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Abstract

We study an agent-based stock market model with heterogeneous agents and friction.
Our model is based on that of [9]: the process of a stock price in a discrete-time framework
is determined by temporary equilibria via agents’ excess demand functions, and the
diffusion approximation approach is applied to characterize the continuous-time limit (as
transaction intervals shorten) as a solution of the corresponding stochastic differential
equation (SDE). In this paper we further make the assumption that some of the agents
are bound by either short sale constraints or budget constraints. Then we show that
the continuous-time process of the stock price can be derived from a certain SDE with
oblique reflection. Moreover we find that the short sale (respectively, budget) constraint
causes overpricing (respectively, underpricing).

Keywords: Agent-based models, Liquidity problems, Short sale/budget constraints,
Stochastic differential equations with oblique reflection, The Skorokhod problem.

1 Introduction

It is usual in mathematical finance to describe the price evolution of a risky asset such
as a stock by a diffusion process. Geometric Brownian motion (GBM) is one of the most
standard such processes for price fluctuation. Because of its simplicity and convenience, the
GBM model is widely used in the context of option pricing/hedging, optimal investment, and
many other financial problems. An important theme is to justify GBM from the economic
viewpoint. For instance, a heuristic equilibrium argument for GBM is discussed in [20]. The
justification of GBM as the rational expectations equilibrium is discussed in [2] and [15].

Recently there have been various studies of agent-based market models to explain the
fluctuation of a price process. One representative study is the microeconomic approach of [8]
and [9]: The process of the stock price is first given as a sequence of temporary price equilibria
in a discrete-time market model with heterogeneous agents and then the price process in a
continuous-time model is derived as the limit as the transaction time intervals shorten. Let us

∗Division of Mathematical Science for Social Systems, Graduate School of Engineering Sci-
ence, Osaka University, 1-3, Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan, E-mail:
kato@sigmath.es.osaka-u.ac.jp

Mathematical Subject Classification (2010) 91B24, 91B69, 60F17
JEL Classification (2010) D53, C69

1



introduce the outline of the model of [9]. Let I be the set of agents in the market and ên,ik (p, ω)
be trader i’s excess demand function for a proposed stock price p at the time k/n, where n ∈ N
and trades are executed at times t = 0, 1/n, 2/n, . . .. The parameter ω is a sample point in
the underlying probability space (Ω,F , P ). The stock price process (Sn

k/n)k=0,1,2,... is given as
follows: At the initial time t = 0, the stock price is given by Sn

0 = s0. Then agents exhibit
their excess demand êni,0(·, ω) and the next price is determined as a temporary equilibrium,
that is, the solution p∗ of ∑

i∈I

êni,0(p
∗(ω), ω) = 0.

After transactions at t = 0, the stock price changes to Sn
1/n = p∗. Similarly, during the trading

period k/n, the stock price before transactions is given by Sn
k/n and agents’ excess demands

(ên,ik (·, ω))i∈I make the stock price change to Sn
(k+1)/n. Finally, the process (Sn

k/n)k is given as
the solution of ∑

i∈I

ên,ik (Sn
(k+1)/n(ω), ω) = 0, k = 0, 1, 2, . . . , Sn

0 = s0. (1.1)

For mathematical convenience we rewrite (1.1) by using the log price Xn
k = log Sn

k of the stock,
obtaining ∑

i∈I

en,ik (Xn
(k+1)/n(ω), ω) = 0, k = 1, 2, . . . , Xn

0 = x0, (1.2)

where en,ik (x, ω) = ên,ik (ex, ω) and x0 = log s0. In [8] and [9], the individual excess demand
function en,ik is assumed to be given by

en,ik (x, ω) = αn,i
k (fn,i

k (x, ω) − x) + δn,ik (ω),

fn,i
k (x, ω) = Xn

k/n + βn,i
k (Xn

k/n − Fi) + γn,ik (Xn
k/n − x).

(1.3)

The parameter δn,ik (ω) denotes the liquidity demand, fn,i
k (x) is the reference level of agent i,

and Fi is agent i’s individual perception of the fundamental (log-)value. For a more precise
economic interpretation of (1.3), see Example 3) in Section 2 of [9]. In this case, (1.2) can be
rewritten using the stochastic difference equation

Xn
(k+1)/n −Xn

k/n = β̄n
k (Xn

k/n − F̄ ) + δ̄nk , k = 0, 1, 2, . . . , (1.4)

where

β̄n
k =

∑
i∈I α

n,i
k βn,i

k

ᾱn
k

, F̄ n
k =

∑
i∈I α

n,i
k βn,i

k Fi

ᾱn
k

, δ̄nk =

∑
i∈I δ

n,i
k

ᾱn
k

, ᾱn
k =

∑
i∈I

αn,i
k (1 + γn,ik ).

Let (Xn
t )t≥0 be an interpolated process of (Xn

k/n)k such as either

Xn
t = Xn

k/n t ∈ (k/n, (k + 1)/n) (1.5)

or

Xn
t = (nt− k)Xn

(k+1)/n + (k + 1 − nt)Xn
k/n t ∈ (k/n, (k + 1)/n). (1.6)
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Then, under some mathematical assumptions, the process (Xn
t )t converges to an Ornstein–

Uhlenbeck (OU) process of the form

dXt = β̄(Xt − F̄ )dt+ σ̄dBt, X0 = x0.

(This is a simplified version of the result of [9]: They also treat an OU process in a random
environment.) This implies that the continuous-time stock price St = exp(Xt) is a geometric
OU process.

It is meaningful to consider the above diffusion approximation approach to derive the
continuous-time process in a more general framework. A diffusion approximation for solutions
of stochastic difference equation in the following form

Xn
(k+1)/n −Xn

k/n =
1√
n
F n
k (Xn

k/n, ω) +
1

n
Gn

k(Xn
k/n, ω), (1.7)

with E[F n
k (x)] = 0, is studied in [17] and [23]–[25] under some mixing conditions. In [13], a

case of the functional difference equation

Xn
(k+1)/n −Xn

k/n =
1√
n
F n
k ((Xn

r )r≤k/n, ω) +
1

n
Gn

k((Xn
r )r≤k/n, ω) (1.8)

is studied under strong mixing conditions and a certain additional dimensional condition. By
using these results, we can apply the diffusion approximation approach to the agent-based
market model for more general excess demand functions and derive several stock price models
based on the framework of [9].

The aim of this paper is to construct an agent-based model of stock prices with market
liquidity problems. In the real market, although there are agents who can buy and sell the
stock freely to some extent, there also exist agents who cannot trade to their own satisfaction
because of a shortage of cash, being prohibited from short selling, and so on. To consider how
such a liquidity problem affects things, we construct a market model based on [9] under the
following constraints:

(I) Some of the agents cannot sell the more of the stock than the number of shares held (a
short sale constraint),

(II) Some of the agents cannot buy more of the stock higher than allowed by their budget.
(a budget constraint).

In each case (I)–(II), we will show that the continuous-time process of the stock price which is
derived by shortening the transaction intervals is the solution of a certain stochastic differential
equation with oblique reflection (SDER). Moreover, the value of the stock price under the short
sale constraint is larger than it would be without such a constraint. The effect of the short sale
constraint is discussed in [1], [5], [10] and the references therein, and our result is consistent
with a common expectation, viz., that the short sale constraint causes overpricing (nonetheless,
[1] pointed out that whether short sale constraints will always lead to overpricing is far from
certain). On the other hand, we will also show that a budget constraint drives the stock price
down.

We now fix some notation. For an interval A ⊂ [0,∞), we denote by C(A;Rd) the set of
continuous functions from A to Rd and we use the abbreviations Cd

T = C([0, T ];Rd) and Cd =
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C([0,∞);Rd) (when d = 1, we simply write CT and C.) For w ∈ Cd, we set |w|T = sup
0≤t≤T

|w(t)|

and |w|∞ = sup
t≥0

|w(t)|, where | · | is the Euclidean norm. We also define the following subspaces

of Cd
T .

Cd
T,+ = {w = (wi)di=1 ∈ Cd

T ; wi(t) ≥ 0, i = 1, . . . , d},
Cd
T,↑0 = {w = (wi)di=1 ∈ Cd

T ; wi(0) = 0, wi(t) is non-decreasing in t, i = 1, . . . , d},

and similarly Cd
+ and Cd

↑0 for T = ∞. We introduce the canonical σ-algebra Bt = σ(w(s) ; s ≤ t)

of C. We often consider the space of R1+N -valued functions and then we start the index at
zero, i.e., w(t) = (wi(t))Ni=0. The notation (x)+ stands for the positive part of x, that is,
(x)+ = max{x, 0}.

2 Main Results

2.1 Model I: Stock Price Model with Short Sale Constraints

Let I = {1, . . . , N} be a finite set of agents who are active in the market which consists of
a single stock. We assume that each agent i ∈ I always stays in the market and no new agents
enter. First we consider the discrete trading case, with market clearing times t = 1/n, 2/n, . . .
for n ∈ N = {1, 2, 3, . . .}. We denote by Xn = (Xn

t )t≥0 the log-price process of a stock, and by
φn,i = (φn,i

t )t≥0 the number of shares of the stock held by agent i ∈ I. The fluctuations of the
processes Xn and φn = (φn,i)Ni=1 are found as follows. At the initial time t = 0, every agent
i ∈ I has φn,i

0 = Φi ≥ 0 shares of a stock and the initial log-price of the stock is Xn
0 = x0 ∈ R.

After trading is finished for the period t = k/n, the log-price Xn
t , t ∈ (k/n, (k + 1)/n] is

determined by the market clearing condition∑
i∈I

en,ik (Xn
(k+1)/n, X

n, ω;φn,i
k/n) = 0 (2.1)

and linear interpolation (1.6), where en,ik (x,w, ω;φ) : R×C×Ωn×R −→ R is the excess demand
function of i ∈ I at t = k/n on the underlying probability space (Ωn,Fn, P n), and φn,i

k is the
quantity of stock held by i. Here en,ik (x,w, ω;φ) is assumed to be B(R) ⊗ Bk/n ⊗ Fn ⊗ R-
measurable, so that

en,ik (x,w, ω;φ) = en,ik (x,w(· ∧ (k/n)), ω;φ).

After determining the log-price up to t = (k+ 1)/n by (2.1), the agents’ holdings of the stock
are set by

φn,i
(k+1)/n = φn,i

k/n + en,ik (Xn
(k+1)/n, X

n, ω;φn,i
k/n) (2.2)

and

φn,i
t = (nt− k)φn,i

(k+1)/n + (k + 1 − nt)φn,i
k/n, t ∈ (k/n, (k + 1)/n) (2.3)
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for i = 1, . . . , N . We remark that (2.1) implies that the total number of shares of the stock in

the market is constant, i.e.,
N∑
i=1

φn,i
t =

N∑
i=1

Φi for any n and t.

All agents have their individual excess demand ẽn,ik (x,w, ω) before considering friction,
but they do not always exhibit ẽn,ik (x,w, ω) itself to the market. Agents are divided into two
groups, I = I1 ∪ I2, where I1 = {1, . . . , N1} and I2 = {N1 + 1, . . . , N} for some 1 ≤ N1 ≤ N .
Agents in the first group are prohibited from selling short, thus their excess demand at t = k/n
is not lower than φn,i

k/n and the process of their stock holdings is always non-negative. Agents

in the second group I2 are allowed to sell short, so they can exhibit the value ẽn,ik (·, Xn, ω)
itself as their excess demand. Then the excess demand function is finally defined as

en,ik (x,w, ω;φ) =

{
max{ẽn,ik (x,w, ω),−φ}, i ∈ I1
ẽn,ik (x,w, ω), i ∈ I2.

(2.4)

We divide ẽn,ik (x,w) into two parts.

ẽn,ik (x,w) = fn,i
k (x,w) + gn,ik (w). (2.5)

Here,

fn,i
k (x,w) = ẽn,ik (x,w) − ẽn,ik (w(k/n), w), gn,ik (w) = ẽn,ik (w(k/n), w).

The function gn,ik (w) is the excess demand when the price of the stock does not change. We
further divide gn,ik (w) into

gn,ik (w) =
1

n
ḡn,ik (w) +

1√
n
g̃n,ik (w),

where g̃n,ik (w) is a mean zero random function. We remark that gn,ik , ḡn,ik and g̃n,ik are all
Bk/n⊗Fn-measurable. The function fn,i

k (x,w) is an additional excess demand associated with
the change of the price. Usually the higher the stock price becomes, the lower is an agent’s
demand for the stock. Thus it is natural that fn,i

k (x,w) is supposed to be decreasing in x.
Furthermore, we assume

[A1] The function fn,i
k (x,w) is deterministic (i.e., independent of ω ∈ Ωn), continuous in

(x,w), and three times continuously differentiable in x. Moreover, there exist positive
constants K0 and δ0 such that

−K0 ≤
∂

∂x
fn,i
k (x,w) ≤ −δ0. (2.6)

Furthermore, ḡn,ik (w) and g̃n,ik (w) are continuous in w almost surely.

Condition [A1] implies that when I2 is not empty (that is, when N1 < N), the equation∑
i∈I

en,ik (x,w;φi) = 0 (2.7)
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has a unique solution x for any fixed w and (φi)i, since the left-hand side of (2.7) is strictly
decreasing in x. In fact, the existence of a unique solution of (2.7) is also guaranteed even if

I = I1, provided
N∑
i=1

Φi > 0. However, hereafter we always assume N1 < N for some technical

reasons which we will explain later.
By (2.1) and (2.2), we can construct the processes (Xn

t )t and (φn
t )t. We are interested in

the limit of the (1 + N)-dimensional process (Ξn
t )t = (Xn

t , φ
n,1
t , . . . , φn,N

t )t as n → ∞. More
precisely, we consider the weak limit of the distribution µn = P (Ξn ∈ ·) on C1+N .

We will define more conditions.

[A2] For every M > 0, there exists a positive constant CM > 0 such that

3∑
l=0

sup
|x|,|w|∞≤M

∣∣∣∣ ∂l∂xl fn,i
k (x,w)

∣∣∣∣+ E
n[ sup

|w|∞≤M

|ḡn,ik (w)|24] + E
n[ sup

|w|∞≤M

|g̃n,ik (w)|24] ≤ CM

for any n, k ∈ N and i = 1, . . . , N , where E
n is the expectation with respect to P n (we

simply denote this by E when there is no possibility of confusion).

[A3] The σ-algebras σ(ḡn,ik , g̃n,ik ; i = 1, . . . , N), k = 1, 2, . . ., are independent.

[A4] Let

αn,i
k (w) = − ∂

∂x
fn,i
k (w(k/n), w), βn,i

k (w) = E
n[ḡn,ik (w)],

γn,ik (w) =
∂2

∂x2
fn,i
k (w(k/n), w), an,ijk (w) = E

n[g̃n,ik (w)g̃n,jk (w)].

For each i, j ∈ I the following limits exist

βi(t, w) = lim
r→∞

βn,i
[nt](w), γi(t, w) = lim

r→∞
γn,i[nt](w),

aij(t, w) = lim
r→∞

an,ij[nt] (w)

uniformly on any compact subset of C and for any t ≥ 0, and

αi(t, w) = lim
r→∞

αn,i
[nt](w)

uniformly on any compact subset of [0,∞) × C.

[A5] Define Qn
k(w) = (Qn,ij

k (w))1≤i≤N,1≤j≤N1 as

Qn,ij
k (w) = (1 − δij)α

n,i
k (w)α̃n,j

k (w),

where δij is the Kronecker delta and

ᾱn
k(w) =

N∑
i=1

αn,i
k (w), α̃n,j

k (w) = 1/(ᾱn
k(w) − αn,j

k (w)).

There exists V = (V ij)N1
i,j=1 ∈ RN1 ⊗ RN1 such that V ii = 0, Qn,ij

k (w) ≤ V ij for each
i, j = 1, . . . , N1 and the spectral radius of V is less than 1.
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Note that the inequality N1 < N is essential for condition [A5]. Indeed, if N1 = N , then
the calculation

N∑
i=1

((Qn
k(w))m)ij =

N∑
lm−1=1

· · ·
N∑

l1=1

N∑
i=1

Qn,il1
k (w)Qn,l1l2

k (w) · · ·Qn,ln−1j
k (w)

=
N∑

lm−1=1

· · ·
N∑

l1=1

Qn,l1l2
k (w) · · ·Qn,ln−1j

k (w) = · · · = 1, m ∈ N

indicates the convergence lim
m→∞

||(Qn
k(w))m||1 = 1, where ((Qn

k(w))m)ij is the i, jth element of

the mth power of the matrix Qn
k(w) and the norm || · ||1 stands for ||A||1 = max

j

N∑
i=1

|Aij| for

A = (Aij)ij ∈ RN ⊗ RN , thus we cannot find such a matrix V in [A5].

[A6] Let σ(t, w) = (σij(t, w))Ni,j=1 be an N -dimensional matrix-valued function such that

aij(t, w) =
N∑

m=1

σim(t, w)σjm(t, w). For any T > 0, there exists a positive constant CT

such that

|β̃i(t, w)| + |γ̃i(t, w)| + |σij(t, w)| ≤ CT (1 + |w|t)

for each i, j = 1, . . . , N , 0 ≤ t ≤ T and w ∈ R, where

β̃i(t, w) = βi(t, w) + γ̃i(t, w), γ̃i(t, w) =
γi(t, w)

2ᾱ(t, w)2

N∑
k,l=1

akl(t, w).

We now introduce an SDER.

dXt = b̂0(t,X)dt+
N∑
j=1

σ̂0j(t,X)dBj
t +

N1∑
j=1

α̃j(t,X)dLj
t , X0 = x0, (2.8)

dφi
t = b̂i(t,X)dt+

N∑
j=1

σ̂ij(t,X)dBj
t + 1I1(i)dL

i
t −

N1∑
j=1

Qij(t,X)dLj
t , φi

0 = Φi, i = 1, . . . , N,

where

α̃i(t, w) = 1/(ᾱ(t, w) − αi(t, w)), Qij(t, w) = (1 − δij)α
i(t, w)α̃j(t, w)
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and b̂i(t, w), σ̂ij(t, w), 0 ≤ i ≤ N, 1 ≤ j ≤ N are given by

b̂i(t, w) =



N∑
j=1

β̃j(t, w)/ᾱ(t, w) (i = 0)

β̃i(t, w) − αi(t, w)
N∑
j=1

β̃j(t, w)/ᾱ(t, w) (i ≥ 1),

(2.9)

σ̂ij(t, w) =


N∑
k=1

σkj(t, w)/ᾱ(t, w) (i = 0)

σij(t, w) − αi(t, w)
N∑
k=1

σkj(t, w)/ᾱ(t, w) (i ≥ 1)

(2.10)

with ᾱ(t, w) =
N∑
i=1

αi(t, w). We say that an (1 + N + N1)-dimensional continuous adapted

stochastic process (Xt, φt, Lt)t = (Xt, (φ
i
t)

N
i=1, (L

i
t)

N1
i=1) is a solution of (2.8) on a given filtered

space (Ω,F , (Ft)t, P ) equipped with an N -dimensional (Ft)t-Brownian motion Bt = (Bi
t)

n
i=1 if

• P (φ ∈ CN
+ ) = P (L ∈ CN1

↑0 ) = 1,

•
∫ ∞

0

1{φi
r>0}dL

i
r = 0 for i = 1, . . . , N1 almost surely,

• The processes (Xt)t, (φt)t, (Lt)t and (Bt)t satisfy

Xt = x0 +

∫ t

0

b̂0(r,X)dr +
N∑
j=1

∫ t

0

σ̂0j(r,X)dBj
r +

N1∑
j=1

∫ t

0

α̃j(r,X)dLj
r, (2.11)

φi
t = Φi +

∫ t

0

b̂i(r,X)dr −
N∑
j=1

∫ t

0

σ̂ij(r,X)dBj
r + 1I1(i)L

i
t −

N1∑
j=1

∫ t

0

Qij(r,X)dLj
r

for t ≥ 0 and i = 1, . . . , N almost surely.

We call the process L = (Li
t)i∈I1,t≥0 a regulator associated with Ξ = (X,φ). Now we present

our final assumption.

[A7] A solution of (2.8) is unique in law.

For instance, if ∂fn
k /∂x, i = 1, . . . , N , is constant (and so is the matrix Q), condition [A7]

holds under a Lipschitz condition on the coefficients b̂i and σ̂ij (see [4] and [19] for instance:
although the form of our SDE (2.8) is a little special, the arguments in these papers also
works.) For other sufficient conditions for [A7], see [7] and [18].

By [A7], the distribution µ = P (Ξ ∈ ·) is uniquely determined. We are now prepared to
state our main result.

Theorem 1. Assume [A1]–[A7]. Then the distribution µn converges weakly to µ on C1+N as
n→ ∞.
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The proof is in Section 3. Theorem 1 implies that the limit of Ξn = (Xn, φn,1, . . . , φn,N)
is characterized as the solution of an SDER, viz., (2.8). The regulator process L prevents the
shares of stock of an agent i from taking a negative value. The infinitesimal term 1I1(i)dL

i
t in

(2.8) works only when the agent i ∈ I1 hopes to sell more of the stock than they hold.
Here we consider the case where all agents in the market can sell short (i.e., N1 = 0). This

is a special case of Theorem 1 of [13] and Xn converges weakly to the unique solution X̂ of

dX̂t = b̂0(t, X̂)dt+
N∑
j=1

σ̂0j(t, X̂)dBj
t , X̂0 = x0. (2.12)

In this case, no agents are bound by the short sale prohibition, and the process (X̂t)t represents
the log-price of the stock without friction.

On the other hand, when I1 is not empty, agents in I1 may not be able to exhibit their
primary excess demand (which is described as ẽn,ik in the discrete-time model.) The (log-)price
Xt is pushed up by the gap between the actual excess demand with the primary excess demand,
so Xt is larger than X̂t. The following theorem describes such a phenomenon.

Theorem 2. Assume [A1]–[A7]. Let Ξ = (X,φ1, . . . , φN) (resp., X̂) be a solution of (2.8)
(resp., (2.12)) on a given filtered space (Ω,F , (Ft)t, P ) equipped with an N-dimensional Brow-
nian motion B. Then Xt ≥ X̂t for any t ≥ 0 almost surely.

Theorem 2 is easily obtained by similar arguments to the proof of Proposition 5.2.18 in
[12]. This suggests the assertion that the short sale constraint causes the overpricing in our
model.

2.2 Model II: Stock Price Model under Budget Constraint

We also consider the case where some of the agents, I1 = {1, . . . , N1}, cannot borrow cash.
In the previous section, an excess demand function with no friction ẽn,ik (x,w) is understood
as shares of the stock which an agent wants to buy. In this section, we interpret ẽn,ik (x,w) to
mean an excess demand in terms of dollars. We also define

en,ik (x,w; y) =

{
min{ẽn,ik (x,w), y}, i ∈ I1
ẽn,ik (x,w), i ∈ I2.

The market clearing condition is now expressed by

N∑
i=1

en,ik (Xn
(k+1)/n, X

n;W n
k/n) = 0, (2.13)

where W n
t is the agent’s amount of cash held at time t. Then the process of the log-price of

the stock (Xn
t )t and the cash holdings (W n,i

t )t of an agent i are given by (1.6), (2.13),

W n,i
(k+1)/n = W n,i

k/n − en,ik (Xn
(k+1)/n, X

n;W n,i
k/n), (2.14)

and

W n,i
t = (nt− k)W n,i

(k+1)/n + (k + 1 − nt)W n,i
k/n, t ∈ (k/n, (k + 1)/n). (2.15)
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We assume that ẽn,ik has the same form as (2.5). We also assume [A1]–[A7], replacing b̂, σ̂,
and (2.8) with

b̂i(t, w) =



N∑
j=1

β̃j(t, w)/ᾱ(t, w) (i = 0)

−β̃i(t, w) + αi(t, w)
N∑
j=1

β̃j(t, w)/ᾱ(t, w) (i ≥ 1),

σ̂ij(t, w) =


N∑
k=1

σkj(t, w)/ᾱ(t, w) (i = 0)

−σij(t, w) + αi(t, w)
N∑
k=1

σkj(t, w)/ᾱ(t, w) (i ≥ 1)

,

and

dXt = b̂0(t,X)dt+
N∑
j=1

σ̂0j(t,X)dBj
t −

N1∑
j=1

α̃j(t,X)dLj
t , X0 = x0, (2.16)

dW i
t = b̂i(t,X)dt+

N∑
j=1

σ̂ij(t,X)dBj
t + 1I1(i)dL

i
t +

N1∑
j=1

Qij(t,X)dLj
t , W i

0 = ci, i = 1, . . . , N,

where ci ≥ 0 is the initial cash holdings of agent i. Then we have the following theorem.

Theorem 3. The distribution of Ξ̃n = (Xn,W n,1, . . . ,W n,N) converges weakly to a solution
of (2.16) on C1+N as n→ ∞.

Theorem 4. Let Ξ̃ = (X,W 1, . . . ,WN) (resp., X̂) be a solution of (2.16) (resp., (2.12)) on
a given filtered space (Ω,F , (Ft)t, P ) equipped with an N-dimensional Brownian motion B.
Then Xt ≤ X̂t for any t ≥ 0 almost surely.

We omit the proofs of Theorems 3–4 since they are almost the same as those of Theorems
1–2.

3 Proof of Theorem 1

Take any M > |x0| and let ψM ∈ C∞(R; [0, 1]) be such that ψM(y) = 1 on |y| ≤ M/2 and
ψM(y) = 0 on |y| ≥M . We set

ẽn,M,i
k (x,w) = −(1 − ψM(w(k/n)))αn,i

k (w)(x− w(k/n)) + ψM(w(k/n))ẽn,ik (x,w).

We define Xn,M , φn,M,i and en,M,i
k (x,w;φ) similarly to (2.1)–(2.3), replacing ẽn,ik with ẽn,M,i

k .
First we consider the convergence of the truncated processes Ξn,M = (Xn,M , φn,M,1, . . . , φn,M,N),
n ∈ N for fixed M . We can easily see the following proposition (Proposition 1 in [13]).

Proposition 1. For any ω, if |Xn,M
t (ω)| ≤M , then |Xn,M

r (ω)| ≤M for all r ∈ [0, t].
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We rearrange our market clearing equation into the form of a difference equation. Since it
follows that

max{ẽn,M,i
k (x,w),−φ} = ẽn,M,i

k (x,w) + (−ẽn,M,i
k (x,w) − φ)+,

we get

N∑
i=1

en,M,i
k (Xn,M

(k+1)/n, X
n,M ;φn,M,i

k/n ) =
N∑
i=1

ẽn,M,i
k (Xn,M

(k+1)/n, X
n,M) +

N1∑
i=1

η̂n,M,i
k = 0,

where η̂n,M,i
k = (−ẽn,M,i

k (Xn,M
(k+1)/n, X

n,M) − φn,M,i
k/n )+. Using Taylor’s theorem, we have

Xn,M
(k+1)/n −Xn,M

k/n

=
1

ᾱn
k(Xn,M)

{
ψM(Xn,M

k/n )
N∑
i=1

(
gn,ik (Xn,M) +

1

2
γn,ik (Xn,M)(Xn,M

(k+1)/n −Xn,M
k/n )2 + εn,M,i

k

)

+

N1∑
i=1

η̂n,M,i
k

}
(3.1)

and

φn,M,i
(k+1)/n − φn,M,i

k/n

= ψM(Xn,M
k/n )

(
gn,ik (Xn,M) +

1

2
γn,ik (Xn,M)(Xn,M

(k+1)/n −Xn,M
k/n )2 + εn,M,i

k

)
−αn,i

k (Xn,M)(Xn,M
(k+1)/n −Xn,M

k/n ) + 1I1(i)η̂
n,M,i
k , (3.2)

where

εn,M,i
k =

1

2

∫ 1

0

(1 − u)2
∂3

∂x3
fn,i
k (uXn,M

(k+1)/n + (1 − u)Xn,M
k/n , X

n,M)du(Xn,M
(k+1)/n −Xn,M

k/n )3.

Substituting (3.1) into itself and into (3.2), we get

Xn,M
(k+1)/n −Xn,M

k/n =
1

ᾱn
k(Xn,M)

{
N∑
i=1

Hn,M,i
k (Xn,M) +

N1∑
i=1

η̂n,M,i
k

}
,

φn,M,i
(k+1)/n − φn,M,i

k/n = Hn,M,i
k (Xn,M) − αn,i

k (Xn,M)

ᾱn
k(Xn,M)

{
N∑
j=1

Hn,M,j
k (Xn,M) +

N1∑
j=1

η̂n,M,j
k

}
+1I1(i)η̂

n,M,i
k ,

11



where

Hn,M,i
k (w) = ψM(w(k/n))

{
1√
n
g̃n,ik (w) +

1

n
hn,ik (w)

}
+ ε̃n,M,i

k ,

hn,ik (w) = ḡn,ik (w) + ψM(w(k/n))2
γn,ik (w)

2ᾱn
k(w)

N∑
j,m=1

g̃n,jk (w)g̃n,mk (w),

ε̃n,M,i
k = ψM(Xn,M

k/n )

{
εn,M,i
k +

γn,ik (Xn,M)

2ᾱn
k(Xn,M)2

ε̂n,Mk

}
,

ε̂n,Mk =

(
N1∑
i=1

η̂n,M,i
k

){
N1∑
i=1

η̂n,M,i
k + 2ψM(Xn,M

k/n )
N∑
i=1

(
1√
n
g̃n,ik (Xn,M) + ρn,M,i

k

)}

+ψM(Xn,M
k/n )2

 2√
n

N∑
i,j=1

g̃ik(Xn,M)ρn,M,j
k +

(
N∑
i=1

ρn,M,i
k

)2
 ,

ρn,M,i
k =

1

n
ḡn,ik (Xn,M) +

1

2
γn,ik (Xn,M)(Xn,M

(k+1)/n −Xn,M
k/n )2 + εn,M,i

k .

Thus, if we set ηn,M,i
k = (1 − αn,i

k (w)/ᾱn
k(w))η̂n,M,i

k ,

Zn,M,i
t =

[nt]−1∑
k=0

Hn,M,i
k (Xn,M) + (nt− [nt])Hn,M,i

[nt] (Xn,M), Ln,M,i
t =

[nt]−1∑
k=0

ηn,M,i
k + (nt− [nt])ηn,M,i

[nt]

and

Y n,M,0
t = x0 +

N∑
i=1

∫ t

0

1

ᾱn
[nr](X

n,M)
dZn,M,i

r , (3.3)

Y n,M,i
t = Φi + Zn,M,i

t −
N∑
j=1

∫ t

0

αn,i
[nr](X

n,M)

ᾱn
[nr](X

n,M)
dZn,M,j

r , i = 1, . . . , N, (3.4)

then

Xn,M
t = Y n,M,0

t +

N1∑
i=1

∫ t

0

α̃n,i
[nr](X

n,M)dLn,M,i
r , (3.5)

φn,M,i
t = Y n,M,i

t + 1I1(i)L
n,M,i
t −

N1∑
j=1

∫ t

0

Qn,ij
[nr](X

n,M)dLn,M,j
t . (3.6)

The equality (3.6) seems to imply that (φn,M,i, Ln,M,i)N1
i=1 is a solution of the Skorokhod

problem with oblique reflection in the non-negative orthant associated with (Y n,M,i)N1
i=1 (see [4],

[11], [18], [19] and [21]). However this is not strictly true, since the equality

∫ ∞

0

φn,M,i
r dLn,i

r = 0

does not hold by virtue of the linear interpolation (2.3). The following proposition tells us that
(φn,M,i

k/n , Ln,M,i
k/n )N1

i=1, k ∈ Z+, is, as it were, a solution of the corresponding Skorokhod problem
in discrete-time.
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Proposition 2. For every k ∈ Z+,

Ln,M,i
k/n = max

0≤l≤k

(
N1∑
j=1

∫ l/n

0

Qn,ij
[nr](X

n,M)dLn,M,j
r − Y n,M,i

l/n

)
+

. (3.7)

Proof. It is obvious that the left-hand side of (3.7) is not less than the right-hand side. We
suppose

Ln,M,i
k/n >

(
N1∑
j=1

∫ l/n

0

Qn,ij
[nr](X

n,M)dLn,M,j
r − Y n,M,i

l/n

)
+

(3.8)

for l = 0. . . . , k. By (3.8) with l = k, we have

Y n,M,i
k/n + Ln,M,i

k/n −
∫ k/n

0

Qn,ij
[nr](X

n,M)dLn,M,j
r = φn,M,i

k/n > 0.

This inequality gives ηn,M,i
k−1 = 0 (by the definition of η̂n,M,i

k−1 ) and thus Ln,M,i
(k−1)/n = Ln,M,i

k/n . Using

(3.8) again with l = k − 1, we similarly get ηn,M,i
k−2 = 0. Inductively we see that Ln,M,i

t = 0 for
t ∈ [0, k/n] and this contradicts (3.8). Then we obtain the assertion. ■

Using the above proposition and the same arguments as Theorem 2 in [21], we get the
following proposition.

Proposition 3. For every 0 ≤ l ≤ k,

N1∑
i=1

|Ln,M,i
k/n − Ln,M,i

l/n |2 ≤ K̂ max
l≤m≤k

N1∑
i=1

|Y n,M,i
m/n − Y n,M,i

l/n |2

for some K̂ > 0 depending only on V .

The equality (3.2) also indicates

φn,M,i
k/n = Ŷ n,M,i

k + L̂n,M,i
k/n , i = 1, . . . , N1, (3.9)

where

Ŷ n,M,i
k =

k−1∑
l=0

{
ψM(Xn,M

l/n )

(
gn,il (Xn,M) +

1

2
γn,il (Xn,M)(Xn,M

(l+1)/n −Xn,M
l/n )2 + εn,M,i

l

)

−αn,i
l (Xn,M)(Xn,M

(l+1)/n −Xn,M
l/n )

}
,

L̂n,M,i
t =

[nt]−1∑
k=0

η̂n,M,i
k + (nt− [nt])η̂n,M,i

[nt] .

The equality (3.9) corresponds to the classical Skorokhod problem for each i = 1, . . . , N1.
Similarly to Proposition 2, we obtain the following.
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Proposition 4. For every k ∈ Z+, L̂
n,M,i
k/n = max

0≤l≤k
(−Ŷ n,M,i

l/n )+.

Next we evaluate the moment of the process.

Proposition 5. E[|Xn,M
(k+1)/n −Xn,M

k/n |24] ≤ CM/n
12, k ∈ Z+ for some CM > 0.

Proof. Set

f(t) = f̃(t(Xn,M
(k+1)/n −Xn,M

k/n ) +Xn,M
k/n ), f̃(x) =

N∑
i=1

en,M,i
k (x,Xn,M ;φn,M,i

k/n ).

Then we have f(1) = 0 and

f(0) =

N1∑
i=1

max{ψM(Xn,M
k/n )gn,ik (Xn,M),−φn,M,i

k−1 } +
N∑

i=N1+1

ψM(Xn,M
k/n )gn,ik (Xn,M).

Using the fundamental theorem of calculus, we get

f(0) = f(0) − f(1) = −
∫ 1

0

f̃ ′(t(Xn,M
(k+1)/n −Xn,M

k/n ) +Xn,M
k/n )dt(Xn,M

(k+1)/n −Xn,M
k/n ). (3.10)

Since φn,M,i
t ≥ 0 for i = 1, . . . , N1 and f̃ ′(x) ≤ −N2δ0, we get

|Xn,M
(k+1)/n −Xn,M

k/n | ≤ |f(0)|
N2δ0

≤ 1

N2δ0

N∑
i=1

|ψM(Xn,M
k/n )gn,ik (Xn,M)|. (3.11)

By [A2] and Proposition 1, we have

E[ψM(Xn,M
k/n )|gn,ik (Xn,M)|24] = E[ sup

|w|∞≤M

|gn,ik (y)|24] ≤ CM

n12
. (3.12)

Our assertion follows immediately by (3.11) and (3.12). ■

The above proposition and [A1]–[A2] lead us to the following.

Proposition 6. E[|ẽn,M,i
k (Xn,M

(k+1)/n, X
n,M)|24] + E[|ηn,M,i

k |24] + E[|η̂n,M,i
k |24] + E[|εn,M,i

k |8] ≤
CM/n

12, k ∈ Z+, for some CM > 0.

Proposition 7. E[|Ln,M
t |8] + E[|L̂n,M

t |8] ≤ CM,t for some CM,t > 0.

Proof. It suffices to estimate E[|
N1∑
i=1

L̂n,M,i
[nt]/n|

8]. By [A1], Proposition 4, and the equality

Xn,M
(k+1)/n −Xn,M

k/n = (Xn,M
(k+1)/n −Xn,M

k/n )1{|Xn,M
k/n

|≤M} (3.13)
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(obtained by the definitions of ẽn,M,i
k , η̂n,M,i

k , and Xn,M
t ), we have

N1∑
i=1

L̂n,M,i
[nt]/n ≤

N1∑
i=1

max
0≤k≤[nt]

∣∣∣∣∣Gn,M,i
k − G̃n,M,i

k +
1

n

k−1∑
l=0

(
ĥn,M,i
l − αn,i

l (Xn,M)

ᾱn
l (Xn,M)

N∑
j=1

ĥn,M,j
l

)

−
k−1∑
l=0

αn,i
l (Xn,M)

ᾱn
l (Xn,M)

N1∑
j=1

η̂n,M,j
l

∣∣∣∣∣
≤

N1∑
i=1

(
max

0≤k≤[nt]
|Gn,M,i

k | + max
0≤k≤[nt]

|G̃n,M,i
k |

)
+

2

n

N∑
i=1

[nt]−1∑
k=0

|ĥn,M,i
k |

+

[nt]−1∑
k=0

∑N1

i=1 α
n,i
k (Xn,M)

ᾱn
k(Xn,M)

N1∑
j=1

η̂n,M,j
k ,

where

Gn,M,i
k =

1√
n

k−1∑
l=0

ψM(Xn,M
l/n )g̃n,il (Xn,M),

G̃n,M,i
k =

1√
n

N∑
j=1

k−1∑
l=0

αn,i
l (Xn,M)

ᾱn
l (Xn,M)

ψM(Xn,M
l/n )g̃n,jl (Xn,M),

ĥn,M,i
k = ψM(Xn,M

k/n )
(
ḡn,ik +

n

2
γn,ik (Xn,M)(Xn,M

(k+1)/n −Xn,M
k/n )2 + nεn,M,i

k

)
.

Since ∑N1

i=1 α
n,i
k (Xn,M)

ᾱn
k(Xn,M)

≤ 1

1 +N2δ0/(N1K0)

by virtue of [A1], we get

N1∑
i=1

L̂n,M,i
[nt]/n ≤

N1∑
i=1

(
max

0≤k≤[nt]
|Gn,M,i

k | + max
0≤k≤[nt]

|G̃n,M,i
k |

)
+

2

n

N∑
i=1

[nt]−1∑
k=0

|ĥn,M,i
k |

+
1

1 +N2δ0/(N1K0)

N1∑
i=1

L̂n,M,i
[nt]/n,

and thus
N1∑
i=1

L̂n,M,i
[nt]/n

≤
(

1 +
N1K0

N2δ0

)
N1∑
i=1

(
max

0≤k≤[nt]
|Gn,M,i

k | + max
0≤k≤[nt]

|G̃n,M,i
k |

)
+

2

n

N∑
i=1

[nt]−1∑
k=0

|ĥn,M,i
k |

 . (3.14)

By [A4] and Propositions 5–6, we have

N∑
i=1

E

[nt]−1∑
k=0

|ĥn,M,i
k |

8 ≤ C ′
M,t (3.15)
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for some C ′
M,t > 0. Moreover, since (Gn,M,i

k )k and (G̃n,M,i
k )k are both (Gn

k )k-martingales, where

Gn
k is the σ-algebra generated by ḡn,il and g̃n,il for i = 1, . . . , N , l = 0, . . . , k − 1 (note that Gn

0

is a trivial σ-algebra), the Doob inequality implies

E[ max
0≤k≤[nt]

|Gn,M,i
k |8 + max

0≤k≤[nt]
|G̃n,M,i

k |8] ≤
(

8

7

)8

E[|Gn,M,i
[nt] |8 + |G̃n,M,i

[nt] |8]

≤ 2

n2

(
8

7

)8

E

[nt]−1∑
k=0

ψM(Xn,M
k/n )g̃n,ik (Xn,M)

8 ≤ C ′′
M,t (3.16)

for some C ′′
M,t > 0. Now by (3.14)–(3.16), we obtain the assertion. ■

Proposition 8. For every t > 0 there exists a constant CM,t > 0 such that

E
[( [nt]−1∑

k=0

|ε̃n,M,i
k |

)4]
≤ CM,t

n
.

Proof. It suffices to show this for ε̂n,Mk instead of ε̃n,M,i
k . A straightforward calculation gives

E
[( [nt]−1∑

k=0

|ε̂n,Mk |
)4]

≤ E
[{( N1∑

i=1

L̂n,M,i
[nt]

)
max

0≤k≤[nt]−1
|ψ̂n,M

k | +

[nt]−1∑
k=0

|πn,M
k |

}4]
≤ 8 E

[( N1∑
i=1

L̂n,M,i
[nt]

)4
max

0≤k≤[nt]−1
|ψ̂n,M

k |4
]

+ 8N3

[nt]−1∑
k=0

E[|πn,M
k |4],

where

ψ̂n,M
k =

N1∑
i=1

η̂n,M,i
k + 2ψM(Xn,M

k/n )
N∑
j=1

(
1√
n
g̃n,ik (Xn,M) + ρn,M,i

k

)
,

πn,M
k = ψM(Xn,M

k/n )2

 2√
n

N∑
i,j=1

g̃ik(Xn,M)ρn,M,j
k +

(
N∑
i=1

ρn,M,i
k

)2
 .

Since [A2] and Proposition 5 imply E[ψM(Xn,M)(ρn,M,i
k )8] ≤ C ′

M/n
4 and thus E[(ψ̂n,M

k )8] ≤
C ′′

M/n
4, E[(πn,M

k )4] ≤ C ′′
M/n

2 for some C ′
M , C

′′
M > 0 (by virtue of Proposition 6), using

Proposition 7, we get

E
[( [nt]−1∑

k=0

|ε̂n,Mk |
)4]

≤ C ′′′
M,t

E
[( N1∑

i=1

L̂n,M,i
[nt]

)8]1/4[nt]−1∑
k=0

E[|ψ̂n,M
k |8]

1/4

+
1

n2


≤ C ′′′′

M,t

(
1√
n

+
1

n

)
for some C ′′′

M,t, C
′′′′
M,t > 0. This implies the assertion. ■
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Proposition 9. E[ sup
0≤t≤T

|Zn,M
t |4] ≤ CM,T for some CM,T > 0.

Proof. Our assertion is obtained from [A2], Proposition 8, (3.16), by calculating

E[ sup
0≤t≤T

|Zn,M
t |4]

≤ E

 max
0≤k≤[nT ]

∣∣∣∣∣
k∑

l=0

{
ψM(Xn,M

k/n )

(
1√
n
g̃n,ik (Xn,M) +

1

n
hn,ik (Xn,M)

)
+ ε̃n,M,i

k

}∣∣∣∣∣
4


≤ C ′
M,T

E[ max
0≤k≤[nT ]

|Gn,M,i
k |4] +

1

n

[nT ]∑
k=0

E[ sup
|w|∞≤M

|hn,M,i
k |4] + E[|

[nT ]∑
k=0

ε̃n,M,i
k |4]


for some C ′

M,T > 0. ■

Proposition 10. Let (ξnk )k be uniformly bounded random variables such that ξnk is Gn
k−1-

adapted. (Here, (Gn
k )k is defined as in the proof of Proposition 7.) Put Ẑn,M,i

t =

∫ t

0

ξn[nr]dZ
n,M,i
r .

Then (Ẑn,M
t )t is tight on C.

Proof. It suffices to show

E[|Ẑn,M,i
u − Ẑn,M,i

t |2|Ẑn,M,i
t − Ẑn,M,i

s |] ≤ CM,T (u− s)3/2, n ∈ N (3.17)

and

lim sup
n→∞

E[|Ẑn,M,i
u − Ẑn,M,i

t |2] ≤ CM,T (u− t) (3.18)

for any 0 ≤ s ≤ t ≤ u ≤ T and for some CM,T > 0 (cf. [14]). Set Φ = |Ẑn,M,i
t − Ẑn,M,i

s | for
brevity. Using the inequality

( k∑
l=1

xl

)2
=

k∑
l=1

x2l + 2
k∑

l=1

xl(x1 + · · · + xl), x1, . . . , xk ∈ R

and the uniform boundedness of (ξnk )k, we get

E[|Ẑn,M,i
u − Ẑn,M,i

t |2Φ|]

≤ 3 E

|ξn[nu]H
n,M,i
[nu] |2 + |ξn[nt]H

n,M,i
[nt] |2 +

[nu]−1∑
k=[nt]

ξnkH
n,M,i
k

2Φ

 (3.19)

≤ C ′

{E[(Hn,M,i
[nu] )4]1/2 + E[(Hn,M,i

[nt] )4]1/2 +

[nu]−1∑
k=[nt]

E[(Hn,M,i
k )4]1/2

E[Φ2]1/2

+

[nu]−1∑
k=[nt]

∣∣∣E[ξnkH
n,M,i
k (Xn,M)(Ẑn,M,i

k/n − Ẑn,M,i
[nt]/n)Φ]

∣∣∣} (3.20)

17



for some positive constant C ′. By [A2] and Proposition 8, we see that

E[(Hn,M,i
k )4] ≤

C ′′
M,T

n2
, k ≤ [nu] − 1 (3.21)

for some C ′′
M,T > 0. Moreover, [A3] implies

E[ξnk g̃
n,i
k (Xn,M)(Ẑn,M,i

k/n − Ẑn,M,i
[nt]/n)Φ] = 0,

and hence∣∣∣E[ξnkH
n,M,i
k (Xn,M)(Ẑn,M,i

k/n − Ẑn,M,i
[nt]/n)Φ]

∣∣∣
≤ E

[∣∣∣∣ 1nψM(Xn,M
k/n )hn,ik (Xn,M) + ε̃n,M,i

k

∣∣∣∣4
]1/4

E[ sup
0≤k≤[nu]−1

(Ẑn,M,i
k/n − Ẑn,M,i

[nt]/n)4]1/4 E[Φ2]1/2

≤ C ′′′
M,T

(
1

n
+ E[(ε̃n,M,i

k )4]1/4
)

E[ sup
0≤r≤T

|Zn,M,i
r |4]1/4 E[Φ2]1/2, k ≤ [nu] − 1 (3.22)

for some C ′′′
M,T > 0. The inequalities (3.20)–(3.22) and Propositions 8–9 imply

E[|Ẑn,M,i
u − Ẑn,M,i

t |2Φ] ≤ C ′′′′
M,T × [nu] − [nt] + 1

n
E[Φ2]1/2

for some C ′′′′
M,T > 0. Replacing Φ with 1 and performing the same calculation, we have

E[|Ẑn,M,i
t − Ẑn,M,i

s |2] ≤ C ′′′′
M,T × [nt] − [ns] + 1

n
, (3.23)

hence

E[|Ẑn,M,i
u − Ẑn,M,i

t |2|Ẑn,M,i
t − Ẑn,M,i

s |] ≤ (C ′′′′
M,T )3/2

(
[nu] − [ns] + 1

n

)3/2

. (3.24)

The inequality (3.23) immediately leads to (3.18). The inequality (3.17) is now obtained by
(3.24) and the same argument as in the proof of Theorem 14.1 in [3]. ■

As a consequence of Propositions 3 and 10, we can see the tightness of the processes with
fixed M .

Proposition 11. A family of processes (Xn,M , Y n,M , Zn,M , Ln,M , L̂n,M)n is tight on C2(1+N+N1).

Proof. The tightness of (Y n,M , Zn,M) is obtained directly from Proposition 10. Then Theorem
7.3 in [3] implies

lim
δ→0

lim sup
n→∞

P (wT (δ;Y n,M,i) ≥ ε′) = 0, i = 0, . . . , N (3.25)

for every ε′ > 0 and T > 0, where wT (δ;x) stands for a modulus of continuity, i.e., wT (δ;x) =
sup

0≤s<t≤T,|t−s|≤δ

|x(t) − x(s)|.

18



For a while, we set n sufficiently large so that 1/n < δ. Let 0 ≤ s < t ≤ T be such that
|t− s| ≤ δ. By [A1], we get

|L̂n,M,i
t − L̂n,M,i

s | ≤ η̂n,M,i
[nt] + η̂n,M,i

[ns] +

[nt]−1∑
k=[ns]+1

(
1 +

αn,i
k (Xn,M)

ᾱn
k(Xn,M) − αn,i

k (Xn,M)

)
ηn,M,i
k

≤ 2 max
0≤k≤[nT ]

η̂n,M,i
k +

(
1 +

K0

(N − 1)δ0

)
wT (δ;Ln,M,i). (3.26)

Similarly, Proposition 3 implies

|Ln,M,i
t − Ln,M,i

s | ≤ 2 max
0≤k≤[nT ]

ηn,M,i
k +

√
K̂

N1∑
j=1

wT (δ;Y n,M,j). (3.27)

By (3.27), Proposition 6, and the Chebyshev inequality, it follows that

P (wT (δ;Ln,M,i) ≥ ε) ≤ P

(√
K0

N1∑
j=1

wT (δ;Y n,M,j) ≥ ε/2

)
+ P (2 max

0≤k≤[nT ]
ηn,M,i
k ≥ ε/2)

≤
N1∑
j=1

P

(
wT (δ;Y n,M,j) ≥ ε

2
√
K0N1

)
+

256

ε4

[nT ]∑
k=0

E[(ηn,M,i
k )4]

≤
N1∑
j=1

P

(
wT (δ;Y n,M,j) ≥ ε

2
√
K0N1

)
+

256CM([nT ] + 1)

ε4n2

for any ε > 0. Taking lim sup
n

, letting δ → 0, and applying (3.25), we get

lim
δ→0

lim sup
n→∞

P (wT (δ; L̂n,M,i) ≥ ε) = 0. (3.28)

Similarly, (3.27), (3.28), and Proposition 6 imply

lim
δ→0

lim sup
n→∞

P (wT (δ;Ln,M,i) ≥ ε) = 0 (3.29)

for any ε > 0. Furthermore, the inequality

|Xn,M
t −Xn,M

s | ≤ |Y n,M,0
t − Y n,M,0

s | +
1

(N − 1)δ0

N1∑
i=1

|Ln,M,i
t − Ln,M,i

s |

gives

lim
δ→0

lim sup
n→∞

P (wT (δ;Xn,M) ≥ ε) = 0. (3.30)

Our assertion is obtained from (3.28)–(3.30) and the fact that the initial values Xn,M
0 , Ln,M,i

0 ,
L̂n,M,i
0 are all constants. ■
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Proposition 11 tells us that for any sequence (nk)k ⊂ N there is a subsequence (nkl)l ⊂ (nk)k
such that (Xnkl

,M , Y nkl
,M , Znkl

,M , Lnkl
,M , L̂nkl

,M) converges weakly to a certain continuous pro-
cess (XM , Y M , ZM , LM , L̂M) defined on some probability space (ΩM ,FM , PM) on C2(1+N+N1)

as l → ∞. Furthermore, since [A1] and [A4] imply that the convergences

α̃n,i
[nt](X

n,M) −→ α̃i(t,XM), Qn,ij
[nt] (X

n,M) −→ Qij(t,XM), n→ ∞

are uniform in t ∈ [0, T ] for all T > 0, using Proposition 7, Theorem 2.2 in [16], and the
continuous mapping theorem (Theorem 2.7 in [3]), we obtain the weak convergence of(

Xnkl
,M , φnkl

,M , Y nkl
,M , Znkl

,M , Lnkl
,M , Ĩnkl

,M , J̃nkl
,M
)

−→
(
XM , φM , Y M , ZM , LM , ĨM , J̃M

)
, l → ∞, (3.31)

where

Ĩn,M,i
t =

∫ t

0

α̃n,i
[nr](X

n,M)dLn,M,i
r , J̃n,M,i

t =

∫ t

0

Qn,ij
[nt] (X

n,M)dLn,M,i
r ,

ĨM,i
t =

∫ t

0

α̃i(r,XM)dLM,i
r , J̃M,i

t =

∫ t

0

Qij(t,XM)dLM,i
r

and

φM,i
t = Y M,i

t + 1I1(i)L
M,i
t −

N1∑
j=1

J̃M,j
t . (3.32)

Note that (3.5) and (3.31) tell us

XM
t = Y M,0

t + ĨM,i
t . (3.33)

Let us introduce a filtration on (ΩM ,FM , PM). We define GM
t = σ(XM

r , Z
M
r , L

M
r ; r ≤ t) and

let (FM
t )t be an enlarged filtration of (GM

t )t such that (ΩM ,FM , (FM
t )t, P

M) satisfies the usual
condition. We notice that the processes φM , Y M and L̂M are also (FM

t )t-adapted. Now let us
define

NM,i
t = ZM,i

t −
∫ t

0

β̃M,i(r,XM)dr, (3.34)

ÑM,ij
t = NM,i

t NM,j
t −

∫ t

0

ψM(XM
r )2aij(r,XM)dr,

where β̃M,i(t, w) = ψM(w(t))βi(t, w) + ψM(w(t))3γ̃i(t, w).

Proposition 12. For each i, j = 1, . . . , N , the processes (NM,i
t )t and (ÑM,ij

t )t are both (FM
t )t-

martingales.

Proof. It suffices to show that (NM,i
t )t and (ÑM,ij

t )t are (GM
t )t-martingales. Set

Nn,M,i
t =

1√
n

[nt]−1∑
k=0

g̃n,ik (Xn,M) +
nt− [nt]√

n
ψM(Xn,M

k/n )g̃n,i[nt](X
n,M),

h̄n,M,i
k (w) = E[hn,M,i

k (w)], β̃n,M,i
k (w) = ψM(w(k/n))h̄n,M,i

k (w).
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Then we have

E

[
sup

0≤t≤T

∣∣∣∣Zn,M,i
t −Nn,M,i

t −
∫ t

0

β̃n,M,i
[nr] (Xn,M)dr

∣∣∣∣2
]

≤ 2

n2 E

[
max

0≤k≤[nT ]+1

(
H̃n,M,i

k

)2]
+ 2 E[|

[nt]∑
k=0

ε̃n,M,i
k |2],

where

H̃n,M,i
k =

k−1∑
l=0

ψM(Xn,M
k/n )(hn,M,i

k (Xn,M) − h̄n,M,i
k (Xn,M)).

Then the same calculation as (3.16) and Proposition 8 leads us to

E

[
sup

0≤t≤T

∣∣∣∣Zn,M,i
t −Nn,M,i

t −
∫ t

0

β̃n,M,i
[nr] (Xn,M)dr

∣∣∣∣2
]

−→ 0, n→ ∞. (3.35)

Moreover [A4] implies lim
n→∞

β̃n,M,i
[nt] (w) = β̃M,i(t, w) uniformly on any compact subset of C for

all t ≥ 0. Thus, using (3.31), we get(
Xnkl

,M , Znkl
,M , Lnkl

,M ,

(∫ ·

0

β̃n,M,i
[nr] (Xn,M)dr

)
i

)
−→

(
XM , ZM , LM ,

(∫ ·

0

β̃M,i(r,XM)dr

)
i

)
, l → ∞ (3.36)

weakly on C. The convergences (3.35)–(3.36) and the continuous mapping theorem imply that

(Xnkl
,M , Znkl

,M , Lnkl
,M , Nnkl

,M) −→ (XM , ZM , LM , NM), l → ∞ weakly on C2N . (3.37)

On the other hand, by [A3]–[A4], we have

E[(Nn,M,i
t −Nn,M,i

s )Φ((Xn,M
sl

)ml=1, (Z
n,M
sl

)ml=1, (L
n,M
sl

)ml=1)] = 0

and

E[(Nn,M,i
t Nn,M,j

t −Nn,M,i
s Nn,M,j

s )Φ((Xn,M
sl

)ml=1, (Z
n,M
sl

)ml=1, (L
n,M
sl

)ml=1)]

= E[(Nn,M,i
t −Nn,M,i

s )(Nn,M,j
t −Nn,M,j

s )Φ]

=

∫ t

s
E[ψM(Xn,M

r )2an,ij[nr](X
n,M)Φ]dr

−(nt− [nt])([nt] + 1 − nt)

n
E[ψM(Xn,M

[nt]/n)an,ij[nt] (X
n,M)Φ]

−(ns− [ns])([ns] + 1 − ns)

n
E[ψM(Xn,M

[ns]/n)an,ij[ns](X
n,M)Φ]
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for any m ∈ N, 0 ≤ s1 ≤ · · · ≤ s < t and any bounded continous function Φ : R(1+N+N1)m −→
R. Thus, using [A2], (3.37), and the dominated convergence theorem, we obtain

E
M [(NM,i

t −NM,i
s )Φ((XM

sl
)ml=1, (Z

M
sl

)ml=1, (L
M
sl

)ml=1)] = 0, (3.38)

E
M [(NM,i

t NM,j
t −NM,i

s NM,j
s )Φ((XM

sl
)ml=1, (Z

M
sl

)ml=1, (L
M
sl

)ml=1)]

= E
M [

∫ t

s

ψM(XM
r )2aij(r,XM)drΦ((XM

sl
)ml=1, (Z

M
sl

)ml=1, (L
M
sl

)ml=1)] (3.39)

(where E
M stands for the expectation under PM), which imply our assertion. ■

By Proposition 12 and the martingale representation theorem (Theorem 3.4.2 in [12]), we
can construct an enlarged filtered space (Ω̂M , F̂M , (F̂M

t )t, P̂
M) of (ΩM ,FM , (FM

t )t, P
M) and

find an N -dimensional (F̂M
t )t-Brownian motion (BM

t )t such that

NM,i
t =

N∑
j=1

∫ t

0

ψM(XM
r )σij(r,XM)dBM,j

r , (3.40)

where the stochastic processes on (ΩM ,FM , (FM
t )t, P

M) are regarded as defined on (Ω̂M , F̂M ,
(F̂M

t )t, P̂
M) canonically. Moreover the process (ZM,i

t )t becomes an (F̂M
t )t-semimartingale and

we can define the stochastic integral∫ ·

0

ξtdZ
M,i
t =

∫ ·

0

ξtβ̃
M,i(t,XM)dt+

N∑
j=1

∫ ·

0

ξtψM(XM
t )σij(t,XM)dBM,j

t

for an (F̂M
t )t-progressively measurable process (ξt)t (under suitable moment conditions).

Proposition 13. The following equalities hold.

Y M,0
t = x0 +

N∑
j=1

∫ t

0

1

ᾱ(r,XM)
dZM,j

r ,

Y M,i
t = Φi + ZM,i

t −
∫ t

0

αi(r,XM)

ᾱ(r,XM)
dZM,j

r , i = 1, . . . , N

Proof. By Proposition 8 and

1

n

N∑
i=1

[nt]−1∑
k=0

E[|ψM(Xn,M
k/n )g̃n,ik (Xn,M)|2 + |ψM(Xn,M

k/n )hn,M,i
k (Xn,M)|] ≤ CM,t

for some CM,t > 0, we can apply Theorem 2.2 in [16] to arrive at the weak convergence ofY nkl
,M , Znkl

,M ,

∫ ·

0

1

ᾱ
nkl

[nkl
r](X

nkl
,M)

dZ
nkl

,M,i
r


i

,

∫ ·

0

αnkl
,i(Xnkl

,M)

ᾱ
nkl

[nkl
r](X

nkl
,M)

dZ
nkl

,M,i
r


i


−→

(
Y M , ZM ,

(∫ ·

0

1

ᾱ(r,XM)
dZM,i

r

)
i

,

(∫ ·

0

αi(r,XM)

ᾱ(r,XM)
dZM,i

r

)
i

)
, l → ∞. (3.41)

Our assertion is now obtained using (3.3)–(3.4), (3.41), and the continuous mapping theorem.
■
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By (3.31)–(3.34), (3.40), and Proposition 12–13, we obtain the following proposition.

Proposition 14. The pair (XM , φM) (and the regulator process LM) is the solution of

dXM
t = b̂M,0(t,XM)dt+

N∑
j=1

σ̂M,0j(t,XM)dBM,j
t +

N1∑
j=1

α̃j(t,XM)dLM,j
t , XM

0 = x0,

dφM,i
t = b̂M,i(t,XM)dt+

N∑
j=1

σ̂M,ij(t,XM)dBM,j
t + 1I1(i)dL

M,i
t

−
N1∑
j=1

Qij(t,XM)dLM,j
t , φi

0 = Φi, i = 1, . . . , N, (3.42)

where b̂M and σ̂M are given by (2.9)–(2.10) upon replacing β̃i and σij by β̃M,i and σM,ij.

Proof. It is obvious that (φM,i
t )t is non-negative, (LM,j

t )t is non-decreasing, and LM,j
0 = 0 for

i = 1, . . . , N and j = 1, . . . , N1. The rest of the proof is to show∫ ∞

0

φM,i
r dLM,i

r = 0, i = 1, . . . , N1 almost surely. (3.43)

By the definition of Ln,M , we have∫ T

0

φn,M,i
([nr]+1)/ndL

n,M,i
r =

[nT ]−1∑
l=0

φn,M,i
(l+1)/nη

n,M,i
l + (nT − [nT ])φn,M,i

([nT ]+1)/nη
n,M,i
[nT ] = 0, T ≥ 0.(3.44)

Propositions 6–7 imply

E[ sup
0≤t≤T

|
∫ t

0

(φn,M,i
([nr]+1)/n − φn,M,i

r )dLn,M,i
r |]

≤ E[(Ln,M,i
T )2]1/2

(
N∑
j=1

E[ max
0≤k≤[nT ]

(Hn,M,j
k )2]1/2 +

N1∑
j=1

E[ max
0≤k≤[nT ]

(η̂n,M,j
k )2]1/2

)

≤ E[(Ln,M,i
T )2]1/2


N∑
j=1

[nT ]∑
k=0

E[(Hn,M,j
k )4]

1/4

+

N1∑
j=1

[nT ]∑
k=0

E[(η̂n,M,j
k )4]

1/4


≤ CM,T

n1/4
−→ 0, n→ ∞, T > 0 (3.45)

for some CM,T > 0. Using (3.44)–(3.45) and Theorem 2.2 in [16], we obtain (3.43). ■

Here, (3.32) and (3.43) imply that ((φM,i)N1
i=1, (L

M,i)N1
i=1) is a solution of the Skorokhod

problem associated with (Y M,i)N1
i=1 (for given XM). Then, applying the standard argument of

the Skorokhod problem, we get

LM,i
t = sup

0≤r≤t

(
N1∑
j=1

∫ t

0

Qij(r,XM)dLM,j
r − Y M,i

t

)
+

, i = 1, . . . , N1.
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Hence, similar to Proposition 3, the same arguments as in the proof of Theorem 2 of [21] leads
us to

N1∑
i=1

|LM,i
t − LM,i

s |2 ≤ K̂ sup
s≤r≤t

N1∑
i=1

|Y M,i
r − Y M,i

s |2, 0 ≤ s < t (3.46)

for some K̂ > 0 which depends only on V .

Proposition 15. sup
M

E
M [ sup

0≤t≤T
|XM

t |4] <∞ for all T > 0.

Proof. Take anyR > 0 and set τR = inf{t ≥ 0 ; |XM
t | ≥ R} andmR

t = E
M [ sup

0≤r≤min{t,τR}
|XM

r |4].

From (3.46), we see that

N1∑
i=1

sup
s≤r≤t

∣∣∣∣∫ r

s

α̃i(u,XM)dLM,i
u

∣∣∣∣2 ≤ 1

(N − 1)2δ20

N1∑
i=1

|LM,i
t − LM,i

s |2

≤ K̂

(N − 1)2δ20

N1∑
i=1

sup
s≤r≤t

∣∣∣∣∣
∫ r

s

b̂M,i(v,XM)dv +
N∑
j=1

∫ r

0

1[s,∞)(v)σ̂M,ij(v,XM)dBM,j
v

∣∣∣∣∣
2

, (3.47)

hence [A6], Proposition 14, the Hölder inequality, and the Burkholder–Davis–Gundy inequality
imply

mR
t ≤ C

{
1 + T 3

N∑
i=0

∫ t

0
E

M [1{τR≥r} sup
0≤s≤r

|b̂M,i(s,XM)|4]dr

+T
N∑
i=0

N∑
j=1

∫ t

0
E

M [1{τR≥r} sup
0≤s≤r

|σ̂M,ij(s,XM)|4]dr

}

≤ C ′
T

{
1 +

∫ t

0

mR
r dr

}
, t ≤ T

for some C > 0 and C ′
T > 0. Then we apply the Gronwall inequality to get mR

T = 0. Our
assertion is now obtained by letting R → ∞. ■

The inequality (3.46) and Proposition 15 immediately give the following proposition.

Proposition 16. sup
M

E
M [(LM

T )4] <∞ for all T > 0.

Proposition 17. The family of processes (XM , φM , Y M , ZM , LM)M is tight on C2+2N+N1.

Proof. By (3.46), (3.47), and a calculation similar to that in the proof of the above proposition,
we have

E
M [|XM

t −XM
s |4] +

N∑
i=1

EM [|φM,i
t − φM,i

s |4] +

N1∑
i=1

E
M [|LM,i

t − LM,i
s |4]

≤ C

N∑
i=0

E
M [ sup

s≤r≤t
|Y M,i

t − Y M,i
s |4] ≤ C ′

T (t− s)

∫ t

s

(1 + E
M [ sup

0≤v≤r
|XM

v |4])dr

≤ C ′
T (1 + sup

M
E

M [ sup
0≤r≤T

|XM
r |4])(t− s)2, 0 ≤ s ≤ t ≤ T (3.48)
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for some C,C ′
T > 0. Similarly,

E
M [|ZM

t − ZM
s |4] ≤ C ′′

T (1 + sup
M

E
M [ sup

0≤r≤T
|XM

r |4])(t− s)2 (3.49)

for some C ′′
T > 0. The inequalities (3.48)–(3.49), Proposition 15, and Theorem 2.3 in [22] then

give the assertion. ■

Proof of Theorem 1. By Proposition 17, we see that for any non-decreasing sequence (Mk)k
there is a subsequence (Mkl)l ⊂ (Mk)k and continuous processes (X,φ, Y, Z, L) on a certain
probability space (Ω,F , P ) such that

(XMkl , φMkl , Y Mkl , ZMkl , LMkl ) −→ (X,φ, Y, Z, L), l → ∞ weakly. (3.50)

We define (N i
t )t by

N i
t = Zi

t −
∫ t

0

β̃i(r,X)dr. (3.51)

As in Proposition 12, we get the weak convergence (XMkl , ZMkl , LMkl , NMkl ) −→ (X,Z, L,N)
by Proposition 17. Thus, using (3.38)–(3.39) and the martingale representation theorem, we
can find anN -dimensional (Ft)t-Brownian motion (Bt)t on a certain filtered space (Ω̂, F̂ , (F̂t)t, P̂ ),
which contains the original probability space (Ω,F , P ), such that

N i
t =

N∑
j=1

∫ t

0

σij(r,X)dBj
r . (3.52)

for i = 1, . . . , N . As in Proposition 13, we get

Y 0
t = x0 +

N∑
j=1

∫ t

0

1

ᾱ(r,X)
dZj, Y i

t = Φi + Zi
t −
∫ t

0

αi(r,X)

ᾱ(r,X)
dZj, i = 1, . . . , N. (3.53)

Moreover, by (3.43), Proposition 16, and Theorem 2.2 of [16], we get∫ ∞

0

φi
tdL

i
t = 0, i = 1, . . . , N1. (3.54)

By (3.50)–(3.54) and Proposition 14, we see that (X,φ, L) is a solution of our SDER (2.8).
Since [A7] implies that the distribution of (X,φ, L) is uniquely determined, we get the weak
convergence (XM , φM , LM) −→ (X,φ, L) as M → ∞. The proof of Theorem 1 can be
completed using the arguments in step (vi) of the proof of Theorem 3 in [14]. ■
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