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Abstract

We consider photoelectric effect including phonon emission and the initial dressed
photon. We include the polychromatic form of the photoeffect, and the photoeffect in
the two-dimensional electron gas in magnetic field. We consider the nonrelativistic and
relativistic quantum theory of ionization as the extension of the old theory of photoeffect.
As the related problem, we calculate the H-atom in the black body sea, which is equivalent
to the Gibbons-Hawking thermal bath. We include the problem of the velocity of sound in
the relic photon sea, thermal Casimir effect, dielectric crystal immersed in the black-body
sea and the Cherenkov radiation in the two-dimensional dielectric medium.

1 Introduction

The photoelectric effect is a quantum electromagnetic phenomenon in which electrons
are emitted from matter after the absorption of energy from electromagnetic radiation.
Frequency of radiation must be above a threshold frequency, which is specific to the
type of surface and material. No electrons are emitted for radiation with a frequency
below that of the threshold. These emitted electrons are also known as photoelectrons
in this context. The photoelectric effect was theoretically explained by Einstein in his
paper in 1905 (Einstein, 1905; 1965) and the term ”light quanta” called ”photons” was
introduced by chemist G. N. Lewis, in 1926. Einstein writes (Einstein, 1905; 1965): In
accordance with the assumption to be considered here, the energy of light ray spreading
out from point source is not continuously distributed over an increasing space but consists
of a finite number of energy quanta which are localized at points in space, which move
without dividing, and which can only be produced and absorbed as complete units.

It is well known statement that the free electron in vacuum cannot absorb photon.
It follows from the special theory of relativity. Namely: if p1, p2 are the initial and
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final 4-momenta of electron with rest mass m and k is the 4-momentum of photon, then
after absorption of photon by electron we write k + p1 = p2, which gives when squared
k2 + 2kp1 + p21 = p22. Then, with p

2
1 = p22 = −m2 and k2 = 0, we get for the rest electron

with p1 = 0, the elementary relation mω = 0, Q.E.D..
The linear dependence on the frequency was experimentally determined in 1915, when

Robert Andrews Millikan showed that Einstein formula

h̄ω =
mv2

2
+W (1)

was correct. Here h̄ω is the energy of the impinging photon, v is electron velocity measured
by the magnetic spectrometer and W is the work function of concrete material. The work
function for Aluminium is 4.3 eV, for Beryllium 5.0 eV, for Lead 4.3 eV, for Iron 4.5 eV,
and so on (Rohlf, 1994). More information on the work function is possible to find in the
book by Lide (Lide, 2008). The work function concerns the surface photoelectric effect,
where the photon is absorbed by an electron in a band. The theoretical determination
of the work function is the problem of the solid state physics. On the other hand, there
is the so called atomic photoeffect (Amusia, 1987), where the ionization energy plays the
role of the work function. The system of the ionization energies is involved in the tables
of the solid state physics. The work function is the one of the prestige problem of the
contemporary experimental and theoretical crystal physics.

In case of the volume photoeffect, the ionization work function is defined in many
textbooks on quantum mechanics. Or,

W =

∫ x2

x1

(
dE

dx

)
dx (2)

where E is the energy loss of moving electron.
The formula (1) is the law of conservation of energy. The classical analogue of the

equation (1) is the motion of the Robins ballistic pendulum in the resistive medium.
The Einstein ballistic principle is not valid inside of the blackbody. The Brownian

motion of electrons in this cavity is caused by the repeating Compton process γ+e→ γ+e
and not by the ballistic collisions. The diffusion constant for electrons must be calculated
from the Compton process and not from the ballistic process. The same is valid for
electrons immersed into the cosmic relic photon sea.

The idea of the existence of the Compton effect is also involved in the Einstein article.
He writes (Einstein, 1905; 1965): The possibility should not be excluded, however, that
electrons might receive their energy only in part from the light quantum. However, Einstein
was not sure, a priori, that his idea of such process is realistic. Only Compton proved the
reality of the Einstein statement.

At energies h̄ω < W , the photoeffect is not realized. However, the photo-conductivity
is the real process. The photoeffect is realized only in medium and with low energy
photons, but with energies h̄ω > W , which gives the Compton effect negligible. Compton
effect can be realized with electrons in medium and also with electrons in vacuum. For
h̄ω ≫ W the photoeffect is negligible in comparison with the Compton effect. At the
same time it is necessary to say that the Feynman diagram of the Compton effect cannot
be reduced to the Feynman diagram for photoeffect. In case of the high energy gamma
rays, it is possible to consider the process called photoproduction of elementary particles
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on protons in LHC, or photo-nuclear reactions in nuclear physics (Levinger, 1960). Such
processes are energetically far from the photoelectric effect in solid state physics.

Eq. (1) represents so called one-photon photoelectric effect, which is valid for very
weak electromagnetic waves. At present time of the laser physics, where the strong
electromagnetic intensity is possible, we know that so called multiphoton photoelectric
effect is possible. Then, instead of equation (1) we can write

h̄ω1 + h̄ω2 + ...h̄ωn =
mv2

2
+W. (3)

The time lag between the incidence of radiation and the emission of a photoelectron
is very small, less than 10−9 seconds.

As na analogue of the equation (3), the multiphoton Compton effect is also possible:
γ1 + γ2 + ...γn + e → γ + e and two-electron, three-electron,... n-electron photoelectric
effect is also possible (Amusia, 1987). To our knowledge the Compton process with the
entangled photons was still not discovered and elaborated. On the other hand, there is
the deep inelastic Compton effect in the high energy particle physics.

In the second part of the chapter we consider elementary explanation of the photoeffect
ivolving the emission of phonon.

In the third section we consider the nonrelativistic quantum field theory of photoeffect
in the form of ionization of atom involving the emission of phonon.

In the 4-th part, we discuss the relativistic quantum field theory (QFT) of photoeffect
in the form of ionization of atom involving the emission of phonon.

In the 5-th part of the chapter we consider the polychromatic photoeffect to get the
generalized Einstein formula (Pardy, 2009a).

The 6-th part deals with photoelectric effect in the two-dimensional system in homo-
geneous magnetic field (Pardy, 2010).

The generalization of the photoeffect to the situation with the dressed photon is
expressed in the 7-th part of the chapter.

The 8-th part deals with the H-atom immersed in the black-body photon sea. The
situation is equivalent to the H-atom in the Gibbons-Hawking thermal bath and it is
expected the important astrophysical meaning (Pardy, 2016a).

The 9-th part consider the dielectric crystal immersed in the black-body which is
equivalent to the influence of the index of refraction on the spectral formula of the black-
body (Pardy, 2015a).

The thermal physics problem is also the situation of the Casimir effect at temperature
T . The 10-th part of the chapter deals with such situation (Pardy, 2016b).

The 11-th part of the chapter is devoted to the Cherenkov radiation in the two-
dimensional dielectric medium (Pardy, 2015b).

The 12-th part of the chapter concerns the calculation of the velocity of sound in the
relic photon sea which is the relic astrophysical black-body (Pardy, 2013a, 2013b).

The 13-th part of the chapter is conclusion.
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2 The photoelectric effect with the emission of

phonon

A phonon is a collective excitation in a periodic, elastic arrangement of atoms, or,
molecules in condensed matter, often designated a quasiparticle. It is an quantum
mechanical excited state of the modes of vibrations of elastic structures of interacting
particles. They play a major role in thermal conductivity and electrical conductivity.
The concept of phonons was introduced in 1932 by Russian physicist Igor Tamm. The
long-wavelength phonons give rise to sound. The higher-frequency phonons are responsible
for the majority of the thermal capacity of solids.

Phonons have particle-like properties forming the wave particle duality known from
quantum mechanics.

Acoustic phonons are coherent movements of atoms of the lattice out of their
equilibrium positions similarly to the acoustic waves. They exhibit a linear relationship
between frequency and phonon wave vector for long wavelengths. Optical phonons are
out-of-phase movements of the atoms in the lattice, one atom moving to the left, and its
neighbor to the right.

By analogy to photons and matter waves, phonon has wave vector k and momentum k,
however, k is not actually a physical momentum; it is called pseudomomentum, because
k is only determined up to addition of constant vectors (the reciprocal lattice vectors and
integer multiples thereof).

A phonon with wavenumber k is thus equivalent to an infinite family of phonons with
wavenumbers k ± 2π/a, k ± 4π/a, and so on, with a being the lattice constant.

The thermodynamic properties of a solid are directly related to phonons. The phonon
density of states determines the heat capacity of a crystal. Phonons generated by the
temperature of the lattice are called thermal phonons.

The behavior of thermal phonons is similar to the photon gas in a cavity, wherein
photons may be emitted or absorbed by the cavity walls. Einstein has considered such
model to obtain the heat capacity and Debye performed the brilliant generalization of the
Einstein model.

The impossibility of photon absorption by free electron can be demonstrated using the
relativistic equations

h̄ω =
mc2√
1− v2

c2

(1)

and

h̄ω

c
=

mv√
1− v2

c2

, (2)

where the second equation (2) is the expression of the conservation of momentum of the
system pf particles photon and electron. After division of eq. (1) by eq. (2), ((1)/(2)),
we get after elementary modification 1 = c/v, which is logical contradiction.

Now, let us consider the situation, where electron is located in some medium where
the Einstein work function is the necessary physical reality and the emission of phonon of
the energy h̄Ω is also the physical reality. Then instead of equations (1) and (2) we write
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h̄(ω − Ω)−W =
mc2√
1− v2

c2

(3)

and

h̄ω

c
=

mv√
1− v2

c2

+ P =
mv + P

√
1− v2

c2√
1− v2

c2

, (4)

where we have introduced P as the momentum of phonon. After division of eq. (3) by
eq. (4), ((3)/(4)), we get after elementary modification

h̄(ω − Ω)−W

ω
=

mc

mv + P
√

1− v2

v2

, (5)

where there is no contradiction.

3 The QED photoelectric effect with phonon emis-

sion

The main idea of the quantum mechanical description of the photoeffect is the process
of atom ionization. In case with the no phonon ejection it must be described by the
appropriate S-matrix element involving the interaction of atom with the impinging photon
with the simultaneous generation of the electron, the motion of which can be described
approximately by the plane wave

ψq =
1√
V
eiq·x, q =

p

h̄
, (1)

where p is the momentum of the ejected electron.
The standard approach consists in the definition of the cross-section by the quantum

mechanical equation (Berestetzky et al., 1989):

dσ =
2π

h̄
|Vfi|δ(−I + h̄ω − ε)

d3p

(2π)3
, (2)

where I is the ionization energy of an atom and ε = Ef is the the final energy of the
emitted electron, |Vfi| is the matrix element of the transition of electron from the initial
bound state to the final state. The matrix element follows from the perturbation theory
and it involves the first order term of the interaction between electron and photon.

In case that the electro-process is accompanied by the phonon emission with the energy
E = h̄Ω, the last formula is presented with very small modification, leading however to
the interesting experimental result.

dσ =
2π

h̄
|Vfi|δ(−I + h̄ω − h̄Ω− ε)

d3p

(2π)3
. (3)

We suppose in a sufficient distance from atom the wave function is of the form of the
plane wave (1) which is the classical atomic situation discussed in monograph (Davydov,
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1976). However, if the photon energy only just exceeds the ionization energy I of atom,
then we cannot used the plane wave approximation but the wave function of the continuous
spectrum.

The probability of the emission of electron by the electromagnetic wave is of the well-
known form (Berestetzky et al., 1989) (we use nomenclature with h̄ = 1):

Vfi = −eAj = −e
√
4π

1√
2ω
Mfi, (4)

where

Mfi =

∫
ψ′∗(αe)eik·rψd3x (5)

where ψ = ψi, ψ
′ = ψf is the initial and final wave function of electron (Berestetzky et al.

1989).
Using (Berestetzky et al., 1989)

d3p = p2d|p|do = ε|p|dεdo, (6)

we get after integration of the δ-function over ε

dσ = e2
ε|p|
2πω

|Mfi|2. (7)

Let us consider the case with I ≪ ω ≪ m. It follows from ω ≪ m that the velocity
of electron is very small and it means that matrices αk can be replaced by the operators
(Berestetzky et al., 1989 § 45)

αk → −i∇k/m. (8)

At the same time we use the dipole approximation with exp(ikr) ≈ 1. Then we get

dσ = e2
ε|p|
2πω

|evfi|2do, (9)

where,

vfi = − i

m

∫
ψ′∗∇ψd3x. (10)

Let us consider the photoeffect from the basic level of atom, then ψ = ψi, or

ψ =
(Ze2m)3/2√

π
e−Ze2mr. (11)

(In the standard units me2 → 1/a0 with a0 = h̄2/me2, a0 being the Bohr radius).
Function ψ′ is taken in such a way that its asymptotic form is the exponential form (1)
and together with this form it involves the convergent spherical wave ψ−

p . According to
(Landau et al., 1991, § 36) we write

ψ−
p =

1

p

l=∞∑
l=0

il(2l + 1)a−iδlRpl(r)Pl(nn1), (12)
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where n = p/p,nl = r/r, p = |p|, and ψ′ describes the transition from the s-state to the
p-state according to the selection rule (the dipole case), which means that it is possible
to put l = 1 (Landau et al., 1991, § 36).

Ignoring the nonsubstantional coefficients, we write

ψ′ =
3

2p
(nn1)Rp1(r). (13)

We get with function from (11) and (13) the following expression

evfi =
3(Ze2m)5/2

2
√
πmp

∫ ∫
(nn1)(n1e)e

−Ze2mrRp1(r)do1r
2dr =

√
2π(Ze2m)5/2

pm
(ne)

∫ ∞

0

r2e−Ze2mrRp1(r)dr. (14)

We get with (Landau et al., 1991, § 36, eq. 36.18) and (Landau et al., 1991, § 36, eq.
36.24) for Rp1:

Rp1 =

√
8π2e2m

3

√
1 + ν2

ν(1− e−2πν)
pr.e−iprF (2 + iν, 4, 2ipr) (15)

with

ν =
2e2m

p
=
Ze2

h̄v
. (16)

Now, it is necessary to calculate the integral in (14). To realize the goal, we use the
following identity: ∫ ∞

0

e−λzzγ−1F (α, γ, kz) = Γ(γ)λα−γ(λ− k)−α. (17)

Using the elementary relation(
ν + i

ν − i

)iν

= e−2ν arctan ν (18)

we get

evij =
27/2πν3(ne)

√
pm(1 + ν2)3/2

e−2ν arctan ν

√
1− e−2πν

. (19)

The δ-function function involves the conservation law in the form

ω =
p2

2m
+ I =

p2

2m
(1 + ν2). (20)

Using the last equation, we get

dσ = 27παa2
(
I

h̄ω

)4

(ne)2
e−4ν arctan ν

1− e−2πν
do, (21)

where
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a =
h̄2

mZe2
= a0/Z. (22)

In case of the nonpolarized photon, dσ must be averaged in e, which leads to transition
(Berestetzky et al., 1989; § 45, eq. 45. 4b):

(ne)2 =
1

2
(n0 × e)2; n0 = k/k. (23)

After integration over all angles in dσ, we get the Stobbe formula (Stobbe, 1930)

σ = (29/3)π2αa2
(
I

h̄ω

)4
e−4ν arctan ν

1− e−2πν
. (24)

In case h̄ω ≫ I and at the same time h̄ω ≪ mc2 we get

σ = (28/3)παa20Z
5

(
I0
h̄ω

)7/2

; I0 =
e4m

2h̄2
. (25)

Now, let as consider the QED photoelectric effect with phonon emission with the the
conservation law

h̄ω = ε+ I + h̄Ω, (26)

which can be physically interpreted in such a way as the photoelectric effect with the initial
energy h̄ω− h̄Ω. It mathematically means that the final formulas for the photoeffect (24)
and (25) must be modified by the relation ω → ω − Ω, or,

σ = (29/3)π2αa2
(

I

h̄ω − h̄Ω

)4
e−4ν arctan ν

1− e−2πν
. (27)

In case h̄ω ≫ I and at the same time h̄ω ≪ mc2 we get

σ = (28/3)παa20Z
5

(
I0

h̄ω − h̄Ω

)7/2

; I0 =
e4m

2h̄2
. (28)

The last formula can be experimentally verified in the analogue with the Einstein
formula.

4 The relativistic QED photoelectric effect with

phonon emission

Let us consider the case with

ω ≫ I. (1)

In this case ε = ω − I ≫ I and then the influence of Coulomb field of nucleus on the
wave function of the photoelectron ψ′ can be determined by the theory of perturbation.
So we write (Berestetzky et al., 1989):

ψ′ =
1√
2ε

(u′eipr + ψ(1)). (2)
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The relativistic motion of the electron is involved in the plane wave of electron in
formula (2).

The function ψ is take according to § 39 in the form:

ψ =

(
1− i

2m
γ0γ∇

)
u√
2m

ψnonrel, (3)

where ψnonrel is the nonrelativistic function of the bound state (11) sect. 3 , and u is the
bispinor amplitude of the rest electron with the normalization ūu = 2m.

Now, let us insert functions ψ, ψ′ into the matrix element

Mfi =

∫
ψ′∗(αe)eik·rψdx3. (4)

Then, we get

Mfi =
1

2
√
mε

×

∫ {
ū′(γe)

[(
1− i

2m
γ0γ∇

)
uψnonrel

]
e−i(p−k)r + ψ̄(1)(γe)eikruψnonrel

}
d3x. (5)

Now, we approximate the wave function in [..] by constant as follows (Berestetzky et
al., 1989):

ψnonrel =
(Ze2m)3/2√

π
. (6)

Then, after integration by per partes of the first term in eq. (5) in order to get the
exponential term, we get

Mfi =
(Ze2m)3/2

2
√
πmε

{
ū′(γe)

[
1 +

1

2m
γ0γ(p− k

](
e−Ze2mr

)
p−k

+ ψ̄
(1)
−k(γe)u

}
, (7)

where the vector component is as follows in approximation in term Ze2:(
e−Ze2mr

)
p−k

=
8πZe2m

(p− k)4
. (8)

After insertion of ψ′ from eq. (2) into the Dirac equation

[γ(p− eA)−m]ψ = 0 (9)

we get the following equation for ψ(1):

(
γ0ε+ iγ0γ∇−m

)
ψ(1) = e(γµAµ)u

′eipr = −(Ze2

r
γ0u′eipr. (10)

After application of the operator(
γ0ε+ iγ0γ∇+m

)
(11)
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to the last equation, we get

(∆ + p2)ψ
(1)
k = −Ze2

(
γ0ε+ iγ∇+m

)
(γ0u′)

1

r
eipr. (12)

Now, let us multiply the last equation by e−ikr and perform the integration in d3x.
We perform the integration per partes in terms with ∆ and ∇. We get:

(p2 + k2)ψ
(1)
k = −Ze2

(
γ0ε− γk+m

)
(γ0u′)

(
1

r

)
k−p

=

−Ze2
(
2γ0ε− γ(k− p) +m

)
(γ0u′)

(
4π

(k− p)2

)
. (13)

We used the following equations(
γ0ε− pγ −m

)
u′ = 0;

(
γ0ε+ pγ −m

)
γ0u′ = 0 (14)

in the last line of eq. (13)
So, we get:

ψ̄
(1)
−k = ψ

(1)∗
k γ0 = 4πZe2ū′

2γ0ε+ γ(k− p)

(k2 − p2)(k− p)2
γ0. (15)

After insertion of eqs. (8) and (15) into matrix element (7), we get

Mfi =
4π1/2(Ze2m)5/2

(εm)1/2(k− p)2
ū′Au, (16)

where

A = a(γe) + (γe)γ0(γb) + (γc)γ0γe (17)

with

a =
1

(k− p)2
+

ε

m

1

(k2 − p2)
, b = − k− p

2m(k− p)2
, c =

k− p

2m(k2 − p2)
. (18)

Now, the cross-section is of the form:

dσ =
8e2(Ze2m)5|p|
ωm(k− p)4

(ū′Au)(ūĀu′)do, (19)

where Ā = γ0A+γ0. The derived cross-section must be summed through the final direction
of spins and averaged through the final spin directions. Such operations can be easily
performed using the polarization matrices of the initial and final states as follows:

ϱ =
m

2
(γ0 + 1), ϱ′ =

m

2
(γ0ε− γp+m). (20)

Let us remark that in the initial state is p = 0, ε = m. Using eq. (20), we get the
cross-section is the form:

dσ =
16e2(Ze2m)5|p|
ωm(k− p)4

Sp(ϱ′AϱĀ)do, (21)
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The spur of the mathematical object is according to Berestetzky et al. (1989) as
follows:

Sp(ϱ′AϱĀ) =

m

ε+m
[ap− (b− c)(ε+m)]2 + 4m(be)[(ε+m)a(ce) + a(pe)], (22)

where vector e is real for the linear polarization.
Now, let us introduce the polar angle φ, azimut angle θ of the direction p with

regard to k as the z-axis is the plane k, e forming the xz plain (which means that pe)
|p| = cosφ sin θ. For ω ≫ I there is the conservation energy in the form ε−m = ω.

It may be easy to see that

(k2 − p2) = −2m(ε−m), (k− p)2 = 2ε(ε−m)(1− v cos θ), (23)

where vp/ε is the velocity of photon. After some mathematical operation we get the final
form of the differential cross-section:

dσ = Z5α4r2e
v3(1− v2)3 sin2 θ

(1−
√
1− v2)5(1− v cos θ)4

×

{
(1−

√
1− v2)2(1− v cos θ)

2(1− v2)3/2
+

[
2− (1−

√
1− v2)(1− v cos θ)

(1− v2)

]
cos2 φ

}
do, (24)

where re = e2/m.
It is ε ≫ m for the ultrarelativistic situation and the photoeffect has the sharp

maximum for small angles θ ∼ (1 − v2)1/2, which means that electrons are emitted
maximally in the direction of motion of photon.

We have in the vicinity of maximum:

1− v cos θ ≈ 1

2
[(1− v2) + θ2] (25)

Then, the main terms in eq. (24) gives

dσ ≈ 4Z5α4r2e
(1− v2)3/2 + θ3

(1− v2 + θ2)3
dθdφ (26)

After elementary but long integration of eq. (26) we get the total differential cross-
section of the photoelectric effect (Sauter, 1931; Berestetzky et al., 1989):

dσ = 4πZ5α4r2e
(γ2 − 1)3/2

(γ − 1)5
×

{
4

3
+
γ(γ − 2)

γ + 1

(
1− 1

2γ
√
γ2 − 1

ln
(γ + (γ2 − 1)1/2

γ − (γ2 − 1)1/2

)}
, (27)

where we introduced the Lorentz factor
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γ = (1− v2)−1/2 =
ε

m
≈ m+ ω

m
. (28)

In case of the ultrarelativistic situation, we get the most simple expression

dσ = 2πZ5α4r2e/γ. (29)

In case I ≪ ω ≪ m, we have in the limiting case for small γ − 1, the known result
(25), in section 3.

5 The polychromatic photoelectric effect

The physical meaning of the Einstein equation (1) (sect. 1) is in the interaction of the
monochromatic photon beam with energy h̄ω with an electron in matter. The possible
generalization of the Einstein equation is, to consider the situation where the metal film
absorbs the photons with the Planckian energy distribution of photons of the blackbody:

ϱ(ω) =
ω2

π2c3
h̄ω

e
h̄ω
kT

−1
, (1)

or, the synchrotron radiation with the photon density (Jackson, 1999) (in the asymptotic
limit case)

P (ω) =
I

h̄ωc

9
√
3

8π

∫ ∞

y

K5/3x)dx; y =
ω

ωc

; ωc =
3

2

(
E

mc2

)3
c

R
(2)

with

I =
4π2e2γ4

3R
; γ =

1√
1− v2/c2

, (3)

where R is the radius of the curvature, v is the relativistic velocity of an electron moving
along curved trajectory and K5/3 is the modified McDonald function of the index 5/3.

In the first case with the blackbody situation, we multiply the Einstein original
equation by the density of photons

n(ω) =
ω2

π2c3
1

e
h̄ω
kT

−1
(4)

and integrate from the threshold frequency ω0 = W/h̄ to infinity to get the polychromatic
photoelectric equation:∫ ∞

ω0

n(ω)h̄ωdω =

∫ ∞

ω0

n(ω)dω
mv2

2
+W

∫ ∞

ω0

n(ω)dω. (5)

The last equation is the generalization of the original Einstein equation from 1905 to
the situation that matter is irradiated by the photons from the blackbody cavity.

In case that the matter is irradiated by the laser field with the known spectral
distribution, the the symbol n(ω) in the last equation is of the physical meaning of the
spectral distribution of photons in the laser beam.

Function
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∫ ∞

ω0

n(ω)dω
mv2

2
= Ekin (6)

has the physical meaning of the total energy of the emitted electrons of different velocities
during the photoeffect and it can be determined by the adequate experimental technique.

Function ∫ ∞

ω0

n(ω)dω = N(W,T ) (7)

is the total number of photons emitted by the blackbody in the interval (ω0,∞). It
depends on the work function W an on the temperature of the thermal bath which is in
our case the blackbody.

We can write the polychromatic photoelectric equation in the following form:∫ ∞

0

n(ω)h̄ωdω −
∫ ω0

0

n(ω)h̄ωdω = Ekin +WN(W,T ), (8)

or, in the modified form

aT 4 −
∫ ω0

0

n(ω)h̄ωdω = Ekin +WN(W,T ), (9)

where the term aT 4 was obtained by the obligate mathematical procedure∫ ∞

0

ϱ(ω)dω =

∫ ∞

0

n(ω)h̄ωdω =

∫ ∞

0

ω2

π2c3
h̄ω

e
h̄ω
kT

−1
dω =

π2

15

k4T 4

c3h̄3
= aT 4. (10)

We know from the textbooks that

a =
π2k4

15c3h̄3
= 7.56× 10−13erg.cm−3.grad−4. (11)

The equation (9) is of the two scientific meaning. The first meaning is the mathe-
matical. Namely, if we obtain from the experiment the quantity Ekin, then the equation
(9) is the mathematical equation for the determination of the work function W, where,
however the work function W is also inbuilt in the integral. In other words, it is the new
and original mathematical problem of elimination of some quantity from the nontrivial
equation.

The next physical meaning of the equation (9) is, that the work function W is defined
by the quantum collective motion of electrons and we know that the quantum collective
motion of electrons is not the sum of the individual motion of electrons along the individual
trajectories. So, the work function obtained from the polychromatic photoelectric
equation (9) differs from the work function obtained from the monochromatic Einstein
equation (1). The theoretical determination of the two different work functions represents
the basic, the fundamental and the crucial problem of the quantum theory of the solid
state physics and this problem was not till this time solved.

The same procedure can be performed using the distribution function of photons of the
synchrotron radiation, where instead the blackbody density of photons is the synchrotron
density of photons P (ω).
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∫ ∞

ω0

P (ω)h̄ωdω = Ekin +WNsynchro. (12)

We can easily determine the work function only by the measurement of the total energy
of the emitted electron during the photoeffect.

Let us remark, that the main motivation of the Einstein approach was the solid state
proof of the existence of the light quanta. The possible next step was the generalization of
the photoelectric effect for the situation where the absorption of photons is polychromatic,
generated for instance by the blackbody, or by the synchrotron. In time of the Einstein
photoelectric derivation, the blackbody radiation was under discussion and the Schott
formula for the synchrotron radiation was not derived. So, the Einstein motivation to go
beyond his photoelectric equation was not sufficiently strong. Now, the polychromatic
form of the Einstein photoelectric equation is physically meaningful.

It is not excluded, a priori, that the collective motion of electrons in multiphoton
experiment influences the work function in such a way that it is different from the work
function in case where we use only the monochromatic light generating the individual mo-
tion of electrons. The measurement and investigation of eqs. (9), (12) can be considered
as crucial and leading to the new discoveries in the photonic physics, elementary particle
physics and solid state physics.

The information following from the polychromatic photoelectric effect is necessary
not only in the solid state physics, but also in the elementary particle physics where
multiphoton beams play the substantial role of the particle detectors.

6 The photoelectric effect in the 2D electron gas in

strong magnetic field

The S-matrix element involving the interaction of an atom with the impinging photon
and with the ejected electron with the final plane wave

ψq =
1√
V
eiq·x, q =

p

h̄
, (1)

where p is the momentum of the ejected electron, gives the quantum mechanical cross-
section

dσ =
2π

h̄
|Vfi|δ(−I + h̄ω − Ef )

d3p

(2π)3
, (2)

where I is the ionization energy of an atom and Ef is the the final energy of the emitted
electron, |Vfi| is the matrix element of the transition of electron from the initial bound
state to the final state. The matrix element foollows from the perturbation theory and it
involves the first order term of the interaction between electron and photon. We follow
here the Davydov elementary approach (Davydov, 1976).

We suppose here that magnetic field is applied locally to 2D sheet of electrons , so, in
a sufficient distance from it the wave function is of the form of the plane wave (1). Let us
remark that if the photon energy only just exceeds the ionization energy I of atom, then
we cannot used the plane wave approximation but the wave function of the continuous
spectrum.
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The probability of the emission of electron by the electromagnetic wave is of the well-
known form (Davydov, 1976):

dP =
e2p

8π2ε0h̄mω

∣∣∣∣∫ ei(k−q)·x(e · ∇)ψ0dxdydz

∣∣∣∣2 dΩ = C|J |2dΩ, (3)

where the interaction for absorption of the electromagnetic wave is normalized to one
photon in the unit volume, e is the polarization of the impinging photon, ε0 is the dielectric
constant of vacuum, ψ0 is the basic state of and atom. We have denoted the integral in
|| by J and the constant before || by C.

We consider the case with electrons in magnetic field as an analog of the Landau
diamagnetism. So, we take the basic function ψ0 for one electron in the lowest Landau
level, as

ψ0 =
(mωc

2πh̄

)1/2
exp

(
−mωc

4h̄
(x2 + y2)

)
, (4)

which is solution of the Schrödinger equation in the magnetic field with potentials
A = (−Hy/2,−Hx/2, 0, 0), (Drukarev, 1988):[

p2x
2m

+
p2y
2m

− m

2

(ωc

2

)2
(x2 + y2)

]
ψ = Eψ. (5)

We have supposed that the motion in the z-direction is zero and it means that the
wave function exp[(i/h̄)pzz] = 1.

So, the main problem is to calculate the integral

J =

∫
ei(K·x)(e · ∇)ψ0dxdydz; K = k− q. (6)

with the basic Landau function ψ0 given by the equation (4).
Operator (h̄/i)∇ is Hermitean and it means we can rewrite the last integrals as follows:

J =
i

h̄
e ·
∫ [(

h̄

i
∇
)
ei(K·x)

]∗
ψ0dxdydz, (7)

which gives

J = ie ·K
∫
e−i(K·x)ψ0dxdydz, (8)

The integral in eq. (8) can be transformed using the cylindrical coordinates with

dxdydz = ϱdϱdφdz, ϱ2 = x2 + y2 (9)

which gives for vector K fixed on the axis z with K ·x = Kz and with physical condition
e · k = 0, expressing the physical situation where polarization is perpendicular to the
direction of the wave propagation. So,

J = (i)(e · q)
∫ ∞

0

ϱdϱ

∫ ∞

−∞
dz

∫ 2π

0

dφe−iKzψ0. (10)

Using

ψ0 = A exp
(
−Bϱ2

)
; A =

(mωc

2πh̄

)1/2
; B =

mωc

4h̄
. (11)
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The integral (12) is then

J = (−πi)A
B
(e · q)

∫ ∞

−∞
e−iKzdz = (−πi)A

B
(e · q)(2π)δ(K). (12)

Then,

dP = C|J |2dΩ = 4π4A
2

B2
C(e · q)2δ2(K)dΩ. (13)

Now, let be the angle Θ between direction k and direction q, and let be the angle Φ
between planes (k,q) and (e,k). Then,

(e · q)2 = q2 sin2 Θcos2Φ. (14)

So, the differential probability of the emission of photons from the graphene (Pardy,
2010) in the strong magnetic field is as follows:

dP =
4e2p

πε0m2ωωc

[
q2 cos2Θsin2 Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (15)

We can see that our result differs form the result for the original photoelectric effect
which involves still the term

1

(1− v
c
cosΘ)4

, (16)

which means that the most intensity of the classical photoeffect is in the direction of the
electric vector of the electromagnetic wave (Φ = π/2,Θ = 0). While the nonrelativistic
solution of the photoeffect in case of the Coulomb potential was performed by Stobbe
(1930) and the relativistic calculation by Sauter (Sauter, 1931), the general magnetic
photoeffect (with electrons moving in the magnetic field and forming atom) was not still
performed in a such simple form. The delta term δ · δ represents the conservation law
|k− q| = 0 in our approximation.

So, we have calculated only the process which can be approximated by the Schrödinger
equation for an electron orbiting in magnetic field.

6.1 The photoelectric effect with Volkov solution

It is valuable from the pedagogical point of view (Berestetzky et al., 1989) to remember
the Volkov solution, where the motion of the Dirac electron is considered in the following
four potential

Aµ = aµφ; φ = kx; k2 = 0. (17)

From equation (23), it follows that Fµν = ∂µAν − ∂νAµ = aνkµ− aµkν = const., which
means that electron moves in the constant electromagnetic field with the components E
and H. The parameters a and k can be chosen in a such a way that E = 0. So, the
motion of electron is performed in the constant magnetic field.

The Volkov (1935) solution of the Dirac equation for an electron moving in a field of
a plane wave was derived in the form (Berestetzky et al., 1989; Pardy, 2004):
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ψp =
u(p)√
2p0

[
1 + e

(γk)(γA(φ))

2kp

]
exp [(i/h̄)S] (18)

and S is an classical action of an electron moving in the potential A(φ) (Berestetzky et
al., 1989).

S = −px−
∫ kx

0

e

(kp)

[
(pA)− e

2
(A)2

]
dφ. (19)

It was shown that for the potential (17) the Volkov wave function is (Berestetzky et
al., 1989):

ψp =
u(p)√
2p0

[
1 + e

(γk)(γa)

2kp
φ

]
exp [(i/h̄)S] (20)

with

S = −e ap
2kp

φ2 + e2
a2

6kp
φ3 − px. (21)

We used c = h̄ = 1.
However, the relativistic wave function can be obtained by solving the Dirac equation

in magnetic field. It was derived in the form (Sokolov et al., 1983).

Ψ(x, t) =
1

L
exp{− i

h̄
ϵEt+ ik2y + ik3z}ψ; ψ =


C1un−1(η)
iC2un(η)
C3un−1(η)
iC4un(η)

 , (22)

where ϵ = ±1 and the spinor components are given by the following formulas:

un(η) =

√√
2γ

2nn!

√
π e−η2/2Hn(η) (23)

with

Hn(η) = (−1)neη
2

(
d

dη

)n

e−η2 , (24)

η =
√

2γ x+ k2/
√
2γ; γ = eH/2ch̄. (25)

The coefficients Ci are defined in the Sokolov et al. monograph (Sokolov et al., 1983).
So, our approach can be generalized.

7 The photoeffect with the dressed photon

We define here the dressed photon as a such with the additional radiative corrections,
where we take the radiative correction in the form of the virtual electron-positron pair.
We have shown that such approach to the photon leads to the modification he photon
propagator. According to Dittrich (1978) and Schwinger (1973), the photon propagator
with radiative correction is in the momentum representation of the form:
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D̃(k) = D(k) + δD(k), (1)

or,

D̃(k) =
1

|k|2 − n2(k0)2 − iϵ
+

+

∫ ∞

4m2

dM2 a(M2)

|k|2 − n2(k0)2 + M2c2

h̄2 − iϵ
, (2)

where the last term in equation (2) is derived on the virtual photon condition

|k|2 − n2(k0)2 = −M
2c2

h̄2
, (3)

where n is the index of refraction of the medium. The weight function a(M2) has been
derived in the following form (Dittrich, 1978; Schwinger, 1973):

a(M2) =
α

3π

1

M2

(
1 +

2m2

M2

)(
1− 4m2

M2

)1/2

. (4)

The x-representation of D(k) in eq. (1) is as follows:

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)D(k). (5)

Or,

D+(x− x′) =

∫
(dk)

(2π)4
eik(x−x′)

|k2| − n2(k0)2 − iϵ
=

=
i

c

1

4π2

∫ ∞

0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t′|. (6)

Now, with regard to the definition of x-representation (5) and (6) of the D+(x− x′),
we get the x-representation of the δD+ in the following form:

δD+(x− x′) =
i

c

1

4π2

∫ ∞

4m2

dM2a(M2)×

×
∫

dω
sin[n

2ω2

c2
− M2c2

h̄2 ]1/2|x− x′|
|x− x′|

e−iω|t−t′|. (7)

The function (7) differs from the the original function D+ especially by the factor

γ =

(
ω2n2

c2
− M2c2

h̄2

)1/2

(8)

and by the additional mass-integral which involves the radiative corrections to the original
photon processes. It was easily shown in case of the Čerenkov effect by author (Pardy,
1994a).
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So, to involve the photoelectric effect with the dressed photon with electron positron
pair we replace the wave function of photon exp(ik · x) by the function involving the
radiative correction factor as follows:

eik·x →
∫ ∞

4m2

dM2a(M2)eiκ·x, (9)

where κ · x = λ|k||x| cosφ.
Let us consider here the alternative approach to the photoeffect which differs formally

from Berestetzky approach. We mean the Davydov textbook approach. The probability
of the emission of electron by the electromagnetic wave is then of the well-known form
(Davydov, 1976):

dP =
e2p

8π2ε0h̄mω

∣∣∣∣∫ ei(κ−q)·x(e · ∇)ψ0dxdydz

∣∣∣∣2 dΩ = C|J |2dΩ, (10)

where the interaction for absorption of the electromagnetic wave is normalized to one
photon in the unit volume, e is the polarization of the impinging photon, ε0 is the dielectric
constant of vacuum, ψ0 is the basic state of and atom. We have denoted the integral in
|| by J and the constant before || by C.

So, the main problem is to calculate the integral

J =

∫
ei(κ·x)(e · ∇)ψ0dxdydz; K = κ− q. (11)

with the basic Landau function ψ0 given by the equation (4).
Operator (h̄/i)∇ is Hermitean and it means we can rewrite the last integrals as follows:

J =
i

h̄
e ·
∫ [(

h̄

i
∇
)
ei(K·x)

]∗
ψ0dxdydz, (12)

which gives

J = ie ·K
∫
e−i(K·x)ψ0dxdydz, (13)

Let us consider the problem in the magnetic field where the motion of electron is in
plain. Then, the integral in eq. (13) can be transformed using the cylindrical coordinates
with

dxdydz = ϱdϱdφdz, ϱ2 = x2 + y2 (14)

which gives for vector K fixed on the axis z with K ·x = Kz and with physical condition
e · κ = 0, expressing the physical situation where polarization is perpendicular to the
direction of the wave propagation. So,

J = (i)(e · q)
∫ ∞

0

ϱdϱ

∫ ∞

−∞
dz

∫ 2π

0

dφe−iKzψ0. (15)

Using

ψ0 = A exp
(
−Bϱ2

)
; A =

(mωc

2πh̄

)1/2
; B =

mωc

4h̄
; ωc =

|e|H
mc

. (16)

19



The integral (15) is then

J = (−πi)A
B
(e · q)

∫ ∞

−∞
e−iKzdz = (−πi)A

B
(e · q)(2π)δ(K). (17)

Then,

dP = C|J |2dΩ = 4π4A
2

B2
C(e · q)2δ2(κ)dΩ. (18)

Now, let be the angle Θ between direction κ and direction q, and let be the angle Φ
between planes (κ,q) and (e,κ). Then,

(e · q)2 = q2 sin2 Θcos2Φ. (19)

So, the differential probability of the emission of photons from the plane in the strong
magnetic field is as follows:

dP =
4e2p

πε0m2ωωc

∫ ∞

4m2

dM2a(M2)
[
q2 cos2 Θsin2 Φ

]
δ2(K)dΩ; ωc =

|e|H
mc

. (20)

We can see that our result differs form the result for the original photoelectric effect
which involves still the term

1

(1− v
c
cosΘ)4

, (21)

which means that the most intensity of the classical photoeffect is in the direction of the
electric vector of the electromagnetic wave (Φ = π/2,Θ = 0). While the nonrelativistic
solution of the photoeffect in case of the Coulomb potential was performed by Stobbe
(1930) and the relativistic calculation by Sauter (Sauter, 1931), the general magnetic
photoeffect (with electrons moving in the magnetic field and forming atom) was not still
performed in a such simple form. The delta term δ · δ represents the conservation law
|κ− q| = 0 in our approximation.

8 H-aton in the Gibbons-Hawking thermal bath

The Gibbons-Hawking effect is the statement that a temperature can be associated to
each solution of the Einstein field equations that contains a causal horizon. It is named
after Gary Gibbons and Stephen William Hawking.

Schwarzschild spacetime contains an event horizon and so can be associated with
temperature. In the case of Schwarzschild spacetime this is the temperature T of a black
hole of mass M , satisfying T/M .

De Sitter space which contains an event horizon has the temperature T proportional
to the Hubble parameter H. We consider here the influence of the heat bath of the
Gibbons-Hawking photons on the energy shift of H-atom electrons.

The considered problem is not in the scientific isolation, because some analogical
problems are solved in the scientific respected journals. At present time it is a general
conviction that there is an important analogy between black hole and the hydrogen atom.
The similarity between black hole and the hydrogen atom was considered for instance by
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Corda (2015a), who discussed the precise model of Hawking radiation from the tunneling
mechanism. In this article an elegant expression of the probability of emission is given in
terms of the black hole quantum levels. So, the system composed of Hawking radiation
and black hole quasi-normal modes introduced by Corda (2015b) is somewhat similar to
the semiclassical Bohr model of the structure of a hydrogen atom.

The time dependent Schrödinger equation was derived for the system composed by
Hawking radiation and black hole quasi-normal modes (Corda, 2015c). In this model,
the physical state and the correspondent wave function are written in terms of an unitary
evolution matrix instead of a density matrix. Thus, the final state is a pure quantum state
instead of a mixed one and it means that there is no information loss. Black hole can
be well defined as the quantum mechanical systems, having ordered, discrete quantum
spectra, which respect ’t Hooft’s assumption that Schrödinger equations can be used
universally for all dynamics in the universe.

Thermal photons by Gibbons and Hawking form so called blackbody, which has the
distribution law of photons derived in 1900 by Planck (1900, 1901), (Schöpf, 1978). The
derivation was based on the investigation of the statistics of the system of oscillators inside
of the blackbody. Later Einstein (1917) derived the Planck formula from the Bohr model
of atom where electrons have the discrete energies and the energy of the emitted photons
are given by the Bohr formula h̄ω = Ei − Ef , Ei, Ef are the initial and final energies of
electrons.

Now, let us calculate the modified Coulomb potential due to blackbody. The starting
point of the determination of the energy shift in the H-atom is the potential V0(x), which
is generated by nucleus of the H-atom. The potential at point V0(x + δx), evidently is
(Akhiezer, et al., 1953; Welton, 1948):

V0(x+ δx) =

{
1 + δx∇+

1

2
(δx∇)2 + ...

}
V0(x). (1)

If we average the last equation in space, we can eliminate so called the effective
potential in the form

V (x) =

{
1 +

1

6
(δx)2T∆+ ...

}
V0(x), (2)

where (δx)2T is the average value of te square coordinate shift caused by the thermal
photon fluctuations. The potential shift follows from eq. (2):

δV (x) =
1

6
(δx)2T∆V0(x). (3)

The corresponding shift of the energy levels is given by the standard quantum
mechanical formula (Akhiezer, et al., 1953)

δEn =
1

6
(δx)2T (ψn∆V0ψn). (4)

In case of the Coulomb potential, which is the case of the H-atom, we have

V0 = − e2

4π|x|
. (5)

Then for the H-atom we can write
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δEn =
2π

3
(δx)2T

e2

4π
|ψn(0)|2, (6)

where we used the following equation for the Coulomb potential

∆
1

|x|
= −4πδ(x). (7)

Motion of electron in electric field is evidently described by elementary equation

δẍ =
e

m
ET , (8)

which can be transformed by the Fourier transformation into the following equation

|δxTω|2 =
1

2

(
e2

m2ω4

)
E2

Tω, (9)

where the index ω concerns the Fourier component of above functions.
On the basis of the Bethe idea of the influence of vacuum fluctuations on the energy

shift of electron (Bethe, 1947), the following elementary relations was used by Welton
(1948), Akhiezer et al. (1953) and Berestetzky et al. (1989):

1

2
E2

ω =
h̄ω

2
(10)

and in case of the thermal bath of the blackbody, the last equation is of the following
form (Isihara, 1971):

E2
Tω = ϱ(ω) =

(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (11)

because the Planck law in eq. (11) was written as

ϱ(ω) = G(ω) < Eω >=

(
ω2

π2c3

)
h̄ω

e
h̄ω
kT − 1

, (12)

where the term

< Eω >=
h̄ω

e
h̄ω
kT − 1

(13)

is the average energy of photons in the blackbody and

G(ω) =
ω2

π2c3
(14)

is the number of electromagnetic modes in the interval ω, ω + dω.
Then,

(δxTω)
2 =

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
1

e
h̄ω
kT − 1

, (15)

where (δxTω)
2 involves the number of frequencies in the interval (ω, ω + dω).

So, after some integration, we get
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(δx)2T =

∫ ω2

ω1

1

2

(
e2

m2ω4

)(
h̄ω3

π2c3

)
dω

e
h̄ω
kT − 1

=
1

2

(
e2

m2

)(
h̄

π2c3

)
F (ω2 − ω1), (16)

where F (ω) is the primitive function of the omega-integral

J =
1

ω

1

e
h̄ω
kT − 1

, (17)

which cannot be calculated by the elementary integral methods and it is not involved in
the tables of integrals.

Frequencies ω1 and ω2 will be determined with regard to the existence of the fluctuation
field of thermal photons. It was determined in case of the Lamb shift (Bethe, 1947 ;
Welton, 1947) by means of the physical analysis of the interaction of the Coulombic
atom with the surrounding fluctuation field. We suppose here that the Bethe and
Welton arguments are valid and so we take the frequencies in the Bethe-Welton form.
In other words, electron cannot respond to the fluctuating field if the frequency which
is much less than the atom binding energy given by the Rydberg constant (Rohlf, 1994)
ERydberg = α2mc2/2. So, the lower frequency limit is

ω1 = ERydberg/h̄ =
α2mc2

2h̄
, (18)

where α ≈ 1/137 is so called the fine structure constant.
The specific form of the second frequency follows from the elementary argument, that

we expect the effective cutoff, since we must neglect the relativistic effect in our non-
relativistic theory. So, we write

ω2 =
mc2

h̄
. (19)

If we take the thermal function of the form of the geometric series

1

e
h̄ω
kT − 1

= q(1 + q2 + q3 + .....); q = e−
h̄ω
kT , (20)

∫ ω2

ω1

q(1 + q2 + q3 + .....)
1

ω
dω = ln |ω|+

∞∑
k=1

(− h̄ω
kT
)k

k!k
+ ....; q = e−

h̄ω
kT (21)

and the first thermal contribution is

Thermal contribution = ln
ω2

ω1

− h̄

kT
(ω2 − ω1), (22)

Then, with eq. (6)

δEn ≈ 2π

3

(
e2

m2

)(
h̄

π2c3

)(
ln
ω2

ω1

− h̄

kT
(ω2 − ω1)

)
|ψn(0)|2, (23)

where (Sokolov et al., 1962)

|ψn(0)|2 =
1

πn2a20
(24)
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with

a0 =
h̄2

me2
. (25)

Let us only remark that the numerical form of eq. (23) has deep experimental
astrophysical meaning.

In article by author (Pardy, 1994), which is the continuation of author articles on the
finite-temperature Cherenkov radiation and gravitational Cherenkov radiation (Pardy,
1989a; ibid., 1989b), the temperature Green function in the framework of the Schwinger
source theory (Schwinger, 1970) was derived in order to determine the Coulomb and
Yukawa potentials at finite-temperature using the Green functions of a photon with and
without radiative corrections, and then by considering the processes expressed by the
Feynman diagrams.

The determination of potential at finite temperature is one of the problems which
form the basic ingredients of the quantum field theory (QFT) at finite temperature. This
theory was formulated some years ago by Dolan and Jackiw (1974), Weinberg (1974) and
Bernard (1974) and some of the first applications of this theory were the calculations of
the temperature behavior of the effective potential in the Higgs sector of the standard
model.

Information on the systematic examination of the finite temperature effects in quantum
electrodynamics (QED) at one-loop order was given by Donoghue, Holstein and Robinett
(1985). Partovi (1994) discussed the QED corrections to Planck’s radiation law and
photon thermodynamics,

A similar discussion of QED was published by Johansson, Peressutti and Skagerstam
(1986) and Cox et al. (1984).

So, We considered here the thermal gas corresponding to the Gibbons-Hawking
theory of space-time (at temperature T) as the preamble for new experiments for the
determination of the energy shift of H-atom electrons interacting with the Gibbons-
Hawking thermal gas. It is not excluded, that the observations performed by the well
educated astro-experts will be the crucial ones.

9 The Planck formula in dielectric crystal

It is physically meaningful to consider, in quantum theory of light and quantum theory
of solids, dielectric crystalline medium with phonons which is inserted in the Planck
blackbody photon gas. It means that photon gas of the blackbody surrounding the
dielectric crystalline medium with with index of refraction n flows into such crystal and
initiate the quantum osmotic pressure of photons as solvent and phonons as solute.

The classical osmosis is the spontaneous passage of solvent molecules through a par-
tially permeable membrane separating two solutions of different concentration into a re-
gion of higher solute concentration of solute, in order to equalize the solute concentrations
on the two sides. The physical law which controll the osmotic pressure is so called van’t
Hoff’s equation (published in 1885):

p = i
C

µ
RT, (1)
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where p, i, C, µ,R, T are pressure, van’t Hoff factor, concentration of solute, mollar mass,
thermodynamic gas constant and temperature, and concentration is defined by formula
C = m/V , where m is mass of solute in volume V . We consider here the quantum osmosis
with photons and phonons and with the semi-permeable membrane for photons which is
the surface of the dielectric crystal.

The derivation of the van’t Hoff formula using the thermodynamic potential can be
found in the textbooks on thermodynamics and statistical physics (Landau et al., 1980).
The derivation of the osmotical pressure from rigorous statistical physics was given by
Isihara (1971). On the other hand, the quantum theory of osmosis was not published.
A Duth physical and organic chemist van’t Hoff presented his Nobelian theory long time
before the introduction of photons into physics by Max Planck, Lewis and Einstein and
before the introduction of phonons into solid state physics by Einstein and Debye. So,
the problem of the osmotic pressure in the Planck blackbody with the dielectric medium
arises as the problem of modern physics.

The dielectric crystal with photons is called here by term Planck dielectric blackbody.
Inside of the dielectric medium with index of refraction n, the spectral radiation formula
is modified and we derive in the next part mathematical form of the spectrum of such
dielectric blackbody. The derivation of the spectral formula is based on the original Planck
spectral formula which was rederived by Einstein (1917).

The spectral distribution of the blackbody does not depend on the specific atomic
composition of the blackbody and it means the formula (7) must be so called the Planck
formula:

ϱω =
h̄ω3

π2c3
1

e
h̄ω
kT − 1

. (2)

The internal density energy of the blackbody gas is given by integration of the last
equation over all frequencies ω, or

u =

∫ ∞

0

ϱ(ω)dω = aT 4; a =
π2k4

15h̄3c3
. (3)

and the pressure of photons inside the blackbody follows from the electrodynamic situation
inside blackbody as follows:

p =
u

3
(4).

We suppose here that inside of the Planck blackbody there is the dielectric crystal
with the index of refraction n(ω). Then, the wave vector of photon inside the dielectric
medium is given by known formula

q = n(ω)
ω

c
. (5)

The number of light modes in the interval q, q+dq inside of the dielectric in the volume
V is V q2dq/π2. After differentiation of formula (5) we get with d lnω = dω/ω

dq =
1

c
[n(ω) + ω

dn(ω)

dω
]dω =

n(ω)

c

d ln[n(ω)ω]

d lnω
dω. (6)

Then, it is easy to see that the number of states in the interval ω, ω + dω of the
electromagnetic vibrations in the volume V is
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V g(ω)dω =
V

π2

(
n(ω)

c

)3
d ln[n(ω)ω]

d lnω
dω. (7)

If we multiply the last formula by the average energy of the harmonic oscillator,

< Eω >=
h̄ω

e
h̄ω
kT − 1

, (8)

we get the Planck formula for the blackbody with dielectric medium:

ϱ(ω) =
n3(ω)ω2

π2c3
d ln[n(ω)ω]

d lnω

h̄ω

e
h̄ω
kT − 1

, (9)

where for n = 1, we get exactly formula (2).

9.1 The oscillator model of the index of refraction

This model follows from the classical theory of dispersion, which is based on the vibration
equation of electron in an atom

ẍ+ γẋ+ ω2
0x =

e

m
E0 cosωt, (10)

where γ is the oscillator constant and ω0 is the basic frequency of oscillator. The symbol
ω is the frequency of the applied electric field. The index of refraction following from eq
(17) is given by the formula (Garbuny, 1965)

n = 2πN
e2

m

ω2
0 − ω2

(ω2
0 − ω2)2 + γ2ω2

, (11)

where N is number of electrons in the unit of volume.
In case of electrons with basic frequencies ω1, ω2, ω3, ω4...ωn, the last refraction index

can be generalized to form more complex mathematical object. We consider here, to be
pedagogical clear, only one oscillator with one basic frequency. Nevertheless it is possible
consider arbitrary dielectric material with the phenomenological index of refraction.

Now the question arises, if the dielectric blackbody can be considered as the solution
composed from atoms, phonons and photons where the osmotic pressure play some role.
We had accepted this hypothesis as the correct one.

9.2 The osmosis in dielectric blackbody

Phonons were introduced in the crystal physics by Einstein in order to derive the adequate
formula for he specific heat. The Einstein formula was generalized and improved by Debye
who derived the formula for the average energy of phonons in a crystal in the interval of
temperatures Θ− δ < T < Θ+ δ (δ is some parameter) as follows (Rumer et al., 1977):

U = Nε0 + 3NTD

(
Θ

T

)
, (12)

where ε0 = (9/8)h̄ωmax, where

26



ωmax = 2πv

(
3N

4πV

)1/3

(13)

and D(x) is so called the Debye wave function of the following structure:

D(x) =
3

x3

∫ x

0

y3

ey − 1
dy, (14)

and the critical temperature Θ was derived by Debye in the following form:

Θ = v

(
6π2N

V

)1/3

, (15)

with v being velocity of sound waves defined in the theory of elasticity of the crystal.
Let us compare the internal energies of the pure blackbody and dielectric blackbody

and then let us compare the pressure inside of the pure blackbody and inside the dielectric
blackbody.

For pure blackbody, we have u = aT 4 and for model with n given by eq. (11) we have

u =

∫ ∞

0

ϱn(ω)dω =

∫ ∞

0

ϱn(ω)
n3(ω)ω2

c3
d ln[n(ω)ω]

d lnω

h̄ω

e
h̄ω
kT − 1

dω. (16)

Because the dielectric medium is permeable for photons and not for phonons (the
photon osmosis), the outer pressure is equal to the photon gas pressure in the dielectric
blackbody, or p(n) = u(n)/3 = u/3. So,∫ ∞

0

ϱn(ω)dω = u/3 =
aT 4

3
, (17)

or, ∫ ∞

0

n3(ω)ω2

π2c3
d ln[n(ω)ω]

d lnω

h̄ω

e
h̄ω

kTdiel − 1
dω =

aT 4

3
, (18)

where we introduced the dielectric temperature Tdiel, which physically means that the
temperature of dielectric blackbody is not the same as the temperature of the bath of
vacuum blackbody photons. The last equation is the integral equation for function Tdiel
and in general represents very difficult mathematical problem of the future physics of the
dielectric blackbody. The experimental verification of the last equation will be also the
crucial problem of photon physics.

In the most simple case with n = const, we get after some algebraic operation, that
the temperature dielectric blackbody surrounded by the vacuum blackbody is given by
the formula

Tdiel =
T

4
√
n3
. (19)

The last formula can form the goal of the experimenters working in the blackbody
radiation physics. The dielectric as the osmotic membrane plays the role of the Maxwell
demonic refrigerator. The second possibility is to put n = n(T ) in order to get the integral
equation for the dependence of the index of refraction on temperature. However, it seems
that this assumption is not physically adequate.
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In case of the dielectric Debye crystal, the equation of state is (Rumer et al., 1977)

p =

(
Uphon

Θ
− 9

4
N

)
dΘ

dV
, (20)

where V and N is volume and number of oscillators in crystal. The difference ∆p =
p(T )− p(Tdiel) is the osmotic pressure caused by the photon flow.

In case of the two-dimensional crystal, the internal phonon energy is (Rumer et al.,
1977)

U2D−phon =
4

3
NΘ

[
1 +

(
T

Θ

)3 ∫ Θ/T

0

y2

ey − 1
dy

]
. (21)

and

Θ = 2πv

(
N

πσ

)1/2

, (22)

where σ is the area of the 2D crystal (e. g. graphene, which is the carbon sheet), instead
of dΘ/dV is dΘ/dσ and 9/4 must be replaced by the adequate constant. The osmotic
temperature of the 2-dimensional and 1-dimensional dielectric crystal is an analogue of
the 3-dimensional case and can be derived from the formulas by author article (Pardy,
2015b).

We know that the classical osmosis is the physical phenomenon in the system with
solute, solvent, solution and semi-permeable membrane. It plays fundamental role in
biological and physiological systems, where for instance the photosynthesis in plants is
not possible without water and photon osmosis and human being does not exist without
liquid osmosis.

Isihara (1971) derived from the statistical physics the following formula for the osmotic
pressure of the two-component statistical system:

p = kT
∂[ln(Ξ/Ξ0)]

∂V
, (23)

where Ξ and Ξ0 are the big statistical sums of solute and solvent. The explicit
mathematical form of the formula is sophisticated and the derivation of the van’t Hoff
formula is not elementary.

The theory of phonon-photon dielectric blackbody is the preamble for experiments for
the determination of the osmotic process as the consequence of the quantum properties of
the phonon-photon gas. The role of phonon-photon osmosis in biological and physiological
systems is crucial. The phonon-photon osmotic pressure plays probably substantial
negative role in the formation and in the development of skin cancer.

It is not excluded, that the experiments with the quantum osmosis in plasma with
magnetic field as semi-permeable osmotic membrane, will play crucial role in the fusion
reactor physics.

10 The Casimir effect at finite temperature

The Casimir effect, or, Casimir-Polder force are physical forces arising from a quantized
field. They are named after the Dutch physicist Hendrik Casimir who predicted it in
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1948.
The Casimir effect is an interaction between disjoint neutral bodies caused by the

fluctuations of the electrodynamic vacuum. It can be explained by considering the normal
modes of electromagnetic fields, which explicitly depend on the boundary (or matching)
conditions on the interacting bodies surfaces. At the most basic level, the field at each
point in space is a simple quantum harmonic oscillator. Excitations of the field (oscillator)
correspond to the elementary particles of particle physics. However, even the vacuum has
a complex structure, all calculations must be made in relation to such model of the
vacuum.

The Casimir effect at finite temperature is the integral part of the finite-temperature
(T ̸= 0) QED, QFT and also quantum chromodynamics (QCD) which usually deal with
the specific processes in the heat bath of photons or other particles (Donoghue et al.,
1985). The heat bath can be formed by different kinds of elementary particles and so
such different hot media have a different influence on the same specific physical process
developing in the media. We consider here the influence of the heat bath photons on the
energy shift inside of the thermal box, leading to the attraction of the capacitor plates
with a separation a.

10.1 Casimir effect at zero temperature

In order to understand the Casimir effect at zero temperature, we follow Holstein (1992)
and imagine two capacitor plates with a separation a. The field modes permitted by the
boundary condition have the electrical intensity vanishing on the surface on the plates. If
the normal to the surface defines the z-direction, then for the propagation in this direction
wavelength varies from zero to a. If the zero point energy of the oscillators representing
the quantum field is h̄ωk/2 (Berestetsky et al., 1989), then the total energy between the
plates is given by the formula

U(a) =
∑
k

1

2
h̄ωk. (1)

When the plate separation is increased, more modes are permitted so the energy is
increasing function of separation a. In case that the separation a is lowered, then the
energy is also lowered which means that the change of energy is force of the form:

F = −∂U(a)
∂a

. (2)

The force has been detected for instance by Sparnay (1958) and represents the
macroscopic manifestation of the validity of quantum field theory.

The quantitative evaluation of the Casimir force is as follows. Let be wave numbers
kx, kz in the x, y direction. Then the density of states is given by the formula

A

∫
d2k

(2π)2
, (3)

where A is the area of the plates.
In the z-direction, on the other hand, the boundary conditions E(0) = E(a) = 0

requires
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E ∼ sin(kzz) (4)

with

kz =
nπ

a
; n = 1, 2, .... (5)

The frequencies are

ωk =

√
k2x + k2y +

(nπ
a

)2
. (6)

The total vacuum energy of photons (with two polarizations) between plates is
evidently as follows:

U(a) = 2
∞∑
n=1

A

∫
d2k

(2π)2
1

2
ωk. (7)

Defining

k =
√
k2x + k2y, (8)

we have from eq. (5)

kdk = ωdω (9)

and the new mathematical form of the total intermediate vacuum energy is

U(a) = A

∞∑
n=1

1

2π

∫ ∞

nπ
a

dωω2. (10)

Using the cutoff operation with exp(−εω), we get the following formulas:

U(a) =
A

2π

∞∑
n=1

∫ ∞

nπ
a

dωω2e−εω =
A

2π

d2

dε2

∞∑
n=1

∫ ∞

nπ
a

dωe−εω =

A

2π

d2

dε2

∞∑
n=1

1

ε
e−

nπε
a =

A

2π

d2

dε2
1

ε

(
1

1− e
επ
a

− 1

)
. (11)

After application the formula with the Bernoulli numbers Bn (Prudnikov et al., 1984)

1

1− e−t
= −

∞∑
n=1

Bn
tn−1

n!
, (12)

we get for ε→ 0 the final formula for the attraction of two plates immersed in the quantum
vacuum (Holstein, 1992):

1

A
F = − ∂

∂a

1

A
U(a) = − π2

240a4
. (13)

Now, we can approach the calculation of the attractive force due to the photons of the
blackbody sea.
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10.2 The thermal Casimir effect due to blackbody photons

The blackbody photons are supposed in the box with the edges ll, l2, l3 and the situation
is the analogue of the quantum mechanical particle inside such box. However with regard
to the fact that the photon gas has the temperature T , it is necessary to perform the
following transformation to the thermodynamical system in the box:

U(a) =
∑
k

1

2
h̄ωk →

∑
k

(
ω2
k

πc3

)
h̄ωk

e
h̄ωk
kBT − 1

(14)

with

ωk = ωn1,n2,n3 =

√(
n1π

l1

)2

+

(
n2π

l2

)2

+

(
n3π

l3

)2

. (15)

So, the energy of photons in the photon sea is

U(a) =
∑

n1,n2,n3

(
ω2
n1,n2,n3

πc3

)
h̄ωn1,n2,n3

e
h̄ωn1,n2,n3

kBT − 1
. (16)

It is elementary statement that if l1 → ∞, l2 → ∞, l3 → ∞, we get the classical Planck
distribution

ϱ(ω) →
(
ω2

πc3

)
h̄ω

e
h̄ω

kBT − 1
(17)

with (Feynman, 1972; Isihara, 1971)

U(blackbody) =

∫ ∞

0

ϱ(ω)dω = σT 4; σ =
π2(kBT )

4

15h̄3c3
. (18)

The force in the x-direction is

Fx = −∂U(l1, l2, l3
∂l1

=
∑

n1,n2,n3

(
h̄

πc3

)(
n1π

l1

)2
1

l1
×

 3ω

e
h̄ω

kBT − 1
− ω2e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 h̄

kBT

 . (19)

The force in the y-direction is

Fy = −∂U(l1, l2, l3)
∂l2

=
∑

n1,n2,n3

(
h̄

πc3

)(
n2π

l2

)2
1

l2
×

 3ω

e
h̄ω

kBT − 1
− ω2e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 h̄

kBT

 (20)

and the force in the z-direction is
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Fz = −∂U(l1, l2, l3)
∂l3

=
∑

n1,n2,n3

(
h̄

πc3

)(
n3π

l3

)2
1

l3
×

 3ω

e
h̄ω

kBT − 1
− ω2e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 h̄

kBT

 . (21)

The specific pressure on the unit area l2l3, l1l3, l1l2. is

p23 =
1

l2l3
Fx = − 1

l2l3

∂U(l1, l2, l3)

∂l1
, (22)

p13 =
1

l1l3
Fy = − 1

l1l3

∂U(l1, l2, l3)

∂l2
, (23)

p12 =
1

l1l2
Fz = − 1

l1l2

∂U(l1, l2, l3)

∂l3
. (24)

In case of the equal edges of the thermal bath i.e. l1 = l2 = l3 = l, the specific
pressures are equal and it means that

p =
1

3l5

∑
n1,n2,n3

(
h̄

πc3

)[(n1π

l

)2
+
(n2π

l

)2
+
(n3π

l

)2]
×

 3ω

e
h̄ω

kBT − 1
− ω2e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 h̄

kBT

 . (25)

Let us remark that the three-dimensional sums in eqs. (16), (19–22), (23–25) is not
easy to calculate because they are not considered as the integral part of the standard
mathematics. So, we can simplify the calculation by the so called continual limit. In
other words, we perform replacing of the the sum by the ω-integral and for eq. (25) we
get:

p =
1

3l5

(
h̄

πc3

)∫ ∞

0

dωω2

 3ω

e
h̄ω

kBT − 1
− ω2e

h̄ω
kBT(

e
h̄ω

kBT − 1
)2 h̄

kBT

 . (26)

Now, we are prepared to evaluate the ω-integral in the last formula. Putting

x =
h̄ω

kBT
; ω =

xkBT

h̄
; dω = dx

kBT

h̄
; C =

kBT

h̄
, (27)

we get equation in the following form:

p =
1

3l5

(
h̄

πc3

)∫ ∞

0

dxC5

[
3x3

ex − 1
− x4ex

(ex − 1)2

]
. (28)

According to textbook (Rumer et al., 1977)
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∫ ∞

0

dx
xn

ex − 1
= Γ(n+ 1)ζ(n+ 1). (29)

and (Prudnikov et al., 1984)∫ ∞

0

dx
x2nex

(ex − 1)2
= 22n−1π4|B2n|. (30)

In case of the specification of n, we get (Rumer et al., 1977)∫ ∞

0

dx
x3

ex − 1
= Γ(4)ζ(4) = 3!

(
π4

90

)
(31)

and (Prudnikov et al., 1984)∫ ∞

0

dx
x4ex

(ex − 1)2
= 23π4

∣∣∣∣− 1

30

∣∣∣∣ = 23π4 1

30
, (32)

where

|B4| =
∣∣∣∣− 1

30

∣∣∣∣ = 1/30 (33)

follows from the general formula (12).
So, the final formula for the so called Casimir effect at finite temperature is the

numerical form of the formula (28). Or,

p =
1

3l5

(
h̄

πc3

)(
kBT

h̄

)5 [
3.3!

(
π4

90

)
− 23

(
π4

30

)]
. (34)

The last author formula is the original one and it was not published in the scientific
physical research journals. The submitted approach can be easily generalized to phonon
thermal bath, magnon thermal bath and and so on, or astrophysical thermal bath.

10.3 The quantum pressure

We have seen how the thermal photons with the Planck blackbody statistics generated
the Casimir effect at finite temperature. The motivation for considering such problem
can be seen in quantum mechanics with the electron confined in the box with the infinite
barriers at point 0 and l. Then, the energy levels of electron inside the box is (Sokolov et
al. 1962)

En =
π2h̄2n2

2ml2
(35)

and the corresponding wave function is

ψn =

√
2

l
sin
(
πn

x

l

)
. (36)

The quantum pressure caused by the quantum mechanical motion of particle is
obtained by the same operation as in the Casimir effect. Or,
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F = −∂En

∂l
=
π2h̄2n2

ml3
. (37)

In case that the thermal box is three dimensional, we get (Sokolov et al., 1962 )

En1,n2,n3 =
π2h̄2

2m

[(
n1

l1

)2

+

(
n2

l2

)2

+

(
n3

l3

)]
(38)

and the corresponding wave function is

ψn1,n2,n3 =

√
8

l1l2l3
sin

(
πn1

x

l1

)
sin

(
πn2

x

l2

)
sin

(
πn3

x

l3

)
. (39)

The corresponding pressures are

p23 = − 1

l2l3

∂En1,n2,n3

∂l1
(40)

p13 = − 1

l1l3

∂En1,n2,n3

∂l2
(41)

p12 = − 1

l1l2

∂En1,n2,n3

∂l3
. (42)

Let us only remark that the quantum pressure derived here is the perfect proof that
the wave function in quantum mechanics is physical reality independent on the human
mind, and not only mathematical object. The wave function is in such a way the objective
form of matter, where matter is continuum which forms Universe.

The article is the continuation of the previous and related problems in the finite-
temperature physics published by author (Pardy, 1989a, 1989b, 1994b, 2013a, 2013b).

Information on the systematic examination of the finite temperature effects in quantum
electrodynamics (QED) at one-loop order was given by Donoghue, Holstein and Robinett
(1985). They have treated the calculation of mass, charge, wave function renormalization
and so on, and demonstrated the running of the coupling constant at finite temperature
and discussed the normalized vertex function and the energy momentum tensor.

11 Cherenkov effect in the two-dimensional medium

The fast moving charged particle in a medium when its speed is faster than the speed
of light in this medium produces electromagnetic radiation which is called the Vavilov-
Čerenkov radiation.

The prediction of Cherenkov radiation came long ago. Heaviside (1889) investigated
the possibility of a charged object moving in a medium faster than electromagnetic waves
in the same medium becomes a source of directed electromagnetic radiation. Kelvin
(1901) presented an idea that the emission of particles is possible at a speed greater than
that of light. Somewhat later, Sommerfeld (1904) proposed the hypothetical radiation
with a sharp angular distribution. However, in fact, from experimental point of view, the
electromagnetic Cherenkov radiation was first observed in the early 1900’s by experiments
developed by Marie and Pierre Curie when studying radioactivity emission. In essence
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they observed the emission of a bluish-white light from transparent substances in the
neighborhood of strong radioactive source. But the first attempt to understand the origin
of this was made by Mallet (1926, 1929a, 1929b) who observed that the light emitted
by a variety of transparent bodies placed close to a radioactive source always had the
same bluish-white quality, and that the spectrum was continuous, with no line or band
structure characteristic of fluorescence.

Unfortunately, these investigations were forgotten for many years. Cherenkov (or,
Čerenkov) experiments was performed at the suggestion of Vavilov who opened a door to
the true physical nature of this effect1 (Bolotovsky, 2009).

This radiation was first theoretically interpreted by Tamm and Frank (1937) in the
framework of the classical electrodynamics. The source theoretical description of this
effect was given by Schwinger et al. (1976) at the zero temperature regime and the
classical spectral formula was generalized to the finite temperature situation and for the
massive photons by autor (Pardy, 1989a, 1997b). The Vavilov-Cherenkov effect was also
used by author (Pardy, 1997) to possible measurement of the Lorentz contraction.

We derive, in the following text, by the Schwinger source theory method (Schwinger,
1970), the power spectrum of photons, generated by charged particle moving within 2D
sheet, with index of refraction n. Some graphene-like structures, for instance graphene
with implanted ions, or, also 2D-glasses, are dielectric media, enabling the experimental
realization of the Vavilov-Cherenkov radiation. The relation of the Vavilov-Cherenkov
radiation to LED, where the 2D the additional dielectric sheet is the integral part of
LED, is discussed. It is not excluded that LEDs with the 2D dielectric sheets will be the
crucial components of detectors in experimental particle physics.

11.1 Source theory of the Vavilov-Cherenkov effect

Let us start with the three dimensional source theory formulation of the problem. Source
theory (Schwinger et al., 1976) is the theoretical construction which uses quantum-
mechanical particle language. Initially it was constructed for description of the particle
physics situations occurring in the high-energy physics experiments. However, it was
found that the original formulation simplifies the calculations in the electrodynamics and
gravity where the interactions are mediated by photon or graviton respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude:

< 0+|0− >= e
i
h̄
W (S), (1)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any
time before and after space-time region where sources are manipulated. The exponential
form is introduced with regard to the existence of the physically independent experimental
arrangements which has a simple consequence that the associated probability amplitudes
multiply and corresponding W expressions add.

The electromagnetic field is described by the amplitude (1) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (2)

1So, the adequate name of this effect is the Vavilov-Cherenkov effect, (or, Čerenkov effect). In the
English literature, however, it is usually called the Cherenkov effect.
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where the dimensionality ofW (J) is the same as the dimensionality of the Planck constant
h̄. Jµ is the charge and current densities, where quantity Jµ is conserved. The symbol
D+µν(x− x′), is the photon propagator and its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by
the following formula (Schwinger et al., 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp{−
∫

dtdω
P (ω, t)

h̄ω
}, (3)

where we have introduced the so called power spectral function P (ω, t) (Schwinger et al.,
1976). In order to extract this spectral function from ImW , it is necessary to know the
explicit form of the photon propagator D+µν(x− x′).

The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is
generated, including a particular choice of gauge, by the four-current Jµ(cϱ,J) according
to the differential equation, (Schwinger et al., 1976):(

∆− µε

c2
∂2

∂t2

)
Aµ =

µ

c

(
gµν +

n2 − 1

n2
ηµην

)
Jν (4)

with the corresponding Green function D+µν :

Dµν
+ =

µ

c
(gµν +

n2 − 1

n2
ηµην)D+(x− x′), (5)

where ηµ ≡ (1,0), µ (in the fraction µ/c)is the magnetic permeability of the dielectric
medium with the dielectric constant ε, c is the velocity of light in vacuum, n is the index
of refraction of this medium, and D+(x − x′) was derived by (Schwinger et al., 1976) in
the following form:

D+(x− x′) =
i

4π2c

∫ ∞

0

dω
sin nω

c
|x− x′|

|x− x′|
e−iω|t−t′|. (6)

Using formulas (2), (3), (5) and (6), we get for the power spectral formula the following
expression (Schwinger et al., 1976) :

P (ω, t) = − ω

4π2

µ

n2

∫
dxdx′dt′

sin nω
c
|x− x′|

|x− x′|
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (7)

11.2 The two-dimensional Vavilov-Cherenkov effect

Now, we apply the last formula to the situations of the two-dimensional dielectric medium.
We derive here the power spectrum of photons generated by charged particle moving
within the plane of the graphene-like structure with index of refraction n. However, we
cannot immediately apply the formula (7) to the graphene-like 2D structures because
the index of refraction n is n(x, y, z) = 1, z > 0, n(x, y, z) = const > 1, z = 0 and
n(x, y, z) = 1, z < 0. It means that the situation is not the Vavilov-Cherenkov problem
but the problem with the transition radiation which was solved by Ginzburg and Tsytovich
(1984) for thin dielectric film. The problem of the transition radiation when electron is
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moving with the arbitrary angle with respect to the boundary is discussed by Bass et al.
(1965). Our goal is to solve only the Vavilov-Cherenkov radiation of charge when moving
within the plane of dielectric sheet. So, it needs some modified approach.

While the graphene sheet is conductive, some graphene-like structures, for instance
graphene with implanted ions, or, also 2D-glasses, are dielectric media, and it means
that it enables the experimental realization of the Vavilov-Cherenkov radiation. Some
graphene-like structure can be represented by graphene-based polaritonic crystal sheet
(Bludov et al., 2012) which can be used to study the Vavilov-Cherenkov effect. We
calculate it from the viewpoint of the Schwinger theory of sources (Schwinger, 1970).

The charge and current density of electron moving with the velocity v and charge e
is as it is well known:

ϱ = eδ(x− vt) (8)

J = evδ(x− vt). (9)

In case of the the two-dimensional Vavilov-Cherenkov radiation by source theory
formulation, the form of equations (2) and (3) is the same with the difference that
ηµ ≡ (1,0) has two space components, or ηµ ≡ (1, 0, 0), and the Green function D+

as the propagator must be determined by the two-dimensional procedure. In other words,
the Fourier form of this propagator is with (dk) = dk0dk = dk0dk1dk2 = dk0kdkdθ

D+(x− x′) =

∫
(dk)

(2π)3
1

k2 − n2(k)2
eik(x−x′), (10)

or, with R = |x− x′|

D+(x− x′) =
1

(2π)3

∫ 2π

0

dθ

∫ ∞

0

kdk

∫ ∞

−∞

dω

c

eikR cos θ−iω(t−t′)

k2 − n2ω2

c2
− iε

. (11)

Using exp(ikR cos θ) = cos(kR cos θ) + i sin(kR cos θ) and (z = kR)

cos(z cos θ) = J0(z) + 2
∞∑
n=1

(−1)nJ2n(z) cos 2nθ (12)

and

sin(z cos θ) =
∞∑
n=1

(−1)nJ2n−1(z) cos(2n− 1)θ, (13)

where Jn(z) are the Bessel functions (Kuznetsov, 1962), we get after integration over θ:

D+(x− x′) =
1

(2π)2

∫ ∞

0

kdk

∫ ∞

−∞

dω

c

J0(kR)

k2 − n2ω2

c2
− iε

e−iω(t−t′). (14)

The ω-integral in (14) can be performed using the residuum theorem after integration
in the complex half ω-plane.

The result of such integration is the propagator D+ in the following form:

D+(x− x′) =
i

2πc

∫ ∞

0

dωJ0

(nω
c
|x− x′|

)
e−iω|t−t′|. (15)
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The spectral formula for the two-dimensional Vavilov-Cherenkov radiation is the
analogue of the formula (7), or,

P (ω, t) = − ω

2π

µ

n2

∫
dxdx′dt′J0

(nω
c
|x− x′|

)
cos[ω(t− t′)]×

×
{
ϱ(x, t)ϱ(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
, (16)

where the charge density and current involves only two-dimensional velocities and inte-
gration is also only two-dimensional.

The difference is in the replacing mathematical formulas as follows:

sin nω
c
|x− x′|

|x− x′|
−→ J0

(nω
c
|x− x′|

)
. (17)

So, After insertion the quantities (8) and (9) into (16), we get:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫
dt′J0

(nvω
c

|t− t′|
)
cos[ω(t− t′)], β = v/c, (18)

where the t′-integration must be performed. Putting τ = t′ − t, we get the final formula:

P (ω, t) =
e2

2π

µωv

c2

(
1− 1

n2β2

)∫ ∞

−∞
dτJ0 (nβωτ) cos(ωτ), β = v/c. (19)

The integral in formula (19) is involved in the tables of integrals (Gradshteyn et al.,
1962). Or,

J =

∫ ∞

0

dxJ0 (ax) cos(bx) =
1√

a2 − b2
, 0 < b < a,

J = ∞, a = b; J = 0, 0 < a < b, (20)

In our case we have a = nβω and b = ω. So, the power spectrum in eq. (19) is as
follows with J0(−z) = J0(z):

P =
e2

π

µv

c2

(
1− 1

n2β2

)
2√

n2β2 − 1
, nβ > 1, β = v/c. (21)

and

P = 0; nβ < 1, (22)

which means that the physical meaning of the quantity P is really the Vavilov-Cherenkov
radiation. And it is in our case the two-dimensional form of this radiation.

The fundamental features of the 3D and 2D Vavilov-Cherenkov radiation are as follows:
1) The radiation arises only for particle velocity greater than the velocity of light in the
dielectric medium.
2) It depends only on the charge and not on mass of the moving particles
3) The radiation is produced in the visible interval of the light frequencies and partly in
the ultraviolet part of the frequency spectrum. The radiation does not exists for very
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short waves, which follows from the dispersion theory of the index of refraction n, where
n < 1.
4) The spectral dependency on the frequency is linear for the 3D homogeneous medium.
5) The radiation generated in the 3D medium at given point of the trajectory spreads
on the surface of the Mach cone with the vertex at this point and with the axis identical
with the direction of motion of the particle. The vertex angle of the cone is given by the
relation cosΘ = c/nv.
6) There is no Mach cone in the 2D dielectric medium. There is only the Mach angle
in the 2D sheet. It follows from the fact that Vavilov-Cherenkov effect is the result of
the collective motion of the 2D dielectric medium and it also follows from the quantum
definition of the Vavilov-Cherenkov effect in the 2D structures. The conservation laws of
momentum and energy for the Vavilov-Cherenkov effect is as follows:

pi = pf + h̄k, (23)

Ei = Ef + h̄ω, (24)

where index i concerns the initial momentum and energy of an electron and index f
concerns the final momentum and energy of an electron. Symbol k is the wave vector of
emitted photon and h̄ω is its energy. With regard to the situation that the motion of an
electron is realized in the plane x−y, the 3D Mach cone cannot be realized (The existence
of Mach cone in our situation is the nonphysical escape of photons from 2D plane to the
extra-dimension). So, the nonexistence of the Mach cone in the 2D structures is not
mysterious.

While the formula for the three dimensional (3D) Vavilov-Cherenkov radiation is well
known the from textbooks and monographs, the two-dimensional (2D) form of the Vavilov-
Cherenkov radiation was derived here. Zuev (2009) considers the Vavilov-Cherenkov
phenomenon in nanofilms from Au, Ag, Cu, where the Vavilov-Cherenkov phenomenon is
realized only as the surface plasmons which cannot escape the 2D medium.

12 Velocity of sound in the black body photon sea

We determine the velocity of sound in the blackbody gas of photons. Derivation is based
on the thermodynamic theory of the photon gas and the Einstein relation between energy
and mass. The spectral form for the n-dimensional blackbody is derived. The 1D, 2D
and 3D blackbody radiation is specified.

The spectral form of the blackbody radiation was derived firstly by Planck. The
original Planck derivation of the blackbody radiation was based on the relation between
the entropy of the system and the internal energy of the blackbody denoted by Planck as
U .

While from the postulation of the relation

d2S

dU2
= −const

U
(1)

the Wien law follows, the a priori generalization of eq. (1) gives new physics. The
generalization of the equation (1) to be in harmony with blackbody thermodynamics was
postulated by Planck in the following form:
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d2S

dU2
= − k

U(ε+ U)
, (2)

where ε has the dimensionality of energy, k is the Boltzmann constant, and formula (2) is
the approximation of the more general formula d2S/dU2 = α/

∑
n anU

n leading to exotic
statistics.

The first integration of eq. (2) can be performed using the integral∫
dx

x(a+ bx)
= −1

a
ln
∣∣∣a
x
+ b
∣∣∣ . (3)

After integration we get the following result:

1

T
=
dS

dU
=
k

ε
ln
( ε
U

+ 1
)
. (4)

The solution of eq. (4) is

U =
ε

eε/kT − 1
. (5)

The general validity of the Wien law

dS

dU
=

1

ν
f

(
U

ν

)
(6)

confronted with the equation (4) gives the famous Planck formula ε = hν.
The next step of Planck was to find the appropriate physical statistical system

(heuristic model) which led to the correct power spectrum of the blackbody. This model
was the thermal reservoir of the independent electromagnetic oscillators with the discrete
energies ε = hν.

Einstein introduced coefficients of spontaneous and stimulated emissionAmn, Bmn, Bnm.
In case of spontaneous emission, the excited atomic state decays without external stim-
ulus as an analog of the natural radioactivity decay. Later, quantum theory explained
rigorously the process of spontaneous emission. The energy of the emitted photon is given
by the Bohr formula. In the process of the stimulated emission the atom is induced by
the external stimulus to make the same transition. The external stimulus is a black body
photon that has an energy given by the Bohr formula.

The Planck power spectral formula is as follows:

P (ω)dω = h̄ωG(ω)
dω

exp h̄ω
kBT

− 1
; G(ω) =

ω2

π2c3
, (7)

where h̄ω is the energy of a blackbody photon and G(ω) is the number of electromagnetic
modes inside of the blackbody, k is the Boltzmann constant, c is the velocity of light, T
is the absolute temperature.

The internal density energy of the blackbody gas is given by integration of the last
equation over all frequencies ω, or

u =

∫ ∞

0

P (ω)dω = aT 4; a =
π2k4

15h̄3c3
. (8)
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12.1 The speed of sound in the blackbody photon gas

In order to understand the the derivation of speed of sound in gas and in the relic photon
sea, we start with the derivation of the speed of sound in the real elastic rod.

Let A be the cross-section of the element Adx of a rod, where dx is the linear
infinitesimal length on the abscissa x. The φ(x, t) let be deflection of the element Adx at
point x at time t. The shift of he element Adx at point x+ dx is evidently

φ+
∂φ

∂x
dx. (9)

The relative prolongation is evidently ∂φ(x, t)/∂x . The differential equation of motion
of the rod can be derived by the following obligate way. We suppose that the force tension
F (x, t) acting on the element Adx of the rod is given by the Hook law:

F (x, t) = EA
∂φ

∂x
, (10)

where E is the Young modulus of elasticity, A is the cross section of the rod. We easily
derive that

F (x+ dx)− F (x) ≈ EA
∂2φ

∂x2
dx (11)

The mass of the element Adx is ϱAdx, where ϱ is the mass density of the rod and the
dynamical equilibrium is expressed by the Newton law of force:

ϱAdxφtt = EAφxxdx (12)

or,
φtt − v2φxx = 0, (13)

where

v =

(
E

ϱ

)1/2

(14)

is the velocity of sound in the rod.
The complete solution of eq. (13) includes the initial and boundary conditions. We

suppose that the velocity law (14) involving modulus of elasticity and mass density is
valid also for gas intercalated in the rigid cylinder tube. According to the definition of
the Young modulus of elasticity where (∆L/L) is the relative prolongation of a rod, we
have as an analogue for the tube of gas ∆V/V , F → ∆p, where V is the volume of a gas
and p is pressure of a gas. Then, the modulus of elasticity is defined as the analogue of
eq. (10). Or,

E = − dp

dV
V. (15)

The process of the sound spreading in ideal gas is the adiabatic thermodynamic process
with no heat exchange. We use it later as a model of the sound spreading in the gas of
blackbody photons. Such process is described by the thermodynamical equation

pV κ = const, (16)
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where κ is the Poisson constant defined as κ = cp/cv, with cp, cv being the specific heat
under constant pressure and under constant volume.

After differentiation of eq. (16) we get the following equation

dpV κ + κV κ−1dV = 0, (17)

or,

dp

dV
= −κ p

V
. (18)

After inserting of eq. (18) into eq. (15), we get from eq. (14) for the velocity of sound
in gas the so called Newton-Laplace formula:

v =

√
κ
p

ϱ
, (19)

where ϱ is the mass density of gas.
The density of the equilibrium radiation is given by the Stefan-Boltzmann formula

u = aT 4, ; a = 7, 5657.10−16 J

K4m3
. (20)

.
Then, with regard to the thermodynamic definition of the specific heat

cv =

(
∂u

∂T

)
V

= 4aT 3. (21)

Similarly, with regard to the general thermodynamic theory

cp = cv +

[(
∂u

∂V

)
T

+ p

](
∂V

∂T

)
p

= cv, (22)

because
(
∂V
∂T

)
T
= 0 for photon gas and in such a way, κ = 1 for photon gas. According

to the theory of relativity, there is simple equivalence between mass and energy. Namely,
m = E/c2. At the same time, there is relation between pressure and the internal energy
of the blackbody gas following from the electromagnetic theory of light p = u/3. So, in
our case

ϱ = u/c2 =
aT 4

c2
; p =

u

3
. (23)

So, after insertion of formulas in equation (23) in to eq. (19), we get the final formula
for the velocity of sound in three photon sea of the blackbody is as follows:

v = c

√
κ

3
=
c

3

√
3, (24)

which is the result derived by Partovi (1994) using the QED theory applied to the photon
gas. No energy signal can move with velocity greater than the speed of light. And we
correctly derived v/c < 1.

So, we have seen in this section, that using the classical thermodynamical model of
sound in the classical gas we can easily derive some properties of the black body gas,
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namely the velocity of sound in it and in the relic photon sea. It is not excluded that the
relic sound can be detected by the special microphones of Bell laboratories. Let us still
remark that if we use van der Waals equation of state, or, the Kamerlingh Onnes virial
equation of state, the obtained results will be modified with regard to the basic results.

12.2 The n-dimensional blackbody

The problem of the n-dimensional blackbody is related to the dimensionality of space
and some ideas on the dimensionality of space was also discussed by many authors. The
experimental facts following from QED experiments, galaxy formation and formation of
the molecules DNA, prove that the external space is 3-dimensional. With regard to the
Russell philosophy of mathematics, there is no possibility to prove the dimensionality
of space, or, space-time, by means of pure mathematics, because the statements of
mathematics are non-existential. The existence of the external world cannot be also
proved by pure mathematics. However, if there is an axiomatic system related adequately
to the external world and reflecting correctly the external world, then, it is possible to
do many predictions in the external world by pure logic. This is the substance of exact
sciences.

In case of the n-dimensional blackbody, the number of modes can be determined (Al-
Jaber, 2003). We use here alternative and elementary derivation. In case we consider
instead of the three-dimensional blackbody the n-dimensional blackbody, the photon
energy is defined by the same manner and at the same time the statistical factor is the
same as in the three-dimensional case. Only number of the electromagnetic modes G(ω)
depends on dimensionality of space. We determine in this article the Planck blackbody
law for the n-dimensional space..

The blackbody radiation is composed from the electromagnetic waves corresponding
to photons in such a way that every monochromatic wave is of the form:Aµ = εµe

ikx−iωt,
where εµ is the polarization amplitude. If we take the blackbody in the form of cube
with side L, then it is necessary to apply for the electromagnetic wave the boundary
conditions. It is well known that the appropriate boundary conditions are so called
periodic condition, which means for instance for x-coordinate exp(ik10) = exp(ik1L) = 1,
from which follows that only specific values of k1 correspond to the boundary conditions,
namely, k1 =

2πN1

L
; N1 = 1, 2, 3... . In case that the electromagnetic field is in a box of

the volume Ln, the wave vector k is quantized and the elementary volume in the k-space
is

∆0n = (2π)n/Ln (25)

.
The elementary volume of the n-dimensional k-space is evidently the volume dVn

between spheres with radius k and k + dk (Rumer et al., 1977):

dVn = d

(
2πn/2

nΓ
(
n
2

)kn) =
2πn/2

Γ
(
n
2

)kn−1dk, (26)

where Γ(n) is so called Euler gamma-function defined in the internet mathematics
(http : //mathworld.wolfram.com/GammaFunction.html) as
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Γ(x) =

∫ ∞

0

e−ttx−1dt; Γ(n/2) =
(n− 2)!!

√
π

2(n−1)/2
. (27)

The number of electromagnetic modes involved inside the spheres between k and k+dk
is then, with ω = ck, or k = ω/c and dk = dω/c,

Gn(ω)dω = 2× dVn
∆0n

= 2× 1

2(n−1)

1

Γ
(
n
2

) 1

πn/2
Lnω

n−1

cn
dω, (28)

where isolated number 2 expresses the fact that light has 2 polarizations.
For the energetic spectrum of the Planck law of the n-dimensional black body we have

Pn(ω) = h̄ωGn(ω)
1

exp( h̄ω
kT
)− 1

= 2× 1

2(n−1)

1

Γ
(
n
2

) 1

πn/2
h̄
ωn

cn
1

exp( h̄ω
kT
)− 1

. (29)

The energy density of the radiation of the n-dimensional blackbody is then

un =

∫ ∞

0

Pn(ω)dω = An

∫ ∞

0

ωn

exp( h̄ω
kT
)− 1

dω; An =
1

2(n−1)

2h̄

cnπn/2

1

Γ
(
n
2

) . (30)

The integral in the last formula can be evaluated using well-known relations (Dwight,
1961) (int. 860.39)

∫ ∞

0

xp

eax − 1
dx =

Γ(p+ 1)ζ(p+ 1)

ap+1
=
p!ζ(p+ 1)

ap+1
=

p!

ap+1

[
1 +

1

2p+1
+

1

3p+1
+ ...

]
, (31)

where ζ(p) is so called Riemann ζ-function and a = h̄/kT .
Let us test the n-dimensional Planck law and density radiation in case of n = 1, 2,

and 3.

P1(ω) = 2× 1

Γ(1/2)

1√
π

h̄ω

e(
h̄ω
kT

) − 1

1

c
(32)

P2(ω) = 2× 1

2

1

Γ(2/2)

1

π

h̄ω2

e(
h̄ω
kT

) − 1

1

c2
(33)

P3(ω) = 2× 1

4

1

Γ(3/2)

1

π3/2

h̄ω3

e(
h̄ω
kT

) − 1

1

c3
, (34)

and so on.
Let us remark, that P1 corresponds to the radiation of 1D blackbody and can be

verified by long carbon nanotube at temperature T . P2 corresponds to the radiation of
2D blackbody and can be verified by the graphene sheet (Pardy, 2007b, 2010, 2011) after
some geometrical modification. P4 and further formulas cannot be realized in the 3D
space with the adequate blackbody.

u1 = A1

∫ ∞

0

x

eax − 1
dx = A1

(
kT

h̄

)2

1!ζ(2) = A1

(
kT

h̄

)2
π2

6
; A1 =

2h̄

cπ1/2

1

Γ
(
1
2

) (35)
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u2 = A2

∫ ∞

0

x2

eax − 1
dx = A2

(
kT

h̄

)3

2!ζ(3) = A2

(
kT

h̄

)3

2, 4..; A2 =
h̄

c2π

1

Γ (1)
(36)

u3 = A3

∫ ∞

0

x3

eax − 1
dx = A3

(
kT

h̄

)4

3!ζ(4) = A3

(
kT

h̄

)4

6
π4

90
;A3 =

h̄

2c3π3/2

1

Γ
(
3
2

) (37)

and so on, where we used tables of Dwight (1961) with formulas 48.002, 48.003, 48.004
for ζ(2) = π2/6, ζ(3) = 1, 2020569032, ζ(4) = π4/90

Let us remark that the formula (37) is identical with formula (8) with regard to relation
Γ(x+1) = xΓ(x), or, Γ(3/2) = Γ(1/2+ 1) = (1/2)Γ(1/2) = (1/2)π1/2, and it is the proof
of the correctness of derived formula u3.

We have seen that our derivation of the light velocity in the blackbody photon gas
was based on the classical thermodynamical model with the adiabatic process (δQ = 0),
controlling the spreading of sound in the gas. The problem was not solved by Einstein,
because only QED, elaborated many years later was able to give motivation for the
formulation of such problem. In other words, Einstein was not motivated for such activity.
Partovi (1994) derived additional radiation corrections to the Planck distribution formula
and the additional correction to the speed of sound in the relic photon sea. His formula
is of the form:

vsound =

[
1− 88π2α2

2025

(
T

Te

)4
]

c√
3
, (38)

where α is the fine structure constant and Te = 5.9 G Kelvin. We see that our formula is
the first approximation in the Partovi expression.

There is rigorous statistical theory of transport of sound energy in gas based on the
Boltzmann equation (Uhlenbeck et al., 1963 ). After application of Boltzmann equation
to the photon gas, or, relic photon gas we can expect the rigorous results with regard
to fact that the cross-section of the photon-photon interaction is very small. Namely,
(Berestetzky et al., 1989):

σγγ = 4, 7α4
( c
ω

)2
; h̄ω ≪ mc2, (39)

and

σγγ =
973

10125π
α2r2e

(
h̄ω

mc2

)6

; h̄ω ≫ mc2, (40)

where re = e2/mc2 = 2, 818 × 10−13 cm is the classical radius of electron and α = e2/h̄c
is the fine structure constant with numerical value 1/α = 137, 04.

No doubt, the solution of the Boltzmann equation gives the existence of sound waves
in the statistical system of particles.
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13 Conclusion

We have considered a quantum phenomenon in which electrons are emitted from matter
after the absorption of energy from electromagnetic radiation. Or, in other words, we
discussed so called the photoelectric effect.

We have considered the classical theory of photoeffect and its extension to the
nonrelativistic and relativistic quantum theory of photoeffect in the form of ionization of
atoms. We have investigated the problems concerning the photoelectric effect including
phonon generation and process with the initial dressed photon. We have considered also
the polychromatic form of the photoeffect and the photoeffect in two-dimensional electron
gas in magnetic field. As the related problem, we have calculated the H-atom in the black
body sea, being related to the Gibbons-Hawking thermal bath. The related problems such
as the velocity of sound in the relic photon sea, thermal Casimir effect, dielectric crystal
immersed in the black-body sea and the Cherenkov radiation in the two-dimensional
dielectric medium were included.

The dressed photon is here considered as the photon composed from the electron-
positron pair.

The H-aton imersed in the black-body photon sea is related problem to photoeffect.
Such a case is an analogue of the H-atom in the Gibbons-Hawking thermal bath and it
has the astrophysical meaning (Pardy, 2016a).

The dielectric crystal immersed in the black-body is equivalent to the influence of the
index of refraction on the spectral formula of the blackbody (Pardy, 2015).

The Casimir effect at temperature finite temperature is the old problem and our
approach was original.

The Cherenkov radiation in the two-dimensional dielectric medium (Pardy, 2015b) is
the original problem.

The calculation of the velocity of sound in the relic photon sea which is the relic
astrophysical black-body (Pardy, 2013a,b) is of the astrophysical meaning.

Zuev (2009) considers the Vavilov-Cherenkov phenomenon in nanofilms from Au, Ag,
Cu, where the Vavilov-Cherenkov phenomenon is realized only as the surface plasmons
which cannot escape from the 2D medium. The fundamental importance of the Vavilov-
Cherenkov radiation is in its use for the modern detectors of very speed charged particles
in the high energy physics. The detection of the Vavilov-Cherenkov radiation enables to
detect not only the existence of the particle, however, also its direction of motion and
its velocity and also its charge. The two-dimensional Vavilov-Cherenkov radiation is the
promising application in LED, the light-emitting diode.

The light-emitting diode, LED, consists of several layers (sheets) of semiconducting
materials. The Nobel prize laureates, Isamu Akasaki (Nagoya University, Japan), Hiroshi
Amano (Nagoya University, Japan), Huji Nakamura (American citizen, University of
California, Santa Barbara, USA) succeeded in increasing the lamps efficiency (Royal
Swedish Academy of Sciences, 2014); . White LEDs currently reach more than 300 lm/W,
representing more than 50% wallplug efficiency.

The relation of the Vavilov-Cherenkov effect to LED is evident. Namely, when LED
(with additional dielectric sheet) is irradiated by high-energy electrons with velocity
greater than the velocity of light in the sheet, then LED produces the 2D Vavilov-
Cherenkov radiation if and only if the electrons move within the dielectric sheet inside the
LED. The set of small grain-sand LED (fixed in adequate viscous gel emulsion) forms then
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the new detector of elementary particle physics. The two-dimensional Vavilov-Cherenkov
radiation was still not applied, nevertheless, it is not excluded that it is the crucial effect
in LED.

REFERENCES

Al-Jaber, Sami M. (2003). Planck’s spectral distribution law in N dimensions, Int. Jour-
nal of Theor. Phys. 42, No. 1, 111.

Akhiezer, A.I. and Berestetzky, V.B. Quantum Electrodynamics; GITTL, Moscow, (1953).

Amusia, M. Ya. Atomic photoeffect; Nauka, Moscow, 1987, (in Russian).

Bass, F. G. and Yakovenko, V. M. (1965). Theory of radiation from a charge passing
through an electrically inhomogeneous medium, Physics-Uspekhi 8(2), 420-444.

Berestetzky, V. B., Lifshitz, E. M. and Pitaevskii, L. P. Quantum electrodynamics;
Moscow, NAUKA, 1989. (in Russian).

Bernard. C. W. (1974). Feynman rules for gauge theories at finite temperature, Phys.
Rev. D 9, 3312.

Bethe, H. A. (1947). The electromagnetic shift of energy levels, Phys. Rev. 72, 339.

Bludov, Yu. V., Peres, N. M. R. and Vasilevskiy, M. I. (2012). Graphene-based polari-
tonic crystal, arXiv:1204.3900v1,[cond-mat.mes-hall].

Bolotovsky, B. M. (2009). Vavilov-Cherenkov radiation: its discovery and application,
Physics-Uspekhi 52(11), 1099-1110.

Cherenkov, P. A. (1934). The visible radiation of pure liquids caused by X-rays, Comptes
Rendus Hebdomaclaires des Seances de l’ Academic des Sciences USSR 2, 451.

Corda, Ch. (2015a). Precise model of Hawking radiation from the tunneling mechanism,
Class. and Quantum Gravity 32, 195007.

Corda, Ch. (2015b). Quasi-normal modes: the ”electrons” of Blak holes as ”gravitational
atoms”? Implications for the black hole information puzzle. Advances in High Energy
Physics, 867601.

Corda, Ch. (2015c). Time dependent Schrödinger equation for black hole evaporation:
no information loss, Annals of Physics 353, 71.

Cox, P. H., Hellman, W. S. and Yildiz, A. (1984). Finite temperature corrections to field
theory: electron mass, magnetic moment, and vacuum energy, Ann. Phys. (N.Y.) 154,
211.

Davydov, A. S. Quantum mechanics; 2-nd ed., Pergamon Press, Oxford, New York, 1976.

Dittrich, W. (1978). Source methods in quantum field theory, Fortschr. Phys. 26, 289.

Dolan, L. and Jackiw, R. (1974). Symmetry behavior at finite temperature, Phys. Rev.
D 9, 3320.

Donoghue, J. F., Holstein, B. R. and Robinett, R. W. (1985). Quantum electrodynamics
at finite temperature, Ann. Phys. (NY) 164, No. 2, 233.

47



Drukarev, G. F. Quantum mechanics; St. Petersburgh University, 1988, (in Russian).

Dwight, H. B. Tables of integrals; New York, The Macmilan Company, 1961.
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