# The Six-Point Circle Theorem * 

Adrian Mitrea

May 1, 2012


#### Abstract

Given $\triangle A B C$ and angles $\alpha, \beta, \gamma \in(0, \pi)$ with $\alpha+\beta+\gamma=\pi$, we study the properties of the triangle $D E F$ which satisfies: (i) $D \in B C, E \in A C, F \in A B$, (ii) $\Varangle D=\alpha, \Varangle E=\beta, \Varangle F=\gamma$, (iii) $\triangle D E F$ has the minimal area in the class of triangles satisfying (i) and (ii). In particular, we show that minimizer $\triangle D E F$, exists, is unique and is a pedal triangle, corresponding to a certain pedal point $P$. Permuting the roles played by the angles $\alpha, \beta, \gamma$ in (ii), yields a total of six such area-minimizing triangles, which are pedal relative to six pedal points, say, $P_{1}, \ldots ., P_{6}$. The main result of the paper is the fact that there exists a circle which contains all six points.


## 1 Introduction

Consider the following question in planar geometry: given three, nonconcurrent lines, $L_{1}, L_{2}, L_{3}$, along with three angles $\alpha, \beta, \gamma \in(0, \pi)$ satisfying $\alpha+\beta+\gamma=\pi$, find three points $X_{1}, X_{2}, X_{3}$ such that

$$
\begin{equation*}
X_{1} \in L_{1}, X_{2} \in L_{2}, \quad X_{3} \in L_{3}, \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Varangle X_{2} X_{1} X_{3}=\alpha, \quad \Varangle X_{1} X_{2} X_{3}=\beta, \quad \Varangle X_{1} X_{3} X_{2}=\gamma . \tag{1.2}
\end{equation*}
$$

Somewhat informally, with $A, B, C$ playing the roles of the points of mutual intersection of the lines $L_{1}, L_{2}, L_{3}$, this asks whether given a fixed triangle $A B C$, one can inscribe a triangle $X_{1} X_{2} X_{3}$ of an arbitrarily prescribed shape. For a triangle, "shape" simply signifies the measures of its angles (in the current scenario $\alpha, \beta, \gamma)$.

Although not necessarily obvious, this question turns out to have an affirmative answer. In fact, the collection $\mathcal{I}_{\alpha \beta \gamma}$ of all triangles $X_{1} X_{2} X_{3}$ satisfying (1.1) and (1.2) has infinite cardinality. Since all triangles in $\mathcal{I}_{\alpha \beta \gamma}$ have the same shape, what distinguishes them is their size. It is not too difficult to show that $\mathcal{I}_{\alpha \beta \gamma}$ contains triangles of arbitrarily large areas, hence, the most distinguished triangle in $\mathcal{I}_{\alpha \beta \gamma}$ is the one of the smallest area, called, for the purposes of this introduction, $\Delta_{\alpha \beta \gamma}$. Part of our paper is devoted to studying this minimizer, which enjoys many interesting properties. Among other things we show that this triangle of minimal area is unique, and is also a pedal triangle. Recall that a pedal triangle is a triangle whose vertices are the projections of a point, called the pedal point of the pedal triangle, onto the sides of another triangle. Let $P_{\alpha \beta \gamma}$ be the pedal point of $\Delta_{\alpha \beta \gamma}$.

Of course, similar considerations apply to the situation when the ordered triplet $(\alpha, \beta, \gamma)$ in (1.2) is replaced by any of its permutations

$$
\begin{equation*}
(\alpha, \beta, \gamma), \quad(\alpha, \gamma, \beta), \quad(\beta, \alpha, \gamma), \quad(\beta, \gamma, \alpha), \quad(\gamma, \alpha, \beta), \quad(\gamma, \beta, \alpha) . \tag{1.3}
\end{equation*}
$$

[^0]As before, these permutations lead to considering the collections $\mathcal{I}_{\alpha \beta \gamma}, \mathcal{I}_{\alpha \gamma \beta}, \ldots$, defined as above, which in turn have their own minimizers,

$$
\begin{equation*}
\Delta_{\alpha \beta \gamma}, \Delta_{\alpha \gamma \beta}, \Delta_{\beta \alpha \gamma}, \Delta_{\beta \gamma \alpha}, \Delta_{\gamma \alpha \beta}, \Delta_{\gamma \beta \alpha} . \tag{1.4}
\end{equation*}
$$

Once again, they are all pedal triangles with respect to six points, say,

$$
\begin{equation*}
P_{\alpha \beta \gamma}, P_{\alpha \gamma \beta}, P_{\beta \alpha \gamma}, P_{\beta \gamma \alpha}, P_{\gamma \alpha \beta}, P_{\gamma \beta \alpha} . \tag{1.5}
\end{equation*}
$$

Remarkably, even though these six points are obtained via constructions that start from starkly different sets of premises, they turn out to be concyclic. That is,

Theorem 1.1 (THE SIX POINT CIRCLE THEOREM). There exists a circle that contains all six points in (1.5).

This is the main result of the paper (cf. Theorem 3.2 for a formal statement). The starting point in its proof is to consider, besides the area-minimizing triangle inscribed in $\triangle A B C$ and having prescribed angles, the area-maximizing triangle circumscribed to $\triangle A B C$, having the same angles. This dual aspect of the problem under consideration is very useful in understanding the nature of the extremal triangles of a prescribed shape. A concrete step in this regard is proving a structure theorem, detailing how these three triangles are related to one another. For instance, we show that the area of the original triangle is the geometric mean of the area-minimizer and the area-maximizer triangles; cf. Theorem 2.4. Since the conclusion in Theorem 1.1 involves a circle, it is not unnatural that another important tool in its proof is the geometrical inversion.

In $\S 2$, the properties of the area-minimizing and area-maximizing triangles having prescribed angles and being, respectively, inscribed and circumscribed in a given triangle are examined. Finally, $\S 3$ is devoted to presenting the proof of The Six Point Circle Theorem. The presentation in this paper is largely self-contained. For more basic concepts and definitions related to the geometry of the triangle the interested reader is referred to, e.g. [2], and the references therein.

## 2 Extremal Triangles of a Prescribed Shape

Throughout, we let $\triangle A B C$ denote the triangle with vertices $A, B, C$ and denote by $|\triangle A B C|$ the area of $\triangle A B C$.

Given a triangle $A_{1} A_{2} A_{3}$ along with a triangle $B_{1} B_{2} B_{3}$ inscribed in it, we first recall a result from [3] that gives a procedure for obtaining a triangle, $C_{1} C_{2} C_{3}$, that is inscribed in $\Delta B_{1} B_{2} B_{3}$ and is homotopic to $\Delta A_{1} A_{2} A_{3}$. By definition, two triangles are homotopic if their corresponding sides are parallel. The concurrence point of the lines passing through the corresponding vertices of two homotopic triangles is the homotopy center. The justification of the following useful result is left to the interested reader (a proof is given in [3]).
Proposition 2.1. Let $\Delta A_{1} A_{2} A_{3}$ be arbitrary and assume that $B_{1} \in A_{2} A_{3}, B_{3} \in A_{2} A_{1}, B_{2} \in A_{1} A_{3}$ (see Figure 1 below). Take $C_{1} \in B_{2} B_{3}, C_{2} \in B_{1} B_{3}, C_{3} \in B_{1} B_{2}$ such that

$$
\begin{equation*}
\frac{A_{1} B_{3}}{B_{3} A_{2}}=\frac{B_{2} C_{3}}{C_{3} B_{1}}, \quad \frac{A_{2} B_{1}}{B_{1} A_{3}}=\frac{B_{3} C_{1}}{C_{1} B_{2}}, \quad \frac{A_{3} B_{2}}{B_{2} A_{1}}=\frac{B_{1} C_{2}}{C_{2} B_{3}} \tag{2.6}
\end{equation*}
$$

Then $\Delta A_{1} A_{2} A_{3}$ and $\Delta C_{1} C_{2} C_{3}$ are homotopic and, in addition, $\left|\Delta B_{1} B_{2} B_{3}\right|$ is the geometric mean of $\left|\Delta A_{1} A_{2} A_{3}\right|$ and $\left|\Delta C_{1} C_{2} C_{3}\right|$, i.e.

$$
\begin{equation*}
\left|\Delta B_{1} B_{2} B_{3}\right|^{2}=\left|\Delta A_{1} A_{2} A_{3}\right| \cdot\left|\Delta C_{1} C_{2} C_{3}\right| . \tag{2.7}
\end{equation*}
$$

Conversely, if $\Delta A_{1} A_{2} A_{3}$ and $B_{1} \in A_{2} A_{3}, B_{3} \in A_{2} A_{1}, B_{2} \in A_{1} A_{3}$ are given and $C_{1} \in B_{2} B_{3}$, $C_{2} \in B_{1} B_{3}, C_{3} \in B_{1} B_{2}$ are such that $\Delta A_{1} A_{2} A_{3}$ and $\Delta C_{1} C_{2} C_{3}$ are homotopic, then (2.6) and (2.7) hold.


Figure 1
Definition 2.2. (i) Call a triangle $X Y Z$ inscribed in a given triangle $A B C$ if each of the lines $A B, B C$ and $A C$ contain precisely one of the vertices $X, Y, Z$. Call $\triangle X Y Z$ circumscribed to $\triangle A B C$ if $\triangle A B C$ is inscribed in $\triangle X Y Z$.
(ii) Given two fixed triangles $A B C$, called of reference, and $M N P$, called fundamental, let $\mathcal{I}$ be the set of all triangles which are similar to the fundamental one and are inscribed in the triangle of reference, and let $\mathcal{C}$ be the set of all triangles similar to the fundamental one and circumscribed to the reference one.
(iii) Given $\triangle A B C$, triangle of reference, and a fundamental triangle with angles $\alpha, \beta, \gamma$, denote by $\mathcal{I}_{\alpha \beta \gamma}$ the set of all triangles $X Y Z$ with $X, Y, Z$ belonging, respectively, to the lines $B C, A C, A B$, and for which $\Varangle X, \Varangle Y, \Varangle Z$ coincide with $\alpha, \beta, \gamma$ (in this order).

Likewise, let $\mathcal{C}_{\alpha \beta \gamma}$ denote the set of all triangles $X Y Z$ for which $A, B, C$ belonging, respectively, to the lines $Y Z, X Z, X Y$, and for which $\Varangle X, \Varangle Y, \Varangle Z$ coincide with $\alpha, \beta, \gamma$ (in this order).

Clearly,

$$
\begin{align*}
& \mathcal{I}=\mathcal{I}_{\alpha \beta \gamma} \bigcup \mathcal{I}_{\alpha \gamma \beta} \bigcup \mathcal{I}_{\beta \alpha \gamma} \cup \mathcal{I}_{\beta \gamma \alpha} \bigcup \mathcal{I}_{\gamma \alpha \beta} \bigcup \mathcal{I}_{\gamma \beta \alpha}, \\
& \mathcal{C}=\mathcal{C}_{\alpha \beta \gamma} \cup \mathcal{C}_{\alpha \gamma \beta} \bigcup \mathcal{C}_{\beta \alpha \gamma} \cup \mathcal{C}_{\beta \gamma \alpha} \bigcup \mathcal{C}_{\gamma \alpha \beta} \bigcup \mathcal{C}_{\gamma \beta \alpha} . \tag{2.8}
\end{align*}
$$

Our next result shows the existence of area-minimizers and area-maximizers in the above classes. The issue of uniqueness for these extremal triangles will be dealt with in Theorem 2.4 below.

Theorem 2.3. There exists a triangle $\Delta M_{1} N_{1} P_{1} \in \mathcal{I}_{\alpha \beta \gamma}$ which has the smallest area amongst all the triangles in the class $\mathcal{I}_{\alpha \beta \gamma}$. Also, there exists a triangle $\Delta M_{2} N_{2} P_{2} \in \mathcal{C}_{\alpha \beta \gamma}$ which has the largest area amongst all the triangles in the class $\mathcal{C}_{\alpha \beta \gamma}$. In addition, any two such triangles satisfy

$$
\begin{equation*}
\left|\Delta M_{1} N_{1} P_{1}\right| \cdot\left|\Delta M_{2} N_{2} P_{2}\right|=|\Delta A B C|^{2} . \tag{2.9}
\end{equation*}
$$

In fact, similar results are valid for each of the classes appearing in (2.8), including $\mathcal{I}$ and $\mathcal{C}$.
Proof. It suffices to only deal with the class $\mathcal{I}_{\alpha \beta \gamma}$ since a similar reasoning applies to all the classes in (2.8). The first issue is to show that there exists at least one area-minimizer in $\mathcal{I}_{\alpha \beta \gamma}$. We briefly sketch the argument for this, which is based on results from Calculus and Analytical Geometry. To get started, fix a unit vector $\vec{w}=w_{1} \vec{i}+w_{2} \vec{j}$ and consider the class of all triangles $X Y Z$ satisfying

$$
\begin{equation*}
\Varangle X=\alpha, \quad \Varangle Y=\beta, \quad \Varangle Z=\gamma, \quad X \in B C, \quad Z \in A B, \quad X Z \| \vec{w} . \tag{2.10}
\end{equation*}
$$

It is then clear that the coordinates of $Y$ and $Z$ depend linearly on those of $X$, with coefficients varying continuously with $w_{1}, w_{2}$. Since $X$ moves on a line (i.e., $B C$ ), it follows that the geometrical locus of the vertex $Y$ is itself a line. In addition, the characteristics of this line, called $L$, depend continuously on $w_{1}, w_{2}$. Now, the position of $X$ which, under the constraints (2.10), yields a triangle $X Y Z$ in the class $\mathcal{I}_{\alpha \beta \gamma}$, is the one corresponding to the case when $Y=L \cap A C$. Linear algebra considerations then show that the coordinates of $X$ in this critical case are continuously dependent on $w_{1}, w_{2}$. Using the formula which expresses the area of a triangle in terms of the coordinates of its vertices, we then deduce that $|\triangle X Y Z|$-corresponding the case when $\Delta X Y Z \in \mathcal{I}_{\alpha \beta \gamma^{-}}$is a continuous function in $w_{1}, w_{2}$. Since $w_{1}$ and $w_{2}$ vary in a compact set, it follows that the assignment $\left(w_{1}, w_{2}\right) \mapsto|\Delta X Y Z|$ is bounded and it attains its extrema. In particular, there exists an area-minimizing triangle in $\mathcal{I}_{\alpha \beta \gamma}$.

To prove that there exists (at least) one area-maximizing triangle in $\mathcal{C}_{\alpha \beta \gamma}$, we proceed as follows. Starting with an area-minimizing triangle $\Delta M_{1} N_{1} P_{1}$ (whose existence has just been established), construct a a new triangle, $\Delta M_{2} N_{2} P_{2}$ by taking the parallels through $A, B$ and $C$ to the sides of $\Delta M_{1} N_{1} P_{1}$. As a result, $\Delta M_{2} N_{2} P_{2}$ is homotopic to $\Delta M_{1} N_{1} P_{1}$ and circumscribed to $\Delta A B C$. Hence, $\Delta M_{2} N_{2} P_{2} \in \mathcal{C}_{\alpha \beta \gamma}$ and, thanks to Proposition 2.1,

$$
\begin{equation*}
\left|\Delta M_{2} N_{2} P_{2}\right| \cdot\left|\Delta M_{1} N_{1} P_{1}\right|=|\Delta A B C|^{2} . \tag{2.11}
\end{equation*}
$$

We claim that $\Delta M_{2} N_{2} P_{2}$ is area-maximizing in the class $\mathcal{C}_{\alpha \beta \gamma}$. Indeed, if $\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime} \in \mathcal{C}_{\alpha \beta \gamma}$ is arbitrary, let $M^{\prime} \in B A, N^{\prime} \in B C, P^{\prime} \in A C$ (cf. Figure 2) be such that

$$
\begin{equation*}
\frac{A M^{\prime}}{M^{\prime} B}=\frac{P^{\prime \prime} C}{C N^{\prime \prime}}, \quad \frac{B N^{\prime}}{N^{\prime} C}=\frac{M^{\prime \prime} A}{A P^{\prime \prime}}, \quad \frac{C P^{\prime}}{P^{\prime} A}=\frac{N^{\prime \prime} B}{B M^{\prime \prime}} . \tag{2.12}
\end{equation*}
$$

Proposition 2.1 gives that $\Delta M^{\prime} N^{\prime} P^{\prime}$ and $\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}$ are homotopic (thus $\Delta M^{\prime} N^{\prime} P^{\prime} \in \mathcal{I}_{\alpha \beta \gamma}$ ) and

$$
\begin{equation*}
\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right| \cdot\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right|=|\Delta A B C|^{2} \tag{2.13}
\end{equation*}
$$

Since by definition $\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right| \geq\left|\Delta M_{1} N_{1} P_{1}\right|$, (2.11), (2.13) imply that $\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right| \leq\left|\Delta M_{2} N_{2} P_{2}\right|$. This justifies our claim that $\Delta M_{2} N_{2} P_{2}$ is area-maximizing in the class $\mathcal{C}_{\alpha \beta \gamma}$.

Going further, we note that proving (2.9) uses a similar circle of ideas. Concretely, let $M^{\prime} \in B A$, $N^{\prime} \in B C, P^{\prime} \in A C$ (cf. Figure 2) be such that

$$
\begin{equation*}
\frac{A M^{\prime}}{M^{\prime} B}=\frac{P_{2} C}{C N_{2}}, \quad \frac{B N^{\prime}}{N^{\prime} C}=\frac{M_{2} A}{A P_{2}}, \quad \frac{C P^{\prime}}{P^{\prime} A}=\frac{N_{2} B}{B M_{2}} . \tag{2.14}
\end{equation*}
$$

Proposition 2.1 shows that $\Delta M^{\prime} N^{\prime} P^{\prime}$ and $\Delta M_{2} N_{2} P_{2}$ are homotopic and

$$
\begin{equation*}
\left|\Delta M_{2} N_{2} P_{2}\right| \cdot\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right|=|\Delta A B C|^{2} . \tag{2.15}
\end{equation*}
$$

The former property also entails $\Delta M^{\prime} N^{\prime} P^{\prime} \in \mathcal{I}_{\alpha \beta \gamma}$ and, hence,

$$
\begin{equation*}
\left|\Delta M_{1} N_{1} P_{1}\right| \leq\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right| . \tag{2.16}
\end{equation*}
$$



Figure 2
The parallels through $A, B$ and $C$ to the sides of the triangle $\Delta M_{1} N_{1} P_{1}$ determine the triangle $M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}$ which is homotopic to $\Delta M_{1} N_{1} P_{1}$ and circumscribed to $\triangle A B C$. As a result, $\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime} \in \mathcal{C}_{\alpha \beta \gamma}$ which forces

$$
\begin{equation*}
\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right| \leq\left|\Delta M_{2} N_{2} P_{2}\right| . \tag{2.17}
\end{equation*}
$$

In this context, Proposition 2.1 also gives that

$$
\begin{equation*}
\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right| \cdot\left|\Delta M_{1} N_{1} P_{1}\right|=|\Delta A B C|^{2} \tag{2.18}
\end{equation*}
$$

By combining (2.15)-(2.18) we obtain

$$
\begin{align*}
|\Delta A B C|^{2} & =\left|\Delta M_{1} N_{1} P_{1}\right|\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right| \\
& \leq\left|\Delta M_{2} N_{2} P_{2}\right|\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right|=|\Delta A B C|^{2} \tag{2.19}
\end{align*}
$$

so that, we actually have $\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right|=\left|\Delta M_{2} N_{2} P_{2}\right|, \quad\left|\Delta M_{1} N_{1} P_{1}\right|=\left|\Delta M^{\prime} N^{\prime} P^{\prime}\right|$. Therefore, $|\Delta A B C|^{2}=\left|\Delta M_{1} N_{1} P_{1}\right|\left|\Delta M^{\prime \prime} N^{\prime \prime} P^{\prime \prime}\right|=\left|\Delta M_{1} N_{1} P_{1}\right|\left|\Delta M_{2} N_{2} P_{2}\right|$, finishing the proof of (2.9).

Remark 1. It is implicit in the proof of the above theorem that if $\Delta M_{1} N_{1} P_{1}$ is an area-minimizer in the class $\mathcal{I}_{\alpha \beta \gamma}$, then the triangle $M_{2} N_{2} P_{2}$ that is in $\mathcal{C}_{\alpha \beta \gamma}$ and is homotopic to $\Delta M_{1} N_{1} P_{1}$ (constructed as in Proposition 2.1) is an area-maximizer in the class $\mathcal{C}_{\alpha \beta \gamma}$. Conversely, if $\Delta M_{2} N_{2} P_{2}$ is an area-maximizer in the class $\mathcal{C}_{\alpha \beta \gamma}$, then the triangle $M_{1} N_{1} P_{1}$ that is in $\mathcal{I}_{\alpha \beta \gamma}$ and is homotopic to $\Delta M_{2} N_{2} P_{2}$ (again, constructed as in Proposition 2.1) is an area-minimizer in the class $\mathcal{I}_{\alpha \beta \gamma}$.

The main result in this section describes the structure of the configuration consisting of a given triangle $A B C$ along with the area-minimizing triangle in $\mathcal{I}_{\alpha \beta \gamma}$ and the area-maximizing triangle in $\mathcal{C}_{\alpha \beta \gamma}$. Recall that an antipedal triangle of a point $P$ with respect to $\triangle A B C$ is the triangle whose vertices are the intersection points of the perpendiculars to $P A, P B$, and $P C$, passing through $A$, $B$, and $C$, respectively. Also, the isogonal of a point $P$ in $\triangle A B C$ is the concurrence point of the reflections of the lines $P A, P B$, and $P C$ across the angle bisectors of $A, B$, and $C$.

Theorem 2.4. Retain notation and conventions introduced earlier. Given $\triangle A B C$, reference triangle, and $\Delta M N P$ fundamental triangle with angles $\alpha, \beta, \gamma \in(0, \pi)$, let $\mathcal{I}_{\alpha \beta \gamma}$ and $\mathcal{C}_{\alpha \beta \gamma}$ be as before.

Then there exist a unique $\triangle E F D \in \mathcal{I}_{\alpha \beta \gamma}$ which is area-minimizing in this class, along with a unique $\Delta Q R S \in \mathcal{C}_{\alpha \beta \gamma}$ which is area-maximizing in this class. In addition, these triangles enjoy the following properties:
(i) The triangles EFD and $Q R S$ are homotopic;
(ii) The triangles EFD and $Q R S$, are the pedal and the antipedal triangles of some points $K$ and $L$, respectively, with respect to $\triangle A B C$;
(iii) Let $T$ be the concurrence point of the projections of $Q, R, S$ on the sides of the triangle $A B C$. Then the pairs of points $(L, K)$ and $(T, L)$ are isogonal in the triangles $A B C$ and $Q R S$, respectively;
(iv) If $O$ is the homotopy center of $\triangle E F D$ and $\triangle Q R S$, then $O, K, T$ lie on the same line.

Before proceeding with the proof of this theorem, a comment is in order.
Remark 2. As a corollary of the above theorem, there exists a unique area-minimizing triangle in each of the classes $\mathcal{I}, \mathcal{I}_{\alpha \beta \gamma}, \ldots$, listed in the first line of (2.8). Moreover, there exists a unique area-maximizing triangle in each of the classes $\mathcal{C}, \mathcal{C}_{\alpha \beta \gamma}, \ldots$, listed in the second line of (2.8). In each case, similar properties to $(i)-(i v)$ above hold.


Figure 3
Proof of Theorem 2.4. By design, the triangles $Q R S$ and $M N P$ are similar (cf. Figure 3), so that $\Varangle Q=\Varangle M, \Varangle R=\Varangle N, \Varangle S=\Varangle P$. If we do not impose the condition that the triangle $Q R S$ has maximal area in the class $\mathcal{C}_{\alpha \beta \gamma}$, then the triangle $Q R S$ is not completely determined. There are, however, certain restrictions on the location of its vertices, due solely to the membership to $\mathcal{C}_{\alpha \beta \gamma}$. Concretely, the point $S$ must lie on the circle passing through $A$ and $B$ and such that the arc $\widehat{A B}=2 \nsucc S$. Let us denote by $O_{1}$ the center of this circle (see Figure 4). Likewise, the point $Q$ lies on a circle (whose center we denote by $O_{2}$ ) passing through $B$ and $C$ and such that $\widehat{B C}=2 \Varangle Q$. Finally, the point $R$ lies on a circle (centered at some point, denoted by $O_{3}$ ) passing through $A$ and $C$ and for which $\overparen{A C}=2 \Varangle R$.

Since $\Varangle M+\Varangle N+\Varangle P=\Varangle Q+\Varangle R+\Varangle S=\pi$, it is not difficult to see that these three circles, have a common point, which we denote by $L$. Observe next that a particular position of the point $S$ on the circle $\left(O_{1}\right)$ determines also the positions of the points $Q$ and $R$ on the circles $\left(O_{2}\right)$ and $\left(O_{3}\right)$, respectively. The idea is now to determine the position of the point $S$ on the circle $\left(O_{1}\right)$ for which the triangle $Q R S$ has maximal area.


Figure 4
Since the angles of $\triangle Q R S$ are fixed, maximizing $|\triangle Q R S|$ amounts to maximizing the length of one of its sides, say $S Q$. Let $O_{1}^{\prime}$ and $O_{2}^{\prime}$ be, respectively, the projections of $O_{1}$ and $O_{2}$ onto the line $S Q$, and let $O_{1}^{\prime \prime} \in O_{1}^{\prime} O_{1}$ be such that $O_{1}^{\prime \prime} O_{2}^{\prime} \| O_{1} O_{2}$. Then we can write

$$
\begin{equation*}
O_{1} O_{2}=O_{1}^{\prime \prime} O_{2}^{\prime} \geq O_{1}^{\prime} O_{2}^{\prime}=B O_{1}^{\prime}+B O_{2}^{\prime}=\frac{B S}{2}+\frac{B Q}{2}=\frac{S Q}{2} \tag{2.20}
\end{equation*}
$$

This implies $2 O_{1} O_{2} \geq S Q$, an inequality from which we see that the maximum of $|\Delta Q R S|$ is attained when $S Q \| O_{1} O_{2}$.

Since the location of the points $O_{1}, O_{2}, O_{3}$ depends only on $\triangle A B C$ and angles $\alpha, \beta, \gamma$, the result just established shows that there exists a unique area-maximizing triangle in $\mathcal{C}_{\alpha \beta \gamma}$. Given an area-minimizing triangle $\triangle D E F$ in the class $\mathcal{I}_{\alpha \beta \gamma}$, we can associate with it a homotopic triangle $\Delta Q R S$ in $\mathcal{C}_{\alpha \beta \gamma}$, which can be constructed following the recipe given in Proposition 2.1. Using the Remark 1, the latter triangle is area-maximizing in $\mathcal{C}_{\alpha \beta \gamma}$ and, hence, must coincide with the unique area-maximizing triangle described in the first part of the current proof. This shows that $\triangle D E F$ is itself uniquely determined by the property that it is area-minimizing in $\mathcal{I}_{\alpha \beta \gamma}$. This concludes the proof of the first claim made in the statement of Theorem 2.4. The above considerations also show that $\triangle D E F$ and $\triangle Q R S$ are homotopic, thus proving item $(i)$.

As regards (ii), let us recall from the first part of the proof that the triangle $Q R S$ has a maximal area when $S=L O_{1} \cap\left(O_{1}\right), Q=L O_{2} \cap\left(O_{2}\right), R=L O_{3} \cap\left(O_{3}\right)$. In particular, this implies that the triangles $Q R S$ and $O_{1} O_{2} O_{3}$ are homotopic with homotopy center $L$ and dilation factor $\frac{1}{2}$. Next, since $O_{1} O_{2} \| S Q$ and $O_{1} O_{2} \perp B L$, it follows that $B L \perp S Q$. Similarly $L C \perp R Q$ and $L A \perp S R$. Altogether, these observations imply that the triangle $S R Q$ is the antipedal of $L$ with respect to the triangle $A B C$. Now, using that $D F\|S R, D E\| S Q$, and $F E \| R Q$ we obtain that $A L \perp D F$, $B L \perp D E$, and $C L \perp E F$. This means that the projections of the vertices of $\triangle A B C$ on the sides of $\triangle D E F$ are concurrent, therefore establishing that the triangles $A B C$ and $D E F$ are orthologic. As is well-know, this gives that the perpendiculars from $D, E, F$ onto $A B, B C, A C$ respectively, are also concurrent in a point, say $K$. Hence, $\triangle D E F$ is the pedal triangle of $K$ with respect to the triangle $A B C$. This finishes the proof of (ii).

Consider next (iii). Since the triangles $A B C$ and $S Q R$ are orthologic, there exists a point $T$ such that $S T \perp A B, Q T \perp B C$, and $R T \perp A C$. In the quadrilateral $A D K F$ we have

$$
\begin{equation*}
\Varangle K A F=\Varangle F D K \quad \text { and } \quad \Varangle F D K+\Varangle F D A=\Varangle F D A+\Varangle L A D=\frac{\pi}{2} . \tag{2.21}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\Varangle F D K=\Varangle L A D \tag{2.22}
\end{equation*}
$$

From (2.21) and (2.22) we see that the lines $A L$ and $A K$ are isogonal. Similarly, $B L$ and $B K$ are isogonal, proving that $L$ and $K$ are isogonal points in $\triangle A B C$. This concludes the proof of (iii).

To prove (iv), we start by observing that the dilation of center $O$ and factor $\frac{S Q}{D E}$ (i.e., the dilation which takes $\triangle D E F$ into $\triangle S Q R$ ) transforms the lines $D K, E K$ and $F K$ into the lines $S T$, $R T$ and $Q T$, respectively. (Indeed, this is a direct corollary of the fact that dilations map parallel lines into parallel lines.) Thus, under such a transformation, the point $K$ is mapped into $T$ and, as a consequence, the points $O, K$ and $T$ are collinear. The proof of Theorem 2.4 is now finished.

The result below essentially says the that a pedal triangle (relative to $\triangle A B C$ ) is area-minimizing amongst all triangles of a similar shape inscribed in $\triangle A B C$.

Theorem 2.5. Let $P$ be a point contained inside the circumcircle of a given triangle $A B C$. Let $D, E, F$ be the projections of $P$ onto the sides $B C, A C$ and $A B$, respectively, and set

$$
\begin{equation*}
\alpha:=\Varangle E D F, \quad \beta:=\Varangle D E F, \quad \gamma:=\Varangle E F D . \tag{2.23}
\end{equation*}
$$

Then $\triangle D E F$ is the area-minimizing triangle in the class $\mathcal{I}_{\alpha \beta \gamma}$ (cf. (ii) of Definition 2.2).
Proof. Let $K$ be the isogonal of $P$ (relative to $\triangle A B C$ ) and denote by $\triangle Q R S$ the antipedal of $K$ with respect to $\triangle A B C$. Since $\triangle D E F$ is the pedal triangle of the point $P$ with respect to $\triangle A B C$, then quadrilateral $A F P E$ is inscribable. This implies that $\Varangle P E F+\Varangle P A F=\frac{\pi}{2}$. Next, since $K$ is the isogonal of $P$, this further entails $\Varangle P E F+\Varangle K A E=\frac{\pi}{2}$. This means that $A K \perp E F$, i.e. $R S \| E F$. Via a similar reasoning, we can show that the two other pairs of corresponding sides in $\triangle Q R S$ and $\triangle D E F$ are parallel. This shows that $\triangle Q R S$ and $\triangle D E F$ are homotopic. In particular, the angles of $\triangle Q R S$ are $\alpha, \beta, \gamma$.

Recall the (three, concurrent) circles $\left(O_{1}\right),\left(O_{2}\right),\left(O_{3}\right)$ introduced in the proof of Theorem 2.4. Then $S \in\left(O_{1}\right), R \in\left(O_{2}\right), Q \in\left(O_{3}\right)$. Given that the quadrilateral $A K C R$ is inscribable, it follows that $K \in\left(O_{1}\right)$. Similarly, $K \in\left(O_{2}\right), K \in\left(O_{3}\right)$. Hence, $K$ is the common point of $\left(O_{1}\right),\left(O_{2}\right)$, $\left(O_{3}\right)$, which implies that $\triangle Q R S$ is homotopic to $\Delta O_{1} O_{2} O_{3}$. As pointed out already in the proof of Theorem 2.4, this necessarily implies that $\triangle Q R S$ is a maximizer in the class $\mathcal{C}_{\alpha \beta \gamma}$. In turn, by (iii) in Theorem 2.4 this forces $\triangle D E F$ to be an area minimizer in $\mathcal{I}_{\alpha \beta \gamma}$.

We end with a result which appears to be folklore (see [1]; a new proof has been given in [3]).
Theorem 2.6. Assume $A B C$ to be a given triangle and denote by $O$ and $R$ the center and the radius of the circumcircle, respectively. Let $M$ be an arbitrary point in $\triangle A B C$ and let $\Delta \alpha \beta \gamma$ be the pedal triangle of $M$ with respect to $\triangle A B C$. Then

$$
\begin{equation*}
\frac{|\Delta \alpha \beta \gamma|}{|\Delta A B C|}=\frac{\left|R^{2}-O M^{2}\right|}{4 R^{2}} . \tag{2.24}
\end{equation*}
$$

## 3 The Main Result

This section is devoted to stating and proving the main result in this paper, Theorem 3.2. First, we take care of a number of prerequisites, starting with the result below.

Theorem 3.1. Let $M$ be a point contained in the circumcircle of $\triangle A B C$, which is assumed to have center $O$ and radius $R$. In addition, let $N \in O M$ be such that $O M \cdot O N=R^{2}$. Then the pedal triangles, $\Delta M_{1} M_{2} M_{3}$ and $\Delta N_{1} N_{2} N_{3}$, of the points $M$ and $N$ with respect to $\triangle A B C$ are similar (with pairs of equal angles having vertices located on the same sides of $\triangle A B C$ ). Furthermore,

$$
\begin{equation*}
\left|\Delta M_{1} M_{2} M_{3}\right| \leq\left|\Delta N_{1} N_{2} N_{3}\right| . \tag{3.25}
\end{equation*}
$$

Conversely, if $M$ and $N \in O M$ are two points such that their pedal triangles with respect to $\triangle A B C$ are similar (with pairs of equal angles having vertices on the same sides of $\triangle A B C$ ), then $O M \cdot O N=R^{2}$.

Proof. Let $X, Y$ and $Z$ be the centers of the circles $A M B, B M C$ and $A M C$, respectively (see Figure 5). By an inversion of center $O$ and modulus $R$, the triangle $A B C$ and the circle ( $O$ ) remain unchanged. The circles $(X),(Y)$ and $(Z)$ are transformed in the circles $\left(X^{\prime}\right),\left(Y^{\prime}\right)$ and $\left(Z^{\prime}\right)$, respectively, passing through $A$ and $B, B$ and $C, A$ and $C$, respectively, and have a common point $N$, which is the inverse transform of $M$ (see Figure 6).


Figure 5


Figure 6


Figure 7
Consider the lines $a B, b B$ and $c B$, which are tangent to the circles $(O),(X)$ and $\left(X^{\prime}\right)$, respectively (cf. Figure 7). As the inversion preserves the angle between two curves, we obtain that $\Varangle((O),(X))=\Varangle\left((O),\left(X^{\prime}\right)\right)$, i.e., $\Varangle(b B a)=\Varangle(c B a)$. We can write $\Varangle b B a$ as the difference of $\Varangle A B b$ and $\Varangle A B a$. This difference in turn can be re-written as $\frac{\widehat{f}}{2}-\frac{\widehat{g}}{2}$. We have $\Varangle c B d$ equal to $\Varangle a B e$, which is further equal to $\Varangle A B e+\Varangle a B A=\frac{\widehat{h}}{2}+\frac{\widehat{g}}{2}$. Using the fact that $\Varangle b B a=\Varangle c B d$, we obtain that

$$
\begin{equation*}
\Varangle B N A=\Varangle B M A-2 \Varangle A C B . \tag{3.26}
\end{equation*}
$$

If $M_{1} M_{2} M_{3}$ and $N_{1} N_{2} N_{3}$ are the pedal triangles of $M$ and $N$ respectively, with

$$
\begin{equation*}
M_{1}, N_{1} \in A B, M_{2}, N_{2} \in B C, M_{3}, N_{3} \in A C \text {, } \tag{3.27}
\end{equation*}
$$

then

$$
\begin{align*}
\Varangle A C B & =\pi-\Varangle A N_{3} N_{2}-\Varangle B N_{2} N_{3} \\
& =\pi-\Varangle A N_{3} N_{1}-\Varangle N_{3}-\Varangle B N_{2} N_{1}-\Varangle N_{2} . \tag{3.28}
\end{align*}
$$

In addition, the quadrilaterals $N_{3} N N_{1} A$ and $N_{2} N N_{1} B$ can be inscribed in a circle, therefore

$$
\begin{equation*}
\Varangle N_{1} N A=\Varangle N_{1} N_{3} A \text { and } \Varangle N_{1} N_{2} B=\Varangle B N N_{1} . \tag{3.29}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\Varangle B N A=\Varangle N_{1} N A+\Varangle B N N_{1}, \quad \text { and } \quad \Varangle N_{1}=\pi-\Varangle N_{2}-\Varangle N_{3}, \tag{3.30}
\end{equation*}
$$

Combining (3.26), (3.28), (3.29), and (3.30), we arrive at the conclusion that

$$
\begin{equation*}
\Varangle N_{1}=\Varangle B N A+\Varangle A C B . \tag{3.31}
\end{equation*}
$$

It is also possible to write

$$
\begin{align*}
\Varangle B M A & =\pi-\Varangle M A M_{1}-\Varangle M B M_{1},  \tag{3.32}\\
\Varangle A C B & =\pi-\Varangle C A B-\Varangle C B A,  \tag{3.33}\\
\Varangle C A B & =\Varangle M A C+\Varangle M A M_{1},  \tag{3.34}\\
\Varangle C B A & =\Varangle M B C+\Varangle M B M_{1} . \tag{3.35}
\end{align*}
$$

Therefore, by combining (3.32)-(3.35), we obtain

$$
\begin{equation*}
\Varangle B M A-\Varangle A C B=\Varangle M A C+\Varangle M B C . \tag{3.36}
\end{equation*}
$$

Since the quadrilaterals $M_{3} A M_{1} M$ and $M M_{1} B M_{2}$ can be inscribed in a circle,

$$
\begin{equation*}
\Varangle M A C=\Varangle M M_{1} M_{3} \text { and } \Varangle M B C=\Varangle M M_{1} M_{2} . \tag{3.37}
\end{equation*}
$$

However,

$$
\begin{equation*}
\Varangle M_{1}=\Varangle M M_{1} M_{3}+\Varangle M M_{1} M_{2} \tag{3.38}
\end{equation*}
$$

so therefore, by (3.36), (3.37), and (3.38),

$$
\begin{equation*}
\Varangle M_{1}=\Varangle B M A-\Varangle A C B . \tag{3.39}
\end{equation*}
$$

The identities (3.39) and (3.31) imply that $\Varangle N_{1}=\Varangle M_{1}$. A similar reasoning can be used to show that $\Varangle N_{2}=\Varangle M_{2}$, and that $\Varangle N_{3}=\Varangle M_{3}$, proving that $\Delta N_{1} N_{2} N_{3}$ and $\Delta M_{1} M_{2} M_{3}$ are similar, with their corresponding angles' vertices located on the same sides of the triangle $A B C$.

Next we will prove (3.25). By Theorem 2.6,

$$
\begin{equation*}
\frac{\left|\Delta M_{1} M_{2} M_{3}\right|}{\left|\Delta N_{1} N_{2} N_{3}\right|}=\frac{R^{2}-O M^{2}}{O N^{2}-R^{2}} \tag{3.40}
\end{equation*}
$$

and the last fraction is $\leq 1$, as it can be seen from the fact that $O M \leq R \leq O N$ and $O M \cdot O N=R^{2}$. Hence, (3.25) follows.

Now we will prove the converse statement referred to in Theorem 3.1. In order for $\Delta N_{1} N_{2} N_{3}$ and $\Delta M_{1} M_{2} M_{3}$ to be similar, it is a necessary condition that $\Varangle B N A=\Varangle B M A-2 \Varangle A C B$, which is equivalent to $\Varangle B N A=\frac{\widehat{f}}{2}-\frac{\widehat{g}}{2}$. This can only occur when $\Varangle B N A=\frac{\widehat{h}}{2}$ which implies that $N$ is on the circle $X^{\prime}$. A similar reasoning can be applied to show that $N$ must be on the circles $Y^{\prime}$ and $Z^{\prime}$, proving that $N$ is the inversion of $M$. This shows that the converse statement is also valid, completing the proof of Theorem 3.1.

Remark 3. (i) From the reasoning above we see that there exist precisely six points in the interior of the circumscribed circle of $\triangle A B C$ such that their antipedal triangles with respect to $\triangle A B C$ are similar to a given reference triangle $M N P$. We shall call these points the interior points of $\triangle M N P$ with respect to $\triangle A B C$.
(ii) Likewise, there exist precisely six points in the exterior of the circumcircle of $\triangle A B C$ with the same property as above. We shall call these points the exterior points of $\triangle M N P$ with respect to $\triangle A B C$.

After this preamble, we are ready to state and prove our main result:

Theorem 3.2. The pedal points of the six triangles, $\Delta_{\alpha \beta \gamma}, \Delta_{\alpha \gamma \beta}, \Delta_{\beta \alpha \gamma}, \Delta_{\beta \gamma \alpha}, \Delta_{\gamma \alpha \beta}, \Delta_{\gamma \beta \alpha}$, that are area-minimizers in the classes $\mathcal{I}_{\alpha \beta \gamma}, \mathcal{I}_{\alpha \gamma \beta}, \mathcal{I}_{\beta \alpha \gamma}, \mathcal{I}_{\beta \gamma \alpha}, \mathcal{I}_{\gamma \alpha \beta}, \mathcal{I}_{\gamma \beta \alpha}$, respectively, all lie on a circle.

Proving Theorem 3.2 is equivalent to proving the following. Consider $A B C$, triangle of reference, and $\Delta D_{0} E_{0} F_{0}$ a fixed fundamental triangle (in the terminology of Definition 2.2).

Let $M_{i}, i=1,2, \ldots, 6$, be six points such that, for each $i \in\{1,2, \ldots, 6$,$\} , the pedal triangle of M_{i}$ with respect to $\triangle A B C$ is $\Delta D_{i} E_{i} F_{i}$ with

$$
\begin{equation*}
\Varangle D_{i}=\Varangle D_{0}, \quad \Varangle E_{i}=\Varangle E_{0}, \quad \Varangle F_{i}=\Varangle F_{0}, \tag{3.41}
\end{equation*}
$$

and

$$
\begin{align*}
& D_{1}, D_{2}, E_{3}, E_{4}, F_{5}, F_{6} \in A B \\
& D_{3}, D_{5}, E_{1}, E_{6}, F_{2}, F_{4} \in B C \\
& D_{4}, D_{6}, E_{2}, E_{5}, F_{1}, F_{3} \in A C \tag{3.42}
\end{align*}
$$

(see Figure 8). Then the points $M_{i}, i=1,2, \ldots, 6$, lie on the same circle.


Figure 8
Proof. Since $\Delta D_{1} E_{1} F_{1}$ is the antipedal triangle of $M_{1}$, with respect to $\triangle A B C$, we can obtain (reasoning similarly to what was done in the proof of Theorem 3.1 to show that $\Varangle M_{1}=\Varangle B M A-$ $\Varangle A C B)$ that

$$
\begin{equation*}
\Varangle E_{1}=\Varangle B M_{1} C-\Varangle A, \quad \Varangle D_{1}=\Varangle A M B-\Varangle C, \quad \Varangle F_{1}=\Varangle A M_{1} C-\Varangle B . \tag{3.43}
\end{equation*}
$$

Similarly we obtain $\Varangle D_{2}=\Varangle B M_{2} A-\Varangle C$. From $\Varangle D_{0}=\Varangle D_{1}=\Varangle D_{2}$, it follows that $\Varangle B M_{1} A=$ $\Varangle B M_{2} A$, i.e.,
$M_{1}, M_{2}$ lie on a circle $\left(O_{D}\right)$, passing through $A$ and $B$
and with the property that $\frac{1}{2} \widehat{A B}=\Varangle A M_{1} B=\Varangle C+\Varangle D_{0}$.
Likewise (see Figure 9),
$M_{3}, M_{4}$ lie on a circle $\left(O_{E}\right)$, passing through $A$ and $B$
and with the property that $\frac{1}{2} \overparen{A B}=\Varangle C+\Varangle E_{0}$,
$M_{5}, M_{6}$ lie on a circle $\left(O_{F}\right)$, passing through $A$ and $B$
and with the property that $\frac{1}{2} \widehat{A B}=\Varangle C+\Varangle F_{0}$,
$M_{6}, M_{4}$ lie on a circle $\left(O_{D}^{\prime}\right)$, passing through $A$ and $C$
and with the property that $\frac{1}{2} \overparen{A C}=\Varangle B+\Varangle D_{0}$,
$M_{5}, M_{2}$ lie on a circle $\left(O_{E}^{\prime}\right)$, passing through $A$ and $C$
and with the property that $\frac{1}{2} \overparen{A C}=\Varangle B+\Varangle E_{0}$,
$M_{1}, M_{3}$ lie on a circle $\left(O_{F}^{\prime}\right)$, passing through $A$ and $C$
and with the property that $\frac{1}{2} \overparen{A C}=\Varangle B+\Varangle F_{0}$.
The key step in the proof is to make at this stage an inversion of center $A$ and arbitrary modulus. Since the lines $A B$ and $A C$ pass through $A$, they will remain unchanged. The points $B, C$ become $B^{\prime}$ and $C^{\prime}$, respectively. The circles $\left(O_{D}\right),\left(O_{E}\right),\left(O_{F}\right)$ will be transformed into the lines $d_{D}, d_{E}$ and $d_{F}$ respectively, which are concurrent at $B^{\prime}$. Meanwhile, the circles $\left(O_{D}^{\prime}\right),\left(O_{E}^{\prime}\right)$ and $\left(O_{F}^{\prime}\right)$ become the lines $d_{D}^{\prime}, d_{E}^{\prime}$ and $d_{F}^{\prime}$, respectively, which are concurrent at $C^{\prime}$. The points $M_{1}, M_{2}, M_{3}, M_{4}, M_{5}, M_{6}$ will be transformed into $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}, M_{4}^{\prime}, M_{5}^{\prime}$ and $M_{6}^{\prime}$,respectively, and $M_{1}^{\prime}, M_{2}^{\prime} \in d_{D}, M_{3}^{\prime}, M_{4}^{\prime} \in d_{E}, M_{5}^{\prime}, M_{6}^{\prime} \in d_{F}, M_{6}^{\prime}, M_{4}^{\prime} \in d_{D}^{\prime}, M_{5}^{\prime}, M_{2}^{\prime} \in d_{E}^{\prime}, M_{1}^{\prime}, M_{3}^{\prime} \in d_{F}^{\prime}$.


Figure 9
The goal is to show that the points $M_{1}^{\prime}, M_{2}^{\prime}, M_{3}^{\prime}, M_{4}^{\prime}, M_{5}^{\prime}, M_{6}^{\prime}$ lie on the same circle. We note that since under an inversion the angle between two curves is preserved, we have $\Varangle\left(d_{D}, d_{F}^{\prime}\right)=$ $\Varangle\left(\left(O_{D}\right),\left(O_{F}^{\prime}\right)\right)$, as the angle between two circles is defined to be the angle between the tangents at one of their common points. Therefore, $\Varangle\left(d_{D}, d_{F}^{\prime}\right)=\Varangle(\alpha A \beta)=\pi-\Varangle\left(O_{D} A O_{F}^{\prime}\right)$. However,

$$
\begin{equation*}
\Varangle\left(O_{D} A O_{F}^{\prime}\right)=\Varangle\left(O_{D} A B\right)+\Varangle A+\Varangle\left(C A O_{F}^{\prime}\right) . \tag{3.50}
\end{equation*}
$$

On the other hand $\Varangle\left(O_{D} A B\right)=\frac{\pi-\Varangle\left(A O_{D} B\right)}{2}=\Varangle C+\Varangle D_{0}-\frac{\pi}{2}$ and $\Varangle\left(C A O_{F}^{\prime}\right)=\Varangle F_{0}+\Varangle B-\frac{\pi}{2}$. Hence,

$$
\begin{equation*}
\Varangle\left(O_{D} A O_{F}^{\prime}\right)=(\Varangle A+\Varangle B+\Varangle C)+\Varangle D_{0}+\Varangle F_{0}-\pi=\Varangle D_{0}+\Varangle F_{0}, \tag{3.51}
\end{equation*}
$$

and $\Varangle\left(d_{D}, d_{F}^{\prime}\right)=\pi-\Varangle\left(O_{D} A O_{F}^{\prime}\right)=\Varangle E_{0}$.

Let $B^{\prime} \delta$ be the tangent at $B$ to the circle determined by the points $A^{\prime}, B^{\prime}, C^{\prime}$. Then $\Varangle\left(d_{E}, B^{\prime} C^{\prime}\right)=$ $\Varangle\left(\delta B^{\prime} C^{\prime}\right)-\Varangle\left(\delta B^{\prime}, d_{E}\right)$. However, $\Varangle\left(\delta B^{\prime} C^{\prime}\right)=\Varangle A$, and $\Varangle\left(\delta B^{\prime}, d_{E}\right)=\Varangle\left(C\left(A, B^{\prime}, C^{\prime}\right), d_{E}\right)=$ $\Varangle\left(B C,\left(O_{E}\right)\right)=-\Varangle B+\left(\pi-\Varangle C-\Varangle E_{0}\right)$, where $C(A, B, C)$ denotes the circle containing $A, B, C$. Therefore

$$
\begin{equation*}
\Varangle\left(d_{E}, B^{\prime} C^{\prime}\right)=\Varangle E_{0} . \tag{3.52}
\end{equation*}
$$

We have the pairs of lines $\left(d_{D}, d_{D}^{\prime}\right),\left(d_{E}, d_{E}^{\prime}\right),\left(d_{F}, d_{F}^{\prime}\right)$ having the same slope as the line $B C$, and by symmetry, we see that $M_{4}^{\prime} M_{2}^{\prime}\left\|M_{6}^{\prime} M_{1}^{\prime}\right\| M_{5}^{\prime} M_{3}^{\prime} \| B^{\prime} C^{\prime}$. Hence, $\Varangle\left(M_{4}^{\prime} M_{2}^{\prime} B^{\prime}\right)=\nless\left(M_{2}^{\prime} B^{\prime} C^{\prime}\right)$ and $\Varangle\left(B^{\prime} M_{3}^{\prime} C^{\prime}\right)=\pi-\Varangle\left(M_{3}^{\prime} B^{\prime} C^{\prime}\right)-\Varangle\left(M_{3}^{\prime} C^{\prime} B^{\prime}\right)=\pi-\Varangle E_{0}-\Varangle F_{0}=\Varangle D_{0}$. As a consequence, the quadrilateral $M_{4}^{\prime} M_{2}^{\prime} M_{1}^{\prime} M_{3}^{\prime}$ is inscribable. Since $\Varangle\left(B^{\prime} M_{5}^{\prime} C^{\prime}\right)=\Varangle\left(B^{\prime} M_{3}^{\prime} C^{\prime}\right)=\Varangle D_{0}$, it follows that the quadrilateral $M_{4}^{\prime} M_{2}^{\prime} M_{1}^{\prime} M_{6}^{\prime}$ is also inscribable. The quadrilateral $M_{4}^{\prime} M_{2}^{\prime} M_{1}^{\prime} M_{6}^{\prime}$ is an isosceles trapezoid, hence it is inscribable as well. As a result, $M_{6}^{\prime}$ lies on the circumscribed circle to the quadrilateral $M_{3}^{\prime} M_{1}^{\prime} M_{2}^{\prime} M_{4}^{\prime}$. Since $M_{5}^{\prime}$ lies on the circumscribed circle to the quadrilateral $M_{6}^{\prime} M_{1}^{\prime} M_{3}^{\prime} M_{5}^{\prime}$, it follows that all the points $M_{i}, i=1,2, \ldots, 6$, lie on the same circle.

Remark 4. Since the interior points lie on a circle, it follows that the exterior points lie on a circle (the transformed under the inversion of center $O$ and modulus $R$ of the former circle).

## References

[1] W. Gallatly, The Modern Geometry of the Triangle, Francis Hodgson, London, 1910.
[2] C. Kimberling, Triangle Centers and Central Triangles, Congressus Numerantium 129, 1998, pp. 295.
[3] A. Mitrea, On the area of pedal triangles, preprint, (2008).

California Institute of Technology<br>e-mail: amitrea@gmail.com


[^0]:    *2000 Math Subject Classification. Primary: 51M25, 51M16. Secondary 51M04, 51M15.
    Key words: inscribed and circumscribed triangles, pedal triangles, geometrical transformations

