ω
kT )

k

k!k
+ ....; q = e−

h̄ω
kT (21)

and the first thermal contribution is

Thermal contribution = ln
ω2

ω1
− h̄

kT
(ω2 − ω1), (22)

Then, with eq. (6)

δEn ≈
2π

3

 e2
m2

( h̄

π2c3

) (
ln
ω2

ω1
− h̄

kT
(ω2 − ω1)

)
|ψn(0)|2, (23)

where (Sokolov et al., 1962)

|ψn(0)|2 =
1

πn2a20
(24)

with

a0 =
h̄2

me2
. (25)

Let us only remark that the numerical form of eq. (23) has deep
experimental astrophysical meaning.

In article by author (Pardy, 1994), which is the continuation of author
articles on the finite-temperature Cherenkov radiation and gravitational
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Cherenkov radiation (Pardy, 1989a; ibid., 1989b), the temperature Green
function in the framework of the Schwinger source theory was derived
in order to determine the Coulomb and Yukawa potentials at finite-
temperature using the Green functions of a photon with and without
radiative corrections, and then by considering the processes expressed by
the Feynman diagrams.

The determination of potential at finite temperature is one of the
problems which form the basic ingredients of the quantum field theory
(QFT) at finite temperature. This theory was formulated some years
ago by Dolan and Jackiw (1974), Weinberg (1974) and Bernard (1974)
and some of the first applications of this theory were the calculations of
the temperature behavior of the effective potential in the Higgs sector
of the standard model. Information on the systematic examination of
the finite temperature effects in quantum electrodynamics (QED) at one-
loop order was given by Donoghue, Holstein and Robinett (1985). Partovi
(1994) discussed the QED corrections to Plancks radiation law and photon
thermodynamics.

A similar discussion of QED was published by Johansson, Peressutti
and Skagerstam (1986) and Cox et al. (1984). Serge Haroche (2012) and
his research group in the Paris microwave laboratory used a small cavity
for the long life-time of photon quantum experiments performed with the
Rydberg atoms. We considered here the thermal gas corresponding to the
Gibbons- Hawking theory of space-time (at temperature T) as the preamble
for new experiments for the determination of the energy shift of H-atom
electrons interacting with the Gibbons- Hawking on thermal gas.

7 The space-time deformation origin of gravity

7.1 Introduction

Space-time is a medium which can be deformed in such a way that the
deformation of space-time is equivalent to the existence of the Riemann
metric being equivalent to gravity. The deformation of space-time by two
massive bodies generates the Newton attractive force between them. This
situation has an analogue in the attraction of two electrons (the Cooper
pair) in the solid state medium where the lattice is deformed by electrons
and leads to the superconductivity of the medium. In other words, the
Einstein metric for the two body system can be transformed to the Newton
gravitation formula .

There is a possibility that during the big bang, supernova explosion,
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gravitational collapse, collisions of the high-energy elementary particles and
so on, the deformations called dislocations in space-time are created and
the deflection of light caused by the dislocations in space-time is physically
possible .

Einstein gives no explanation of the origin of the metric, or, metrical
tensor. He only introduces the Riemann geometry as the basis for the
general relativity (Kenyon, 1996). He ”derived” the nonlinear equations
for the metrical tensor (Chandrasekhar, 1972) and never explained what is
microscopical origin of the metric of space-time. Einstein assumption was
that metric follows from differential equations as their solutions. However,
the metric has an microscopical origin similarly to the situation where
the phenomenological thermodynamics has also the microscopical and
statistical origin.

Let us remember the different origins of metric. First, let us show that
metric is generated by the coordinate transformations. We demonstrate it
using the spherical transformations:

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (1)

The square of the infinitesimal element is as follows:

ds2 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dφ2. (2)

We see that the nonzero components of the metrical tensor are

g11 = 1, g22 = r2, g33 = r2 sin2 θ. (3)

For r = const, it is dr = 0 and the element of the length is the element
of the 2-dimensional sphere in the 3-dimensional space. The resulting
metric is not the 3-dimensional one but only 2-dimensional in the 3D
space. So, in order to generate the 2D metric, it is necessary to use
the 3D transformations in 3D space. If we want the generate the metric
on the 3D sphere, then it is necessary to use the 4D transformations for
x, y, z, ξ, where ξ is the extra-coordinate. So, the metric is generated by
the curvilinear transformations. Einstein suggested the possibility that
metric can be generated by gravitational field. He created the general
theory of relativity and gravitation. Henri Poincaré never accepted the
metric generated by the gravitational field. According to Poincaré, light
interacting with gravity is not the geometrical problem but the optical one.

The Riemann element (ds)2 is defined as

ds2 = gµνdx
µdxν (4)
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and it is composed from the four infinitesimal coordinate differentials. It
means if we want to generate the metric of this 4-dimensional space-time
by the coordinate transformations, then it necessary to use the coordinate
transformations in 5D space-time. Or, in other words, it is necessary
to introduce the extra-dimension. Einstein radically refused the extra-
dimensions and he pedagogically explained the curvature of a space-time
by introduction the metric which depends on the temperature of the surface
(Einstein, 1919). Of course such explanation of the origin of metric is not
generally accepted in the textbooks and monographs (Rindler, 2003). It
was only pedagogical explanation. Some mathematicians (Natorp, 1901)
tried to proof that our space is 3-dimensional and they automatically
excluded the extra-dimensions. However, such proofs are misleading
because we know from the Bertrand Russell philosophy of mathematics
that the mathematical theorems are not existential. In other words,
mathematics cannot say anything on the existence of electron, proton,
quarks, strings and so on, because these things does not follow from the
mathematical axiomatic system. They are only things of the external world
and not of the world of mathematics. At the same time pure mathematics
cannot predict any fundamental physical constant, because every physical
constant including also the fundamental ones is of the physical origin.
Mathematics gives only such informations which follow from its axiomatical
systems.

Extra-dimensions can be introduced only by the definition and the
existence of them cannot be mathematically proved. We know that the
3-dimensional space was confirmed by the most precise theory in the
history of physics - QED, and it means that the extra-dimensions were
not confirmed. Also the Planck law of the blackbody radiation in 4D space
differs form the Planck law in 3D space. The formation of galaxies in
the 3D space substantially differs from the formation of galaxies in the
4-dimensional space.

Einstein avoids the extra-dimensionality and compactification. He uses
argumentation (Einstein, 1919) on the existence of the non-euclidean
geometry using the 2D hot plane, where the magnitude of a ruler changes
from point to point being dependent on the temperature at a given point.
This method was also used by Feynman (Feynman, 1999). Rindler does
not use this method of argumentation (Rindler, 2003).
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7.2 The metric of space-time as deformation

So, the question we ask, is, what is the microscopical origin of the metric
of space-time. We postulate that the origin of metric is the specific
deformation of space-time continuum. We take the idea from the mechanics
of continuum and we apply it to the space-time medium. The similar
approach can be found in the Tartaglia article and his e-print (Tartaglia,
1995), where space-time is considered as a deformable medium.

The mathematical description of the 3-dimensional deformation is given
for instance in (Landau, et al., 1995). The fundamental quantity is the
tensor of deformation expressed by the relative displacements ui as follows:

uik =

∂ui
∂xk

+
∂uk
∂xi

+
∂ul

∂xi
∂ul
∂xk

 ; i, k = 1, 2, 3. (5)

The last definition can be generalized to the 4-dimensional situation by
the following relation:

uµν =

(
∂uµ
∂xν

+
∂uν
∂xµ

+
∂uα
∂xµ

∂uα

∂xν

)
; µ, ν = 0, 1, 2, 3, (6)

with x0 = ct, x1 = x, x2 = y, x3 = z.
In order to establish the connection between metric gµν and deformation

expressed by the tensor of deformation, we write for the metrical tensor
gµν of the squared space-time element

ds2 = gµνdx
µdxν, (7)

the following relation

gµν = (ηµν + uµν), (8)

where

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (9)

Instead of work with the metrical tensor gµν, we can work with the
tensor of deformation uµν and we can consider the general theory of
relativity as the 4-dimensional theory of some real deformable medium as a
corresponding form of the metrica theory. First, let us test the deformation
approach to the space-time in case of the non-relativistic limit.

63



7.3 The non-relativistic test

The Lagrange function of a point particle with mass m moving in a
potential φ is given by the following formula (Landau, et al., 1987):

L = −mc2 + mv2

2
−mφ. (10)

Then, for a corresponding action we have

S =
∫
Ldt = −mc

∫
dt

c− v2

2c
+
φ

c

 , (11)

which ought to be compared with S = −mc ∫ ds. Then,
ds =

c− v2

2c
+
φ

c

 dt. (12)

With dx = vdt and neglecting higher derivative terms, we have

ds2 = (c2 + 2φ)dt2 − dx2 =

(
1 +

2φ

c2

)
c2dt2 − dx2. (13)

The metric determined by this ds2 can be be obviously related to the
uα as follows:

g00 = 1 + 2∂0u0 + ∂0u
α∂0uα = 1 +

2φ

c2
. (14)

We can suppose that the time shift caused by the potential is small and
therefore we can neglect the nonlinear term in the last equation. Then we
have

g00 = 1 + 2∂0u0 = 1 +
2φ

c2
. (15)

The elementary consequence of the last equation is

∂0u0 =
∂u0
∂(ct)

=
φ

c2
, (16)

or,

u0 =
φ

c
t+ const. (17)

Using u0 = g00u
0, or, u0 = g−100 u0 =

φ
c t, we get with const. = 0 and

u0 = ct′ − ct, (18)
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the following result

t′(φ) = t(0)

(
1 +

φ

c2

)
, (19)

which is the Einstein formula relating time in the zero gravitational field
to time in the gravitational potential φ. The time interval t(0) measured
remotely is so called the coordinate time and t(φ) is local proper time.
The remote observer measures time intervals to be deleted and light to be
red shifted. The shift of light frequency corresponding to the gravitational
potential is, as follows (Landau et al., 1987).

ω = ω0

(
1 +

φ

c2

)
. (20)

The precise measurement of the gravitational spectral shift was made
by Pound and Rebka in 1960. They predicted spectral shift ∆ν/ν =
2.46× 10−15 (Kenyon, 1996). The situation with the red shift is in fact the
closed problem and no additional measurement is necessary.

While we have seen that the red shift follows from our approach
immediately, without application of the Einstein equations, it is evident
that the metric determined by the Einstein equations can be expressed
by the tensor of deformation. And vice versa, to the every tensor of
deformation the metrical tensor corresponds.

7.4 The deflection of light by the screw dislocation

The problem of the light deflection by the screw dislocation is the problem
of the recent years (Katanaev et al., 1992), (Katanaev et al., 1998),
(Moraes, 1996), (Andrade, 1998), and so on. The motivation was the old
problem of the deflection of light by the gravitational field which according
to Einstein causes the curvature of space-time.

We know from the history of physics that the deflection of light by
the gravitational field of Sun was first calculated by Henri Cavendish
in 1784 and it was never published. The first published calculation was
almost 20 years later in 1981 by the Prussian astronomer Johann Soldner.
Einstein’s calculation in 1911 was 0.83 seconds of arc. Cavednish and
Soldner predicted a deflection 0.875 seconds of arc. So, the prediction of
Cavendish, Soldner (Brown, 2002) and Einstein in 1911 were approximately
half of the correct value which was derived in 1919 by Einstein.

Einstein in 1911 used the principle of equivalence for the determination
of the light deflection. As was shown by (Ferraro 2003) the Einstein
application of this principle was incorrect. The correct application was
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given only by Ferraro in order to get the correct value. The deflection
of light by the topological defects as dislocations, disclinations and so on
was, to my knowledge, never calculated by Einstein. In the recent time
such calculation was performed by (Katanaev et al., 1992; 1998; Moraes,
1996; Padua, 1998; Andrade, 1998) and so on. Here we use the different
and more simple method and the definition of the screw dislocations which
differs from the above authors.

According to (Landau et al., 1995), the screw deformation in the
mechanics of continuum was defined by the tensor of deformation which is
in the cylindrical coordinates as

uzφ =
b

4πr
, (21)

where b is the z-component of the Burgers vector. The Burgers vector of
the screw dislocation has components bx = by = 0, bz = b. The Burgers
vector is for the specific dislocation a constant geometrical parameter.

The postulation of the space-time as a medium enables to transfer the
notions of the theory of elasticity into the relativistic theory of space-time
and gravity. The considered transfer is of course the heuristical operation,
nevertheless the consequences are interesting. To our knowledge, the
problem, which we solve is new.

We know that the metric of the empty space-time is defined by the
coefficients in the relation:

ds2 = c2dt2 − dr2 − r2dφ2 − dz2. (22)

If the screw deformation is present in space-time, then the generalized
metric is of the form:

ds2 = c2dt2 − dr2 − r2dφ2 − 2uzφdzdφ− dz2, (23)

or,

ds2 = c2dt2 − dr2 − r2dφ2 − 2b

4πr
dzdφ− dz2. (24)

The motion of light in the Riemann space-time is described by the
equation ds = 0. It means, that from the last equation the following
differential equation for photon follows:

0 = c2 − ṙ2 − r2φ̇2 − b

2πr
żφ̇− ż2. (25)
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Every parametric equations which obeys the last equation are equation
of motion of photon in the space-time with the screw dislocation. Let us
suppose that the motion of light is in the direction of the z-axis. Or, we
write approximately:

r ≈ a; ż = v. (26)

Then, we get equation of φ:

2πa3φ̇2 + bvφ̇ = 2πa(c2 − v2). (27)

We suppose that the solution of the last equation is of the form

φ = At. (28)

Then, we get for the constant A the quadratic equation

2πa3A2 + bvA+ 2πa(v2 − c2) = 0 (29)

with the solution

A1/2 =
−bv ±

√
b2v2 − 16π2a4(v2 − c2)

4πa3
. (30)

Using approximation v ≈ c, we get that first root is approximately zero
and for the second root we get:

A ≈ −bc
2πa3

, (31)

which gives the function φ in the form:

φ ≈ −bc
2πa3

t. (32)

Then, if z2 − z1 = l is a distance between two points on the straight
line parallel with the axis of screw dislocation then, ∆t = l/c, c being the
velocity of light. For the deflection angle ∆φ, we get:

∆φ ≈ −bl
2πa3

. (33)

So, we can say, that if we define the screw dislocation by the metric of
eq. (24), then, the deflection angle of light caused by such dislocation is
given by eq. (33). The result (33) is only approximative and we do not
know what is the accuracy of such approximation. This problem can be
solved using the approximation theory.
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Let us remark that the exact trajectory of photon in the field of the
screw dislocation can be determined from the trajectory equation

d2xµ
ds2

+ Γαβ
µ

dxα
ds

dxβ
ds

= 0. (34)

which was used in many textbooks. However, According to Landau et
al. (1987), the equation is contradictory for photon, because in this case
ds = 0, and it means that the last equation is not rigorously defined.
Landau et al. derived the deflection of light from the Hamilton-Jacobi
equation for particle with the rest mass m = 0, which moves with the light
velocity. However, this approach is not also absolutely correct because in
the classical field theory it is not possible to define photon. Photon is a
quantum object. Rigorous derivation of the deflection of light was given
by Fok (1961), who used the mathematical object ”the front of wave” and
his result is valid without any doubt.

Let us remark that equation (34) has two meanings: geometrical and
physical. The geometrical meaning uses gµν which follows from the
curvilinear transformations and the physical meaning of gµν is metric of
the gravitational field calculated by means of the Einstein equation. The
second meaning is the Einstein postulate and cannot be derived from so
called pure mathematics. Only experiment can verify the physical meaning
of equation (34).

The problem of interaction of light with the gravitational field is not
exhausted by our example. We can define more difficult problems such
as deflection of the coherent light, laser light, squeezed light, soliton light,
massive light with massive photons, light of the entangled photons and so
on. No of these problems was still solved because they are only for brilliant
experts very well educated. And this is the pedagogical problem.

7.5 The physical generation of the screw dislocation

Now the question arises, how to determine the mechanical or electrodynam-
ical or laser system which will generate the screw dislocation in space-time.
We know, that for real crystals the generation of the screw dislocation is
the elementary problem of the physics of crystals. If we use Einstein’s
equations, then the problem is mathematical one. Or, to see it, let us
write the Einstein equations with the cosmological constant λ.

Rµν −
1

2
gµνR + λgµν = −κTµν, (35)

where Tµν is the tensor of the energy and momentum.
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In case of the perfect fluid and pressure, tensor of the energy and
momentum is as follows:

Tµν(mech) = (ϱ+ p)uµuν + pgµν, (36)

where ϱ is a density and p is a pressure of the fluid. The quantities uµ are
four velocities of the fluid.

In case that the tensor of the energy and momentum is created electro-
magnetically, then,

Tµν(elmag) =
1

4π

(
FµαF

α
ν −

gµν
4
F αβFαβ

)
. (37)

where Fαβ is the tensor of the electromagnetic field.
So, because gµν is determined as the metrical tensor corresponding to the

screw dislocation of the space-time, the left side of the Einstein equations
is given and the problem is to find the mechanical and electrodynamical
quantities, which determine corresponding tensors of energy and momen-
tum.

The surprising thing is the fact that if there is no curvature of space
time, than thanks to the existence of the cosmological constant, the
solution corresponding to the mechanical or electrodynamical systems is
not absolutely zero. The cosmological constant is in such a way very
important quantity and evidently cannot be zero. The dislocations of
space-time are in harmony with the cosmological constant.

Let us remark that Einstein equations were derived intuitively by Ein-
stein (Chandrasekhar, 1972) and rigorously by Hilbert from the Lagrangian
using the variational method (Kenyon, 1996). The Hilbert derivation is
pure mathematical one and it means it is very simple. This variational
method enables to start relativity physics from the general theory and to
derive the special relativity as a classical limit of the general theory. This
approach was presented by Rindler (Rindler, 1994). To our knowledge,
such unconventional but very elegant approach was not presented in any
textbook on relativity theory.

The tensor of the energy momentum in equation (36) is rigorously de-
fined. The problem is, how to identify the distribution of the cosmological
objects with this tensor. To our knowledge, there is no mathematical the-
orem for such rigorous identification.
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7.6 Cosmological consequences

The verification of our theory and at the same time the existence of the
nonzero cosmological constant can be performed during the measurement
of the cosmical microwave background radiation. In case of the existence
of some defects in space-time the distributions of this radiation will be
inhomogeneous and it will depend on the density and orientations of the
dislocations, screw dislocations, disclinations and other topological defects
of the space-time.

It is evident that also in case that the curvature caused by the some
topological defect is zero, then, thanks to the existence of the cosmological
constant in the Einstein equations the defects can be generated mechani-
cally or electrodynamically as it follows from the Einstein equations. So,
investigation of the cosmical microwave background can inform us on the
distribution of the topological defects in the space-time and on the possible
origins of these defects (Rey et al., 1999).

7.7 The laboratory verification of a theory

We can consider the situation which is analogical to the space-time situa-
tion. In other words, we can consider the modified Planckian experiment
with the black body radiation. The difference from the original Planck situ-
ation is that we consider inside of the black body some optical medium with
dislocations. Then, in case that the optical properties depend also on the
presence of dislocations, in other words, that the local index of refraction
depend on presence of dislocations, then we can expect the modification of
the Planck law of the blackbody radiation. We know that the most simple
problem with the constant index of refraction was calculated (Kubo, 1965).
To our knowledge, although this is only so called table experiment, it was
never performed in some optical laboratory. It is possible to expect that
during the experiments some surprises will appear. However, the practical
situation can be realized, if we prepare some crystal with the screw dislo-
cations with given orientation. Then, in case that the optical properties
are expressed by means of metric in crystal, the metric will determine the
optical path of light in the crystal and it means that the screw disloca-
tions can be investigated by optical methods and not only by the electron
microscope.
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8 Summary and Perspectives

The book is a preamble of the unification of the Lobachevsky-Beltrami-
Fok geometry with the physics of elementary particles and beyond. The
starting point was the Fermat principle formulated by means of variational
calculus. The Poincaré model of the Lobachevsky geometry was formulated
as the optical model of the interaction of light with optical medium in space.
Beltrami showed that the Lobachevsky geometry formulas follows from
the spherical geometry by the elementary (Beltrami) operation r → ir.
The operation is not involved in the famous Euler monograph on spherical
geometry (Euler, 1896). We have generalized the Beltrami operation to
the operation r → ir+ ϱ, r.r → r.r∗, in subsection 1.4, and by r → r+ iρ,
in section 1.5. Symbols ϱ and ρ are introduced as the new geometrical
constants, which should not to be identified with the Einstein cosmological
constant Λ.

Fok formulated the Lobachevsky geometry physically as the geometry
of the relativistic velocity space. From this approach follows the adequate
description of the decay of the neutral π-meson into two γ-photons. The
angle between velocities of the gamma photons in the rest system of neutral
meson is evidently π. However, according to the special theory of relativity
the angle is transformed in the laboratory system innharmony with the
Lorentz transformation and it is smaller than π. It is equivalent to the
statement that the Lobachevsky angle Π is smaller than π/2, or, Π < π/2.
Such experiment can be considered as the confirmation of the Lobachevsky
geometry in the elementary particle physics. Similarly, the decay of the
neutral η-meson η0 → γ + γ, axion A0 → γ + γ, or, the Higgs boson decay
H0 → γ + γ, are the confirmation of the Lobachevsky geometry in the
elementary particle physics and at present time can be tested in CERN.

Lobachevsky, in his pangeometry, presents the idea (many years before
Einstein) that his geometry is probably realized in the near vicinity of
atoms and molecules and also in the cosmical space (Norden, 1956). Now,
we see that his geometry is realized in particle physics of LHC in CERN.
On the other hand, Lobachevsky metric enables to formulate new problems
such as the Lorentz-Dirac equation in the Lobachevsky geometry, the
Bargaman-Michel-Telegdi (BMT) equation with the bremstrahlung term
in the Lobachevsky geometry, the quantum hall physics in the Lobachevsky
geometry, graphene physics in the Lobachevsky geometry, or, the Feynman
integral in the Lobachevsky space-time and so on.

The Fermat principle enables to get the circular optical trajectories,
or in other words the confinement of light by optical medium - so called
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optical black hole. It may be easy to prove it.
Let be the index of refraction n(r) in the Euclidean plane with polar

coordinates r, φ. The explicit form of the Fermat principle

δ
∫
n(r)ds = 0 (1)

is (Marklund et al., 2002)

δ
∫
n(r)

√√√√√1 + r2
(
dφ

dr

)2
dr = 0. (2)

The last equation is equivalent to the Euler-Lagrange variational equa-
tion for the functional F (φ, φ′)

Fφ −
d

dr
Fφ′ = 0. (3)

Or,

d

dr

n(r) r2dφ/dr√
1 + r2

(
dφ
dr

)2
 = 0. (4)

It is evident that the elimination of dφ/dr is as follows:

dφ

dr
= ± C√

r4n2(r)− C2r2
. (5)

The circular trajectory is defined by equation dr/dφ = 0, from which
follows the index of refraction for the so called optical black hole

n(r) =
const

r
. (6)

It is well known the Bose-Einstein condensate, where the optical light
pulses travel with extremely small group velocity about 17 meters per
second (Hau et al. 1999). This is the possible way for testing the optical
black hole.

Without doubt, the monochromatic optical beam is composed from
photons of energy E = h̄ω. While the rest mass of photon is zero,
the relativistic mass follows from the Einstein relation E = mc2. After
identifying the relativity energy and quantum energy of photon we have

m =
h̄ω

c2
. (7)
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The centrifugal force acting on photon moving with velocity v in optical
medium along the circle with radius r is for the photon mass as follows:

Fcentrifugal =
h̄ω

c2
v2

r
. (8)

The centrifugal force and the Kapitza effect (thermal fluctuations of the
index of refraction) (Landau, et al., 1982) are the origin of the instability
of the photon trajectory in the optical medium. So, the experimental
investigation of the confinement of photon in the optical medium is
meaningful at temperature T ≈ 0. There is no doubt that the investigation
of the photon trajectories is the crucial problem of the optical physics and
it is interesting for all optical laboratories over the world.

The maximal acceleration constant was introduced in section 2 and it
was derived as the kinematical constant and it differs from the Caianiello
(1981) definition following from quantum mechanics. Our constant cannot
be determined by the system of other physical constants. It is an analogue
of the numeric velocity of light which cannot be composed from others
physical constants, or, the Heisenberg fundamental length in particle
physics. The nonlinear transformations (20) changes the Minkowski metric

ds2 = c2dt2 − dx2 − dy2 − dz2 (9)

to the new metric with the Riemann form. Namely:

ds2 = α2t2dt2 − dx2 − dy2 − dz2 (10)

and it can be investigated by the methods of differential geometry.
If some experiment will confirm the existence of kinematical maximal

acceleration α, then it will have certainly crucial consequences for Einstein
theory of gravity because this theory does not involve this factor. Also
the cosmological theories constructed on the basis of the original Einstein
equations will require modifications. The so called Hubble constant will
be changed and the scenario of the accelerating universe modified.

Also the standard model of particle physics and supersymmetry theory
will require generalization because they does not involve the maximal
acceleration constant. It is not excluded that also the theory of parity
nonconservation will be modified by the maximal acceleration constant. In
such a way the particle laboratories have perspective programes involving
the physics with maximal acceleration. Many new resuls can be obtained
from the old relativistic results having the form of the mathematical objects
involving function f(v/c).

73



The prestige problem in the modern theoretical physics - the theory
of the Unruh effect, or, the existence of thermal radiation detected by
accelerated observer - is in the development (Fedotov et al., 2002) and the
serious statement, or comment to the relation of this effect to the maximal
acceleration must be elaborated.

It is not excluded that the maximal acceleration constant will be
discovered by International Linear Collider (ILC). The unique feature of
the ILC is the fact that its CM energy can be increased gradually simply
by extending the main linac.

Let us remark that it is possible to extend and modify quantum field
theory by maximal acceleration. It is not excluded that the kinematical
maximal acceleration constant will enable to reformulate the theory of
renormalization.

The derived formulas with uniform acceleration a and can be applied
and verified in case of the uniform equivalent gravity according to the
principle of equivalence.

The section 4 has dealed with the calculation of the Thomas precession
caused by accelerated motion of the systems. In other words we have shown
show that Thomas precession can be initiated by acceleration of a point
particle. The problem of acceleration of charged particles or systems of
particles is the permanent and the most prestige problem in the accelerator
physics. Particles can be accelerated by different ways. Usually by the
classical electromagnetic fields, or, by light pressure of the laser fields
(Baranova et al., 1994; Pardy, 1998, 2002). The latter method is the
permanent problem of the laser physics for many years.

The section 4 deals with the quantum energy loss of binary involving
radiative corrections. The general relativity necessarily does not contain
the method how to express the quantum effects together with the radiative
corrections by the geometrical language. So it cannot give the answer on
the production of gravitons and on the graviton propagator with radiative
corrections.

The section 4 is the extended version of the older article (Pardy,
1983), where only the spectral formulas without radiative corrections were
derived. We have derived the quantum energy loss formulas with the
arbitrary strength of the gravitational field.

At the present time the only classical radiation of gravity was con-
firmed. The production of gravitons is not involved in the Einstein theory.
However, the idea, that radiative corrections can have macroscopical con-
sequences is not new. Based on the Boulware quantum states (Boulware,
1975; Hiscock, 1988) has calculated the vacuum polarization induced by
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static star. He has found an energy density which is of course many orders
of magnitude below what one could hope to detect by experiment.

In a similar way , Goldman et al. (1992), have pointed out the quantum
gravity effects might play a role in the physics of cosmological scale, and
Soleng (1992) has evaluated the post-Newtonian parameters, which follows
from anisotropic vacuum energy. So, the situation in the gravity problems
with radiative corrections is similar to the QED situation many years ago
when the QED radiative corrections were theoretically predicted and then
experimentally confirmed for instance in case of he Lamb shift or of the
anomalous magnetic moment of electron.

Astrophysics is, therefore, in crucial position in prooving the influence of
radiative corrections on the dynamics in the cosmic space. We hope that
the further astrophysical observations will confirm the quantum version
of the energy loss of the binary with graviton propagator with radiative
corrections.

The power spectral formulas of the gravitational Cherenkov radiation
at zero temperature (19) and at nonzero temperature (25) are derived in
section 5 also in the framework of the Schwinger source theory.

These effects have been not discussed in the classical textbooks on
gravity. Nevertheless these effects can be mathematically rigorously defined
and described in the framework of the source theory embedded in the
curved space time with the metric (2).

Formula (13) is valid for the general metric space-time and it enables to
determine the power spectral formula of gravitons for the general metric
space time if it is known the propagator D+g(x, x

′). It means it generates
further problems of production of gravitons in the different metric space-
times.

In electrodynamics, the Cherenkov effect occurs usually for the velocities
comparable with velocities of light. However, if we consider the case with
the cold gas (Peters, 1974), then the Cherenkov gravitational effect occurs
practically for all velocities. In order to see the surprising result we write
the gravitational index of refraction derived by Peters (1974) for the cold
gas. Or,

n = 1 +
2πρG

ω2
(11)

where ρ is the gas density. Then from condition nβ > 1 we get using the
eq. (21) the following inequality:
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ω <

(
2πβρG

1− β

)1/2
(12)

and it means that the interval of frequencies is limited and because ρ is
for the cold gas very small , the gravitational Cherenkov radiation occurs
only for very small frequencies. On the other hand the interval of allowed
frequencies is greater for sufficiently fast moving bodies.

The amount of the produced gravitons by the Cherenkov mechanism
depends on the square of the relativistic mass m, and it is obvious that
for elementary particles as electrons, protons an so on the production of
gravitons will be small.

It is obvious that such small energy cannot be observed by the any exper-
imental equipment. On the other hand the big production of gravitons by
the Cherenkov mechanism can occur for cosmological bodies with the suffi-
ciently big masses and with energies exceeding the Cherenkov threshold. Of
course, if such effect occured during the explosion of supernova SN 1987a,
during the big bang, or during the collisions of galaxies is open question
because of the nonexistence of the cold gas. On the other hand Polnarev
(1972) has shown that in the ultrarelativistic case at the anisotropical sit-
uation there exists the possibility of the n > 1 or n < 1 and the effect is
probable.

The investigation of the gravitational Cherenkov effect is analogical to
the history of the Cherenkov effect. Heaviside (1889) investigated the pos-
sibility of a charged object moving in a medium faster than electromagnetic
waves in the same medium becomes a source of directed electromagnetic
radiation. Kelvin (1901) presented an idea that the emission of particles is
possible at a speed greater than that of light. Somewhat later, Sommerfeld
(1904; 1905) proposed the hypothetical radiation with a sharp angular dis-
tribution. His theory was never accepted in his time because of the priority
of the special theory relativity, where the maximal velocity is the velocity
of light. However, in fact, from experimental point of view, the electro-
magnetic Cherenkov radiation was first observed in the early 1900’s by
experiments developed by Marie and Pierre Curie when studying radioac-
tivity emission. In essence they observed the emission of a bluish-white
light from transparent substances in the neighborhood of strong radioac-
tive source. But the first attempt to understand the origin of this was made
by Mallet (1926; 1929a; 1929b) who observed that the light emitted by a
variety of transparent bodies placed close to a radioactive source always
had the same bluish white quality, and that the spectrum was continuous,
with no line or band structure characteristic of fluorescence. Unfortunately,
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these investigations were forgotten for many years. Cherenkov (1934) ex-
periments was performed at the suggestion of Vavilov who opened a door
to the true physical nature of this effect (Bolotovskii, 2009)1.

This radiation was first theoretically interpreted by Tamm and Frank
(1937) in the framework of the classical electrodynamics. The source
theoretical description of this effect was given by Schwinger et al. (1976)
at the zero temperature regime and the classical spectral formula was
generalized to the finite temperature situation and for the massive photons
by author (Pardy, 1989, 2002). The Vavilov-Cherenkov effect was also
used by author (Pardy, 1997) to possible measurement of the Lorentz
contraction.

We hope in this book that the sympathy to the existence of the
gravitational Cherenkov radiation will be sufficiently strong in order to
have some followers.

Section 6 concerns the influence of the potential at finite temperature
on the energy shift of the H-atom. The determination of potential at finite
temperature is one of the problems which form the basic ingredients of
the quantum field theory (QFT) at finite temperature. This theory was
formulated some years ago by Dolan and Jackiw (1974), Weinberg (1974)
and Bernard (1974) and some of the first applications of this theory were
the calculations of the temperature behavior of the effective potential in
the Higgs sector of the standard model.

Information on the systematic examination of the finite temperature
effects in quantum electrodynamics (QED) at one-loop order was given
by Donoghue, Holstein and Robinett (1985). Partovi (1994) discussed the
QED corrections to Planck’s radiation law and photon thermodynamics,

A similar discussion of QED was published by Johansson, Peressutti
and Skagerstam (1986) and Cox et al. (1984).

Serge Haroche (2012) and his research group in the Paris microwave
laboratory used a small cavity for the long life-time of photon quantum
experiments performed with the Rydberg atoms. We considered here
the thermal gas corresponding to the Gibbons-Hawking theory of space-
time (at temperature T) as the preamble for new experiments for the
determination of the energy shift of H-atom electrons interacting with the
Gibbons-Hawking on thermal gas.

We have defined in section 7 with regard to previous author articles
(Pardy, 2001a, 2001b) gravitation as a deformation of a medium called
space-time.

1So, the adequate name of this effect is the Vavilov-Cherenkov effect. In the English literature,
however, it is usually called the Cherenkov effect.
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Because of this idea, we can write the Newton gravitational law in the
form (D = deformation)

D1 +D2 → −κ
M1M1

r3
r, (13)

where the quantities in the last equation have the standard textbook
physical meanings.

We have used equation which relates Riemann metrical tensor to the
tensor of deformation of the space-time medium and applied it to the
gravitating system, which we call screw dislocation in space-time. The
term screw dislocation was used as an analogue with the situation in the
continuous mechanics. We derived the angle of deflection of light passing
along the screw dislocation axis at the distance a from it on the assumption
that trajectory length was l. This problem was not considered for instance
in the Will monograph (Will, 1983). The screw dislocation was still not
observed in space-time and it is not clear what role play the dislocations
in the development of universe after big bang. Our method can be applied
to the other types of dislocations in space-time and there is no problem
to solve the problem in general. We have used here the specific situation
because of its simplicity. We have seen that the problem of dislocation in
space-time is interesting and it means there is some scientific value of this
problem.

It is well known from the quantum field theory and experiment, that
every particle has its partner in the form of the antiparticle (Maiani et
al., 1995). For instance the antiparticle to the electron is positron. It is
well known that after annihilation of particle-antiparticle pair, photons are
generated. For instance

e+ + e− → 2γ. (14)

Now, if we define that to every dislocation D exists antidislocation D̄,
(which can be considered also as an analogue of the antistring, (Srivastava,
1992)), then, we can write the following equation which is analogical to
(14)

D + D̄ → Nγ (15)

where N is natural number and gamma denotes photon. The next equation
is also possible:

D + D̄ → Ng (16)
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where g denotes graviton.
It is possible also to consider the high-energy process with the incident

particles a and b as follows:

a+ b → c1 + c2 + c3 + ...cn, (17)

where ci are denotations of identical or different particles. It is well-known
that the equation (17) is the fundamental equation of LHC.

In case of the existence of the dislocations in universe, equations (39)
and (40) of the section 7 represents the burst of photons or gravitons in
the cosmical space. So, we defined the further possible interpretation of
the photonic and gravitational bursts in cosmical space.

Let us remark that the dislocation approach to the particle physics are
in harmony with the Einstein dream and later Misner-Wheeler geometro-
dynamics where all existing elementary objects can be defined as some
form of space-time. Misner and Wheeler (Misner et l., 1957; Wheeler,
1957) consider also that neutrino is the specific form of the space-time.
Let us still remark that we know from the history of philosophy that long
time before Christ, Anaximandros introduced (Apeiron) as a medium from
which all particles, and therefore all visible universe was created. So, we
can say that the famous trinity of men, Einstein-Misner-Wheeler, is the
follower of Anaximandros.

The identification of the fundamental particles by the dislocations is in
harmony with the relation for the energy of the dislocation (Cottrell, 1964)

E =
E0√
1− v2

c2

, (18)

where E0 is the energy of dislocation when its velocity v is zero and c
is the velocity of sound in the crystal. In case of medium called space-
time the velocity c is the velocity of light in vacuum. So, vacuum is in a
certain sense medium which is similar to the crystal medium. The analogy
with the dislocations in crystal is of course heuristical step which is the
integral part of the methodology of discoveries and it cannot be rigorously
algorithmically defined.

Equation (15) can be verified by the table experiment, where the
dislocations and the anti-dislocations in some crystal are annihilated by
some suitable laboratory mechanism. The flash of light is observed. The
laboratory mechanism can be realized for instance by the ultrasound,
pressure, strike, and so on. The application of the ultrasound is analogical
to the case of the sonoluminescence where the mechanism of the generation
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of light involves application of ultrasound. We hope that the energy
released by such annihilation is greater than the energy released by the
mechanism of cold fusion.

Although equation (18) can be identified with the relativistic equation
for dependence of energy on velocity of elementary particle, we cannot iden-
tify electron with the screw dislocation in space-time. Why? Because we
know that the attractive or repulsive force between two screw dislocations
differs from the force between two electrons, two positrons or electron and
positron. The second reason is that the anomalous magnetic moment of
electron is of the dynamical origin as it follows from the Feynman diagram
technique while the classical dislocation does not involve such dynamics.
On the other hand, we do not know how other dislocations such as cir-
cular dislocations, cylindrical dislocations, helix, double helix, triple helix
dislocations and so on are related to elementary particles, especially to
neutrinos. We know that all physical constant in the standard model are
of the dynamical origin, but at present time it is not clear what is their
derivation from the more fundamental theory (subquark theory, string the-
ory and so on), or, from the dislocation theory of elementary particles. We
think that dislocation theory of elementary particles is not at present time
prepared to give the answer to these difficult questions.

The 3D screw dislocation can be extended mathematically to the N-
dimensional space, or, space-time. However the interpretation of the N-
dimensional theory needs introducing of the compactification.

So, we can say that the Einstein dream of the unification of all objects
and forces in nature in the framework of geometrodynamics is far from
the successful realization because the identification of ultimate blocks of
nature with dislocations and with the topological defects is not elaborated
at this time.

In particle physics and in the string theory (Antoniadis, 2003) the
confinement of quarks is mysterious and the solution of his problem in
the dislocation theory of fundamental constituents is open. We think, that
appropriate understanding of the string-like dislocations (Lund, 1985) and
definition of the ultimate building blocks of nature can solve all problems
of particle physics together with removing all mysteries.

While the verification of the existence of the optical bursts caused by the
annihilations of the giant screw dislocations and anti-dislocations can be
detected by the Hubble telescope, the gravitational bursts can be probably
detected by LIGO (Barish, 1997), VIRGO (Vinet, 1997), GEO (Hough,
1997), TAMA (Tsubono, 1997), and so on.

Let us remark that the observations of recent gamma-ray bursts
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GRB021004 and GRB990123 are interpreted as arising from the ultra-
relativistic particles thrown out by a cataclysmic event as the collapse of
massive star in the so called ”cannonball” model. Such models apply to
gamma-ray bursts lasting several seconds. Bursts shorter than about 2 sec-
onds are thought to be due to coalescence of two neutron stars to form a
black hole. So, our interpretation of light bursts differs from the traditional
one because we explain the light bursts as an annihilation of dislocations
and anti-dislocations existing in space-time. We hope that our interpre-
tation of gamma-bursts based on particle physics, topology and general
relativity is progressive.
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