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Abstract. We explore algebraic subgroups of the Cremona group Cn

over an algebraically closed field of characteristic zero. First, we con-
sider some class of algebraic subgroups of Cn that we call flattenable. It
contains all tori. Linearizability of the natural rational actions of flatten-
able subgroups on A

n is intimately related to rationality of the invariant
fields and, for tori, is equivalent to it. We prove stable linearizability of
these actions and show the existence of nonlinearizable actions among
them. This is applied to exploring maximal tori in Cn and to proving the
existence of nonlinearizable, but stably linearizable elements of infinite
order in Cn for n > 6. Then we consider some subgroups J (x1, . . . , xn) of
Cn that we call the rational de Jonquières subgroups. We prove that ev-
ery affine algebraic subgroup of J (x1, . . . , xn) is solvable and the group
of its connected components is Abelian. We also prove that every re-
ductive algebraic subgroup of J (x1, . . . , xn) is diagonalizable. Further,
we prove that the natural rational action on A

n of any unipotent alge-
braic subgroup of J (x1, . . . , xn) admits a rational cross-section which is
an affine subspace of An. We show that in this statement “unipotent”
cannot be replaced by “connected solvable”. This is applied to proving
a conjecture of A. Joseph on the existence of “rational slices” for the
coadjoint representations of finite-dimensional algebraic Lie algebras g

under the assumption that the Levi decomposition of g is a direct prod-

uct. We then consider some overgroup Ĵ (x1, . . . , xn) of J (x1, . . . , xn)

and prove that every torus in Ĵ (x1, . . . , xn) is linearizable. Finally, we
prove the existence of an element g ∈ C3 of order 2 such that g /∈ G for
every connected affine algebraic subgroup G of C∞; in particular, g is
not stably linearizable.

1. Introduction

The last three decades were marked by growing interest in problems re-
lated to the affine Cremona group Caffn (the group of biregular automor-
phisms of the affine n-dimensional space An). Despite a remarkable progress
made during these years, some fundamental problems still remain unsolved.
For instance, at the moment the linearization problem for algebraic tori
is solved only for n 6 3 and its difficult solution for n = 3 is one of the
highlights of the theory.
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Some of these problems may be formulated entirely in terms of group-
theoretic structure of Caffn . Thereby, they admit the birational counterparts
related to the full Cremona group Cn (the group of birational automorphisms
of An). It is of interest to explore them. We have not seen publications pur-
posefully developing this viewpoint. A step in this direction is made in this
paper.

In Section 2 we first consider a class of algebraic subgroups of Cn that we
call flattenable. Linearizability of their natural rational actions on An is inti-
mately related to rationality of their invariant fields, the subject of classical
Noether problem. All algebraic tori in Cn are contained in this class and, for
them, these two properties, linearizability and rationality, are equivalent. We
show that flattenable groups are special in the sense of Serre (see [Ser58])
and that every rational locally free action on An of a special group is stably
linearizable; in particular, this is so for tori. On the other hand, we show that
there are stably linearizable, but nonlinearizable rational locally free actions
on An of connected affine algebraic groups, in particular, that of tori. We
then apply this to the problem of describing maximal tori in Cn and show
that nowadays one can say more on it than in the time when Bia lynicki-
Birula and Demazure wrote their papers [Bia66], [Dem70]. Namely, apart
from n-dimensional maximal tori (that are all conjugate), Cn for n > 6 con-
tains maximal tori of dimension n − 3 (and does not contain maximal tori
of dimensions n− 2, n− 1 and > n). This answers a question of Hirschowitz
in [Hir72, Sect. 3]. As another application, we prove the existence of nonlin-
earizable, but stably linearizable elements of infinite order in Cn for n > 6.

In Sections 3 and 4 we consider a natural counterpart of the classical de
Jonquières subgroups of Caffn that we call the rational de Jonquières sub-
groups of Cn. We prove that their affine algebraic subgroups are solvable
and have Abelian groups of connected components. We also prove that re-
ductive algebraic subgroups of the rational de Jonquières subgroups of Cn
are diagonalizable. Then we prove that for the natural rational action on An

of any unipotent algebraic subgroup of a rational de Jonquières subgroup of
Cn there exists an affine subspace of An which is a rational cross-section for
this action (recall that for rational actions of connected solvable affine alge-
braic subgroups of Cn on An, the existence of some rational cross-sections,
not necessarily affine subspaces of An, is ensured by a general Rosenlicht’s
theorem, see [Ros56, Theorem 10]). We also show that in this result “unipo-
tent” cannot be replaced by “connected solvable”. We then apply this result
to a conjecture of A. Joseph ([Jos11, Sect. 7.11]) on the existence of “ratio-
nal slices” for the coadjoint representations of finite-dimensional algebraic
Lie algebras g and prove this conjecture under the assumption that the Levi
decomposition of g is a direct product. Further, we consider a certain nat-
ural class of overgroups of the rational de Jonquières subgroups and, using
the results of Section 2, show that the natural action on An of any subtorus
of such an overgroup is linearizable. Finally, we prove the existence of an
element g ∈ C3 of order 2 such that g /∈ G for every connected affine alge-
braic subgroup G of the direct limit C∞ of the tower of natural inclusions
C1 ↪→ C2 ↪→ · · · ; in particular, g is not stably linearizable.
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Conventions, notation and some generalities

Below “variety” means “algebraic variety”. We assume given an algebraically
closed field k of characteristic zero which serves as domain of definition for
each of the varieties considered below. Each variety is identified with its set
of points rational over k. Along with the standard notation and conventions
of [Bor91] we use the following ones.

— AutX is the automorphism group of a variety X.
— BirX is the group of birational automorphisms of an irreducible va-

riety X.
— X ≈ Y means that X and Y are birationally isomorphic irreducible

varieties.
— If f is a rational function on the product X×Y of varieties and x ∈ X

is a point such that f |x×Y is well defined, then f(x) is the element
of k(Y ) such that f(x, y) = f(x)(y) for every point (x, y) ∈ X × Y
where f is defined.

— Given a dominant rational map ϕ : X 99K Y of varieties, ϕ∗ is the
embedding k(Y ) ↪→ k(X), f 7→ f ◦ ϕ.

— Given an action

α : G×X → X (1)

of a group G on a set X and the elements g ∈ G, x ∈ X, then
α(g, x) ∈ X is denoted by g · x. If H is a subgroup of G, then α|H is
the restriction of α to H ×X.

— An ×Am is identified with An+m by means of the isomorphism

An ×Am → An+m,
((a1, . . . , an), (b1, . . . , bm)) 7→ (a1, . . . , an, b1, . . . , bm).

— K× is the multiplicative group of a field K.
— K+ is the additive group of a field K.
— If K/F is a field extension, then K is called pure (resp. stably pure)

over F if K is generated over F by a finite collection of algebraically
independent elements (resp. if K is contained in a field that is pure
over both K and F ).

— G0 is the identity component of an algebraic group G.
— “Torus” means “affine algebraic torus”.

Let G be an algebraic group and let X be a variety.
If (1) is a morphism, then α is called a regular action. In this case, for

every element g ∈ G, the map X → X, x 7→ g · x, is an automorphism of X
and the image of the homomorphism G→ AutX, g 7→ {x 7→ g · x} is called
an algebraic subgroup of AutX. A regular action α is called locally free if
there is a dense open subset U of X such that the G-stabilizer of every point
of U is trivial.

From now on we assume that X is irreducible. The map

BirX → Autk k(X), ϕ 7→ (ϕ∗)−1, (2)
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is a group isomorphism. We always identify BirX and Autk k(X) by means
of (2) when we speak about action of a subgroup of BirX by k-automor-
phisms of k(X) and, conversely, action of a subgroup of Autkk(X) by bira-
tional automorphisms of X.

Let θ : G→ BirX be an abstract group homomorphism. It determines an
action of G on X by birational isomorphisms. If the domain of definition of
the partially defined map G ×X → X, (g, x) 7→ θ(g)(x), contains a dense
open subset of G×X and coincides on it with a rational map % : G×X 99K X,
then this action (and %) is called a rational action of G on X and θ(G) is
called an algebraic subgroup of BirX.

There is a method for constructing algebraic subgroups of Bir X. Name-
ly, let Y be another irreducible variety and let γ : Y 99K X be a birational
isomorphism. Then BirY → BirX, g 7→ γ ◦ g ◦ γ−1, is a group isomorphism
and the image of any algebraic subgroup of AutY under it is an algebraic
subgroup of BirX. In fact, by [Ros56, Theorem 1], this method is universal,
i.e., every algebraic subgroup of BirX is obtained in this manner for the
appropriate Y and γ. In other words, for every rational action of G on X
there is a regular action of G on an irreducible variety Y , the open subsets
X0 and Y0 of resp. X and Y , and an isomorphism Y0 → X0 such that the
induced field isomorphism k(X) = k(X0) → k(Y0) = k(Y ) is G-equivariant.
If the action of G on Y is locally free, then the rational action % is called
locally free.

Let % : G×X 99K X be a rational action of G on X and let f be an element
of k(X). Then {g · f | g ∈ G} is an “algebraic family” of rational functions

on X in the following sense: there is a rational function f̂ ∈ k(G × X)

such that g · f = f̂(g) for every g ∈ G. Indeed, %∗(f) ∈ k(G × X) and
%∗(f)(g, x) = (g−1 · f)(x) for every point (g, x) ∈ G × X where %∗(f) is
defined; whence the claim.

If X and Y are irreducible varieties endowed with rational actions of G
such that there is a G-equivariant birational isomorphism X 99K Y , then we
write

X
G
≈ Y.

In order to avoid a confusion, in some cases when several rational actions
are simultaneously considered, we denote X endowed with a rational action %
of G by

%X.

If Y is another variety, then X × Y endowed with the rational action of G
via the first factor by means of % is denoted by

%X × Y.

We denote by

λG

the underlying variety of G endowed with the action of G by left translations.
If % is a rational action of G on X, then

πG,X : X 99K X --
-G
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is a rational quotient of %, i.e., X --
-G and πG,X are resp. a variety and

a dominant rational map such that π∗

G,X(k(X --
-G)) = k(X)G (see [PV94,

Sect. 2.4]). Depending on the situation we choose X --
-G as a suitable variety

within the class of birationally isomorphic ones. A rational section (resp.,

cross-section) for % is a rational map σ : X --
-G 99K X such that πG,X ◦σ = id

(resp., a subvariety S of X such that πG,X |S : S 99K X --
-G is a birational

isomorphism). The closure of the image of a rational section is a rational
cross-section and, since char k = 0, the closure of every cross-section is
obtained in this manner.

The group

Cn := Autk k(An)

is called the Cremona group of rank n (over k). It is endowed with a topology,
the Zariski topology of Cn, in which families of elements of Cn “algebraically
parametrized” by algebraic varieties are closed, [Ser08, Sect. 1.6]. For every
algebraic subgroup G of Cn and its subset S, the closure of S in Cn coincides
with the closure of S in G in the Zariski topology of G. In particular, G is
closed in Cn. Left and right translations of Cn are homeomorphisms.

We denote by x1, . . . , xn ∈ k[An] the standard coordinate functions on An:

xi((a1, . . . , an)) = ai. (3)

They are algebraically independent over k and k(An) = k(x1, . . . , xn). For
every n > 2, we identify An−1 with the image of the embedding An−1 ↪→ An,
(a1, . . . , an−1) 7→ (a1, . . . , an−1, 0), and denote the restriction xi|An−1 for i =
1, . . . , n−1 still by xi. Correspondingly, we have the embedding Cn−1 ↪→ Cn,
g 7→ ĝ, where ĝ · xi := g · xi if i = 1, . . . , n − 1 and ĝ · xn := xn. The direct
limit for the tower of these embeddings C1 ↪→ C2 ↪→ · · · ↪→ Cn ↪→ · · · is the
Cremona group C∞ of infinite rank. We identify every Cn with the subgroup
of C∞ by means of the natural embedding Cn ↪→ C∞. A subgroup G of C∞
is called algebraic if there exists an integer n > 0 such that G is an algebraic
subgroup of Cn.

We distinguish the following two algebraic subgroups of Cn:

GLn := {g ∈ Cn | g · xi =
∑n

j=1 αijxj, αij ∈ k},

Dn := {g ∈ Cn | g · xi = αixi, αi ∈ k};

Dn is a maximal torus in GLn.
Let g be an element and let G be a subgroup of Cn. If g ∈ GLn (resp.G ⊆

GLn), then g (resp. G) is called a linear element (resp. a linear subgroup). If
g (resp. G) is conjugate to a linear element (resp. a linear subgroup), then it
is called a linearizable element (resp. a linearizable subgroup). If g (resp. G) is
a linearizable element (resp. a linearizable subgroup) of some Cm for m > n,
then it is called a stably linearizable element (resp. a stably linearizable sub-

group). A rational action % of an algebraic group H on An is called resp. a
linear, linearizable or stably linearizable action if the image of H in Cn cor-
responding to % is resp. a linear, linearizable or stably linearizable subgroup
of Cn.



6 VLADIMIR L. POPOV

2. Flattening, linearizability, tori

Definition 1. An affine algebraic group G is called flattenable if the under-
lying variety of G endowed with the action of G by left translations admits
an equivariant open embedding into some An endowed with a rational linear
action of G. The G-module An is then called a flattening of G.

Every flattenable group is connected.

Example 1. An endowed with the natural action of Dn,

diag(ε1, . . . , εn) · (a1, . . . , an) := (ε1a1, . . . , εnan), (4)

is a flattening of Dn. Hence, every torus is flattenable.

Example 2. The underlying vector space of the algebra Matn×n of all
(n × n)-matrices with entries in k endowed with the action of GLn by left
multiplications, g · a := ga, g ∈ GLn, a ∈ Matn×n, is a flattening of GLn.
Hence, GLn is flattenable.

Example 3. Let G1, . . . , Gs be affine algebraic groups and let G := G1 ×
· · · × Gs. If Ani endowed with an action of Gi is a flattening of Gi, then
An1

× · · · × Ans endowed with the natural action of G is a flattening of
G. Hence, G is flattenable if every Gi is.

Example 4. Consider a finite-dimensional associative (not necessarily com-
mutative) k-algebra A with an identity element. The group of all invertible
elements of A is then a connected affine algebraic group G whose underlying
variety is an open subset of that of A. The action of G on A by left multi-
plications is linear and the identity map is an equivariant embedding of G
into A. Thus, A is a flattening of G and G is flattenable. If A is the product
of n copies of the k-algebra k, we obtain Example 1. Taking A = Matn×n,
we obtain Example 2.

In general, flattening of G is not unique.

Example 5. Matn×n endowed with the action of GLn given by g · a :=
(gt)−1a, g ∈ GLn, a ∈ Matn×n, where gt is the transpose of g, is a flattening
of GLn. It is not isomorphic to that from Example 1 (as the highest weights
of these two flattenings are not equal).

Lemma 1. If the underlying variety of a connected affine reductive algebraic

group G 6= {e} is isomorphic to an open subset U of An, then U 6= An and

the center of G is at least one-dimensional.

Proof. As G 6= {e} is reductive, it contains a torus T of positive dimen-
sion. For the action of T on G by left translations, the fixed point set
is empty. But for any regular action of T on An, the fixed point set is
nonempty, see [Bia66, Theorem 1]. Hence, U 6= An.

Since D := An \U 6= ∅ and U is affine, the dimension of every irreducible
component of D is n−1, see [Pop72, Lemma 3]. Since PicAn = 0, this entails
that D is the zero set of some regular function f on An. Therefore, f |U is
a nonconstant invertible regular function on U . By [Ros611, Theorem 3],
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every such function is, up to a scalar multiple, a character of G. So there is a
nontrivial character of G. On the other hand, as G is a connected reductive
group, G = G′ · C where G′ is the derived group of G (it is semisimple), C
is the connected component of the identity in the center of G (it is a torus),
and G′ ∩ C is finite, see [Bor91, Sect. 14.2]. This entails that the character
group of G is a free abelian group of rank dimC. Hence, dim C > 1. �

Corollary 1. There are no nontrivial semisimple flattenable groups.

Recall from [Ser58] that an algebraic group G is called special if every
principal homogeneous space under G over every field K containing k is triv-
ial. By [Ser58] special group is automatically connected and affine. Special
groups are classified: a connected affine algebraic group G is special if and
only if a maximal connected semisimple subgroup of G is isomorphic to

SLn1
× · · · × SLnr × Spm1

× · · · × Spms
(5)

for some integers r > 0, s > 0, ni,mj (by [Ser58] such groups are special,
and by [Gro58] only these are).

Lemma 2. Every flattenable group G is special.

Proof. Let An endowed with a rational linear action α of G be a flattening

of G and let πG,αAn : αA
n 99K αA

n

--
-G be a rational quotient for this ac-

tion. By Definition 1, α is locally free. Hence, by [Pop94, Theorem 1.4.3],
proving that G is special is equivalent to proving that πG,αAn admits a ra-
tional section. But the existence of such a rational section is clear because
Definition 1 entails that αA

n

--
-G is a single point. �

By Lemma 2 a maximal connected semisimple subgroup of every flat-
tenable group is isomorphic to a group of type (5). Hence, every reductive

flattenable group is a quotient (T × S)/C where T is a torus, S is a group
of type (5) and C is a finite central subgroup.

Conjecture. The following properties of a connected reductive algebraic

group G are equivalent:

(i) G is flattenable;
(ii) G is isomorphic to T ×GLn1

× · · · ×GLnr where T is a torus.

Theorem 1. Let α be a locally free rational action of a flattenable group G
on Am. If the invariant field k(αA

m)G is pure over k, then α is linearizable.

Proof. Consider for α a rational quotient,

πG,αAm : αA
m

99K αA
m

--
-G. (6)

As explained in Introduction, there is a variety X endowed with a regular

locally free action α′ of G such that α′X
G
≈ αA

m. By [CTKPR11, Theorem
2.13], shrinking X if necessary, we may assume that the geometric quotient

α′X → α′X/G
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for α′ exists and is a torsor over α′X/G. As G is special by Lemma 2, this

torsor is locally trivial in Zariski topology. Hence, α′X
G
≈ λG× (α′X/G) and

therefore,

αA
m G
≈ λG× (αA

m

--
-G). (7)

Let βA
n be a flattening of G. Definition 1 yields

λG
G
≈ βA

n. (8)

From (7) and (8) we obtain

αA
m G
≈ βA

n × (αA
m

--
-G). (9)

The assumption of purity and (9) yield

αA
m

--
-G ≈ Am−n. (10)

Consider the action γ of G on Am defined by

γA
m := βA

n ×Am−n. (11)

From (9), (10), and (11) we deduce that

αA
m G
≈ γA

m. (12)

But γ is linear because β is. This and (12) complete the proof. �

Lemma 3. For every affine algebraic group G and every integer r there

exists a rational locally free linear action of G on As for some s > r.

Proof. By [Bor91, Prop. 1.10], we may assume that G is a closed subgroup
of some GLn. As there is a closed embedding of GLn in GLn+1, we may
in addition assume that n2 > r. By Example 2 there is a rational locally

free linear action α of GLn on An2

. Hence, α|G shares the requested pro-
perties. �

Theorem 2. Every rational locally free action α of a special algebraic group

G on Am is stably linearizable.

Proof. The same argument as in the proof of Theorem 1 shows that (7)
holds. By Lemma 3 there is a rational locally free linear action γ of G on
As for some s > m. Like for α, for γ we have

γA
s G
≈ λG× (γA

s

--
-G) (13)

Let d := dimG. Since by [Che54] the underlying variety of G is rational,
we have

G ≈ Ad. (14)

From (7), (13), and (14) we then obtain

Am ≈ Ad × (αA
m

--
-G),

As ≈ Ad × (γA
s

--
-G).

(15)
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In turn, (7), (13), and (15) imply

αA
m ×Ad G

≈ λG× (αA
m

--
-G)×Ad G

≈ λG×Am,

γA
s ×Ad G

≈ λG× (γA
s

--
-G)×Ad G

≈ λG×As.
(16)

Since s > m, we have d + s−m > 0 and from (16) we deduce

αA
m ×Ad+s−m = αA

m ×Ad ×As−m

G
≈ λG×Am ×As−m

= λG×As

G
≈ γA

s ×Ad.

(17)

Since the action of G on γA
s ×Ad is linear, (17) completes the proof. �

The next theorem implies that “stably linearizable” in Theorem 2 cannot
be replaced by “linearizable”.

Theorem 3. For every connected semisimple algebraic group G 6= {e},
there exists a rational nonlinearizable locally free action of G on Ad for

d = dim G.

Proof. Since (14) holds, there exists a rational locally free action α of G on

Ad such that λG
G
≈ αA

d. We claim that α is nonlinearizable. For, otherwise,
we would get a rational locally free linear (hence, regular) action of G on
Ad. Since d = dim G, one of its orbits is open in Ad and isomorphic to the
underlying variety of G. Therefore, by Lemma 1 the center of G is at least
one-dimensional — a contradiction because G is semisimple. �

For tori we can get an additional information.

Lemma 4. Let X be an irreducible variety endowed with a rational faithful

action α of a torus T . Then

(i) α is locally free;
(ii) dimT 6 dimX;
(iii) tr degkk(X)T = dimX − dimT .

Proof. By [Sum74, Cor. 2 of Lemma 8] (see also [Bia66, Cor. 1 of Prop. 1])
there is an irreducible affine variety Y endowed with a regular action of T

such that X
T
≈ Y . Hence, we may (and shall) assume that X is affine and

α is regular. By [PV94, Theorem 1.5], we also may (and shall) assume that
X is a closed T -stable subset of a finite-dimensional algebraic T -module V
not contained in a proper T -submodule of V .

As α is faithful, the kernel of the action of T on V is trivial. As T is a torus,
V is the direct sum of T -weight subspaces. Hence, if U is the complement in
V to the union of these spaces, this kernel coincides with the T -stabilizer of
every point of U . Thus, these stabilizers are trivial. But by the construction,
X ∩U is a nonempty open subset of X. This proves (i) that, in turn, entails
(ii) and, by [PV94, Cor. in Sect. 2.3], also (iii). �

Corollary 2 ([Dem70]). The dimension of every torus in Cn is at most n.
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Corollary 3. Every rational action of a torus on An is stably linearizable.

Proof. Since tori are special groups, this follows from Lemma 4(i) and The-
orem 2. �

Theorem 4. The following properties of a rational action α of a torus T
on An are equivalent:

(i) α is linearizable;
(ii) the invariant field k(αA

n)T is pure over k.

Proof. Assume that (ii) holds. Let T0 be the kernel of the action of T on
X. By Lemma 4, the induced action of T/T0 on An is locally free. Hence,
replacing T by T/T0, we may assume that the action of T on An is locally
free. Since T is flattenable, in this case (ii)⇒(i) follows from Theorem 1.

(i)⇒(ii) is the corollary of the following more general statement.

Lemma 5. For any rational linear action α of a diagonalizable affine alge-

braic group D on An, the invariant field k(αA
n)D is pure over k.

Proof of Lemma 5. By [Bor91, Prop. 8.2(d)], the image of D under the ho-
momorphism D → GLn determined by α is conjugate to a subgroup of
Dn. Hence, we may (and shall) assume that D is a closed subgroup of
Dn. Since An with the natural action of Dn is a flattening of Dn (see Ex-

ample 1), we have αA
n D
≈ λDn. Therefore,

αA
n

--
-D ≈ Dn/D. (18)

But Dn/D is a torus, see [Bor91, Props. 8.4 and 8.5], hence, a rational
variety. The claim now follows from (18). �

Corollary 4 ([Bia66, Cor. 2 of Prop. 1]).

(a) Every faithful rational action of a torus T on An is linearizable in

either of the following cases:
(i) dimT > n− 2;
(ii) n 6 3.

(b) Every d-dimensional torus in Cn for d = n − 2, n − 1, n is conjugate

to a subgroup of Dn. In particular, every n-dimensional torus in Cn
is conjugate to Dn.

Proof. (a) By Corollary 2, if T 6= {e}, then (ii)⇒(i). Assume that (i) holds.
Then tr degkk(An)T 6 2 by Lemma 4(iii). As k(An)T is unirational, it is
then pure over k by the Lüroth and Castelnuovo theorems; whence the claim
by Theorem 4.

Part (b) follows from (a). �

By Corollaries 2 and 4(b) all n-dimensional tori in Cn are maximal and
conjugate and there are no maximal (n − 1)- and (n − 2)-dimensional tori
in Cn. In dimension n− 3 the situation is different:

Theorem 5. Let n > 6. Every (n−3)-dimensional connected affine algebraic

group G can be realized as an algebraic subgroup of Cn such that

(i) k(An)G is not pure, but stably pure over k;
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(ii) the natural rational action of G on An is locally free.

Proof. By [BCSS85] there exists a nonrational threefold X such that A3 ×
X ≈ A6. Then An ≈ An−3 × X. This and (14) yield that there exists

a rational locally free action γ of G on An such that γA
n G
≈ λG × X.

Since k(λG)G = k, by [Ros612, Lemma 3], we have γA
n

--
-G ≈ X; whence

the claim. �

Corollary 5. Let n > 6. Then

(a) there is a rational locally free nonlinearizable action of an (n − 3)-
dimensional torus on An;

(b) Cn contains an (n − 3)-dimensional maximal torus.

Proof. Use the notation of Theorem 5 and its proof and let G be a torus.
Then γ is nonlinearizable by Theorem 4. This proves (a). As the torus
G is not conjugate to a subgroup of Dn, Corollary 4(b) implies that it is
maximal. This proves (b). �

Corollary 6. Every Cn for n > 6 contains a nonlinearizable, but stably

linearizable element of infinite order.

Proof. For any subset X of Cn denote by X the closure of X in the Zariski
topology of Cn (see Section 1). By Corollary 5(b), Cn contains an (n − 3)-
dimensional maximal torus T . By [Bor91, Sect. III.8.8], there exists an el-
ement g ∈ T such that T = S for S := {gd | d ∈ Z}. Corollary 3 yields
that g is stably linearizable. Assume that g is linearizable and let h ∈ Cn be
an element such that hgh−1 ∈ Dn. Then S ⊂ h−1Dnh. Since left and right
translations of Cn are homeomorphisms and Dn = Dn, we obtain

T = S ⊂ h−1Dnh = h−1Dnh = h−1Dnh.

This contradicts the maximality of T because h−1Dnh is an n-dimensional
torus. �

The next statement yields a rectification of Corollaries 3 and 6.

Theorem 6. Every torus T in Cm is conjugate in Cm+dimT to a subgroup

of Dm+dimT .

Proof. Let α be the natural rational action of T on Am and let d := dimT .
By Lemma 4, α is locally free. By [Ros612, Lemma 3], (7) and (14) we have

(Ad × αA
m) --

-T ≈ Ad × (αA
m

--
-T ),

αA
m T
≈ λT × (αA

m

--
-T ),

T ≈ Ad.

(19)

From (19) we deduce that k(αA
m×Ad)T is pure over k. Since T is flatten-

able, Theorem 1 then entails that Ad × αA
m T
≈ γA

m+d for a rational linear
action γ; whence the claim. �
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3. Subgroups of the rational de Jonquières groups

Let t1, . . . , tn be a system of generators of k(An) over k,

k(An) = k(t1, . . . , tn).

The elements t1, . . . , tn are algebraically independent over k and determine
the following flag of subfields of k(An):

Kn⊂Kn−1⊂· · ·⊂K0,where Ki :=

{
k(ti+1, ti+2, . . . , tn) if i6n−1,

k if i=n.
(20)

For any elements fi ∈ Ki and µi ∈ k×, i = 1, . . . , n, put

t′i := µiti + fi and K ′

i :=

{
k(t′i+1, t

′

i+2, . . . , t
′

n) if i 6 n− 1,

k if i = n.
(21)

It follows from (21) that there are elements f ′

i ∈ K ′

i, i = 1, . . . , n, such that

ti = µ−1
i t′i + f ′

i .

Hence, K ′

i = Ki for every i. In particular, t′1, . . . , t
′

n is an algebraically inde-
pendent system of generators of k(An) over k, so there is an element g ∈ Cn
such that

g · ti = µiti + fi for every i = 1, . . . , n. (22)

The set J (t1, . . . , tn) of all such elements g is a subgroup of Cn. It stabilizes
the flag of subfields (20):

g ·Ki = Ki for all g ∈ J (t1, . . . , tn) and i = 0, . . . , n. (23)

If s1, . . . , sn is another system of generators of of k(An) over k, then the
subgroups J (t1, . . . , tn) and J (s1, . . . , sn) are conjugate in Cn.

Given an analogy of the construction of J (t1, . . . , tn) with that of the de
Jonquières subgroup of Autkk[t1, . . . , tn], cf. [vdE00, p. 85], we call J (t1, . . .
. . . , tn) the rational de Jonquières subgroup of Cn with respect to t1, . . . , tn.

Example 6. By the Lie–Kolchin theorem every closed connected solvable
subgroup G of GLn is conjugate in GLn to a subgroup of J (x1, . . . , xn).
Hence, G lies in J (t1, . . . , tn) where t1, . . . , tn are the homogeneous linear
forms in x1, . . . , xn.

In the notation of (22), for every i = 1, . . . , n, we have the following maps:

χi : J (t1, . . . , tn) → k×, g 7→ µi,

ϕi : J (t1, . . . , tn) → Ki, g 7→ fi.
(24)

Lemma 6. For every i = 1, . . . , n,

(a) χi is a homomorphism of groups;
(b) for all g1, g2 ∈ J (t1, . . . , tn),

ϕi(g1g2) = χi(g2)ϕi(g1) + g1 ·(ϕi(g2)); (25)

(c) if G is an algebraic subgroup of Cn contained in J (t1, . . . , tn), then
χi|G is a regular function on G and there is a rational function Fi ∈
k(G×An) such that Fi(g) = ϕi(g) for all g ∈ G;

(d) the order of every element g ∈
⋂n

i=1 kerχi, g 6= e, is infinite.
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Proof. Let g1, g2 ∈ J (t1, . . . , tn). Then (22) and (24) yield

χi(g1g2)ti + ϕi(g1g2) = g1g2 · ti = g1 · (g2 · ti)

= g1 ·
(
χi(g2)ti + ϕi(g2)

)

= χi(g2)
(
χi(g1)ti + ϕi(g1)

)
+ g1 ·

(
ϕi(g2)

)
.

(26)

As the image of ϕi lies in the J (t1, . . . , tn)-stable field Ki, (26) and algebraic
independence of t1, . . . , tn over k yield that (25) and χi(g1g2) = χi(g1)χi(g2)
hold. This proves (a) and (b).

(c) Let α : G×An 99K An be the natural rational action of G on An and
let β : G×An → G×An, (g, a) 7→ (g−1, a). Put Si :=β∗(α∗(ti))∈k(G×An).
Then Si(g, a) = ti(α(β(g, a))) = ti(α(g−1, a)) = ti(g

−1 · a) = (g · ti)(a) for
every (g, a) in the domain of definition. Hence, Si(g) = χi(g)ti + ϕi(g) for
every g ∈ G. Given that Si ∈ k(G×An) = k(G)(t1, . . . , tn) and ϕi(g) ∈ Ki,
this implies (c).

(d) As g 6= e and χi(g) = 1 for every i, (22) and (24) entail that there
is j such that ϕj(g) 6= 0. Let d be the largest j with this property. Then
g · f = f for every f ∈ Kd. As g · td = td +ϕd(g) and ϕd(g) ∈ Kd, this yields

gs · td = td + sϕd(g) for every s ∈ Z. (27)

Since ϕd(g) 6= 0 and char k = 0, (27) implies that gs 6= e for every s 6= 0. This
proves (d). �

Theorem 7. Let G be an affine algebraic subgroup of J (t1, . . . , tn). Then
G is solvable and G/G0 is Abelian.

Proof. First, consider the case where G is finite; we then have to prove that
G is Abelian. Consider the homomorphism

δ : J (t1, . . . , tn) → Dn, g 7→ diag(χ1(g), . . . , χn(g)).

Since ker δ =
⋂n

i=1 kerχi and G has no elements of infinite order, Lemma
6(d) implies that G ∩ ker δ = {e}. Therefore, δ embeds G into the Abelian
group Dn; whence, the claim.

Now consider the general case. By [BS64, Lemma 5.11], there is a finite
subgroup H of G that intersects every connected component of G. Hence, the
restriction to H of the canonical homomorphism G → G/G0 is a surjective
homomorphism H → G/G0. According to what we have already proved, H
is Abelian. This shows that G/G0 is Abelian. By [Hal59, Theorem 9.2.5], the
problem is then reduced to proving that G0 is solvable.

Since char k = 0, there exists a Levi subgroup L in G0, see [Bor91,
11.22]. It is a connected reductive group and we have to show that L is
a torus, i.e., that the derived subgroup L′ of L is trivial. Arguing on the
contrary, assume that L′ 6= {e}. Then L′ contains an element g 6= e of finite
order. Indeed, L′ contains a torus 6={e} (see [Bor91, Cor. 2 in Sect. IV.13.17
and Theorem 12.1(b)]), but every torus 6= {e} has a nontrivial torsion
(see [Bor91, Prop. 8.9(d)]). On the other hand, L′ ⊆

⋂n
i=1 kerχi as ev-

ery homomorphism L → k× contains L′ in its kernel. By Lemma 6(d)
this entails that the order of g is infinite. This contradiction completes the
proof. �
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Corollary 7. Every finite subgroup of J (t1, . . . , tn) is Abelian.

Theorem 8. Let G be a reductive algebraic subgroup of J (t1, . . . , tn). Then
G is a diagonalizable group.

Proof. By Theorem 7 the reductive group G0 is solvable. Hence, G0 is a
torus. Let H be the subgroup of G from the proof of Theorem 7. It acts on
G0 by conjugation because G0 is normal in G. The fixed point set F of this
action is a closed subgroup of G0. Assume that F 6= G0. Then, since the
torsion subgroup of G0 is dense in G0 (see [Bor91, Cor. III.8.9]), there exists
an element g ∈ G0 \ F whose order is finite. Let S be the subgroup of G0

generated by the set {hgh−1 | h ∈ H}. Since G0 is Abelian and the orders
of g and H are finite, S is finite as well. Since S is stable with respect to the
action of H on G0 by conjugation, this implies that the subgroup generated
by S and H is finite, too. Corollary 7 then yields that this subgroup is
Abelian. Hence, g ∈ F — a contradiction. Therefore, F = G0, i.e., G0 and
H commute. Since the Abelian groups H and G0 generate G, this implies
that G is Abelain. The claim then follows by [Bor91, Prop. III.8.4(4) and
Cor. III.4.4(1)]. �

4. Affine subspaces as cross-sections

By [Ros56, Theorem 10], for every rational action of a connected solv-
able algebraic group there exists a rational cross-section. The next theorem
refines this for some rational actions on An by showing that there exist
cross-sections that are affine subspaces of An.

Theorem 9. Let G 6= {e} be a unipotent affine algebraic subgroup of the

group J (x1, . . . , xn) and let α be the corresponding rational action of G on

An. Then there exist a sequence 1 6 i1 < · · · < im 6 n of natural numbers

and a sequence Θ1, . . . ,Θm of nonempty open subsets of k such that for

every (c1, . . . , cm) ∈ Θ1 × · · · ×Θm the affine subspace of An defined by the

equations (see (3)):
xi1 = c1, . . . , xim = cm,

is a rational cross-section for α.

For the proof of Theorem 9 we need the following

Lemma 7. Let K be a field of characteristic 0 and let f(x) be a rational

function in a variable x with the coefficients in K. Let K ′ be a subfield of

K. If

f(a1 + a2) = f(a1) + f(a2) (28)

whenever f is defined at a1, a2 and a1 + a2 ∈ K ′, then there is an element

c ∈ K such that f(x) = cx.

Proof of Lemma 7. We may (and shall) assume that f 6= 0. Let K be an
algebraic closure of K. First, we claim that (28) holds whenever f is defined
at a, b and a + b ∈ K. Indeed, by (28) the rational function F (x1, x2) :=
f(x1)+f(x2)−f(x1 +x2) (see (3)) vanishes at every point of A2(K ′) where
it is defined. Since A2(K ′) is Zariski dense in A2, this yields F = 0; whence
the claim.
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Thus, f is a rational partially defined endomorphism of the algebraic

group K
+
. But by [Wei55] (cf. also [Mer80, Sect. 11.1.1]) every rational par-

tially defined homomorphism of algebraic groups is, in fact, an everywhere
defined algebraic homomorphism. This entails that f(x) ∈ K[x]. Since f

has only finitely many roots, kerf is finite. Therefore, f(K
+

) is a one-

dimensional closed subgroup of K
+

; whence f(K
+

) = K
+

. On the other
hand, since charK = 0, there are no nonzero elements of finite order in

K
+

. Hence, ker f = {0}. Thus, f is an isomorphism; whence the claim. �

Proof of Theorem 9. We shall use the notation of (20), (24) with

t1 = x1, . . . , tn = xn.

Since char k = 0, G is connected. As G is a nontrivial unipotent group,
it contains a one-dimensional normal subgroup U isomorphic to k+. We
identify U with k+ by an isomorphism U → k+. Since G is unipotent, there
are no nontrivial algebraic homomorphisms G→ k×, therefore, by Lemma 6
there are rational functions Fi ∈ k(G×An) such that

g · xi = xi + Fi(g),

Fi(g) ∈ Ki,
for every g ∈ G and i. (29)

Since U 6= {e}, (29) entails that Fj(u) 6= 0 for some u ∈ U and j. Let d
be the largest j appearing in this fashion. Then (29) and (20) yield

KU
d = Kd. (30)

In turn, from (30) and (25) we infer that

Fd(u1 + u2) = Fd(u1) + Fd(u2) for all u1, u2 ∈ U.

By Lemma 7, this implies that there is a nonzero element s ∈ Kd such that

Fd(u) = us for every u ∈ U. (31)

Thus, by (29) and (31),

u · xd = xd + us, for every u ∈ U. (32)

By [Ros56, Theorem 1], there exists a nonempty open subset An
0 of An

and its embedding in an irreducible variety Y ,

Y ←↩ An
0 ⊆ An,

such that the rational action of U on Y determined by α|U and by this
embedding is regular. We identify An

0 with the image of this embedding. By
[Ros56, Theorem 2], shrinking Y if necessary, we may (and shall) assume
that there exists a geometric quotient of Y by this action of U ,

πU,Y : Y → Y/U.

Then πU,Y |An
0

is the restriction to An
0 of a rational quotient for α|U ,

πU,An : An
99K Y/U =: An

--
-U.
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Let H := G/U . Then α induces a rational action β of H on Y/U . Con-
sider a rational quotient for β,

πH,Y/U : Y/U 99K (Y/U) --
-H.

Then the composition

πG,An := πH,Y/U ◦ πU,An

is a rational quotient for α,

πG,An : An 99K (Y/U) --
-H =: An

--
-G.

Shrinking An
0 and Y if necessary, we may (and shall) assume that

(i) πH,Y/U is a morphism;

(ii) s|
An

0

is regular and vanishes nowhere.

To sum up, we have the following commutative diagram:

Y

πU,Y
��
77

77
77

77
⊇ An

0 ⊆ An

πU,An
���
�
�
�

πG,An

zz

)

#

�
�

�
z

Y/U = An

--
-U

π
H,Y/U

��

(Y/U) --
-H = An

--
-G

(33)

For every element c ∈ k, denote by Lc the hyperplane in An defined by
the equation xd = c. The set

Ω := {c ∈ k | Lc ∩An
0 6= ∅}

is nonempty and open in k. Take an element c ∈ Ω and a point a ∈ An
0 .

By property (ii) above, s is regular and does not vanish at a. Consider the
U -orbit of a in Y . Formula (31) shows that there is a unique u0 ∈ U such
that the value of xd ∈ k(Y ) at u0 · a is c, namely,

u0 =
xd − c

s
(a). (34)

This means that every U -orbit in Y intersects Lc∩A
n
0 at most at one point,

i.e., πU,Y |Lc∩A
n
0

is injective. Since dimLc ∩An
0 = dimY/U and char k = 0,

this implies that πU,Y |Lc∩A
n
0

: Lc ∩An
0 → Y/U is a birational isomorphism.

Hence, Lc intersects the domain of definition of πU,An and

πU,An |Lc
: Lc 99K Y/U = An

--
-U, (35)

is a birational isomorphism. This means that Lc is a rational cross-section
for α|U . In particular, this implies that shrinking An

0 if necessary, we may
(and shall) assume that

(iii) for every point of An
0 , its U -orbit in Y intersects Lc.



SOME SUBGROUPS OF THE CREMONA GROUPS 17

Now we argue by induction on dimG. If dimG = 1, then G = U and the
claim is proved since every Lc for c ∈ Ω is a rational cross-section for α (so
in this case s = 1, i1 = d and Θ1 = Ω).

Now assume that dimG > 1. The action β and the birational isomorphism
(35) determine a rational action γ of H on Lc such that (35) becomes an
H-equivariant birational isomorphism. From (33) we then deduce that

πG,An |Lc
: Lc 99K An

--
-G

is a rational quotient for γ. We identify Lc with An−1 by means of the iso-
morphism (a1, . . . , ad−1, c, ad+1, . . . , an) 7→ (a1, . . . , ad−1, ad+1, . . . , an) and,
for every function f ∈ k(An) whose domain of definition intersects Lc, put

f := f |Lc
∈ k(Lc).

Then x1, . . . , xd−1, xd+1, . . . , xn are the standard coordinate functions on Lc.
We claim that the image of H in Autkk(Lc) = Cn−1 determined by the

action γ is contained in J (x1, . . . , xd−1, xd+1, . . . , xn). If this is proved,
then, by the inductive assumption, there exist a nonempty set of indices
i1, . . . , ir and a nonempty open subsets Θ1, . . . ,Θr of k such that for every
(c1, . . . , cr) ∈ Θ1 × · · · × Θr the affine subspace S of Lc defined by the
equations

xi1 = c1, . . . , xir = cr,

is a rational cross-section for γ, i.e.,

πG,An |S : S 99K An

--
-G

is a birational isomorphism. As S is an affine subspace in An defined by the
equations xd = c, xi1 = c1, . . . , xir = cr, this will complete the proof.

It remains to prove the claim. To this end, consider in k(An) the subfield
k(An)U of U -invariants elements with respect to α|U . Since Lc is a rational
cross-section of πU,An , the map

k(An)U → k(Lc), f 7→ f ,

is a well-defined k-isomorphism of fields that is H-equivariant with respect
to the actions of H on k(An)U and k(Lc) determined resp. by α and γ. Let

k(Lc) → k(An)U , t 7→ t̂,

be the inverse isomorphism. Below we will consider β and γ as the actions
of G with the kernel U .

Take a point a ∈ An
0 . By the above discussion and property (iii), the U -

orbit of a in Y intersects Lc at a single point u0 ·a where u0 is given by (34).

As x̂i ∈ k(An)U , this yields

x̂i (a) = x̂i (u0 · a) = xi(u0 · a) = xi(u0 · a) = ((−u0) · xi)(a). (36)

Let z, y1, . . . , yn−1 be the variables over k. It follows from (29), (34) and
(36) that there are d− 1 rational functions

Rj(z, yj , yj+1, . . . , yn−1) ∈ k(z, yj , yj+1, . . . , yn−1), j = 1, . . . , d− 1,
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such that

x̂i =




xi + Ri

(c− xd
s

, xi+1, . . . , xn

)
if i 6 d− 1,

xi if i > d + 1.
(37)

In turn, from (37), (29), (20) and (23) we infer that

g · x̂i − xi ∈ k(xi+1, . . . , xd−1, xd, xd+1, . . . , xn) for all g ∈ G and i;

whence,

g · xi − xi ∈ k(xi+1, . . . , xd−1, xd, xd+1, . . . , xn) for all g ∈ G and i. (38)

The claim now follows from (38) because xd = c ∈ k. �

Corollary 8. For every unipotent algebraic subgroup G of GLn, there exists

an affine subspace L of An such that L is a rational cross-section for the

natural action of G on An.

Proof. There exists an element g ∈ GLn such that gGg−1 ⊂ J (x1, . . . , xn)
(see Example 6). By Theorem 9 there exists an affine subspace S of An that
is a rational cross-section for the natural action of gGg−1 on An. Then the
affine subspace g−1(S) is a rational cross-section for the natural action of G
on An. �

Here is the application of Corollary 8. Let G be a connected affine al-
gebraic group and let g be the Lie algebra of G. Joseph put forward the
following

Conjecture A ([Jos11, Sect. 7.11]). For the coadjoint action of G on g
∗,

there exists an affine subspace L of g
∗ such that k(g∗)G → k(L), f 7→ f |L,

is a well-defined isomorphism of fields.

Joseph calls such L a rational slice.
According to the Levi decomposition, g is a semidirect product of a re-

ductive Lie algebra r and the unipotent radical u,

g = rn u. (39)

Corollary 9. If (39) is a direct product, g = r × u, then Conjecture A is

true.

Proof. Let R and U be the closed connected subgroups of G whose Lie
algebras are resp. r and u. Assume that g = r × u. In this case, if Lr and
Lu are the rational slices for the coadjoint actions of resp. R and U , then
Lr × Lu is a rational slice for the coadjoint action of G. The existence of Lr

is proved in [Kos63] and the existence of Lu is ensured by Corollary 8. �

Remark 1. Another application is that Theorem 9 yields the results of [Pu,
Part II, Chap. I, §7].

The rational de Jonquières subgroup J (t1, . . . , tn) lies in another interest-
ing subgroup of Cn. Namely, as for J (t1, . . . , tn), one checks that, for every
fi ∈ Ki and µi ∈ K×

i , there exists an element g ∈ Cn for which (22) holds
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and that the set Ĵ (t1, . . . , tn) of all such elements g is a subgroup of Cn. The

flag of subfields (20) is stable with respect to Ĵ (t1, . . . , tn):

g ·Ki = Ki for all g ∈ Ĵ (t1, . . . , tn) and i. (40)

If s1, . . . , sn is another system of generators of of k(An) over k, then the

subgroups Ĵ (t1, . . . , tn) and Ĵ (s1, . . . , sn) are conjugate in Cn.

The following fact is known; it provides an information on tori in Ĵ (t1, . . .
. . . , tn) (see Corollary 10 below).

Theorem 10. For every (not necessarily algebraic) subgroup G of the group

Ĵ (t1, . . . , tn), the invariant field k(An)G is pure over k.

Proof. We shall sketch a proof since our argument provides a bit more infor-
mation (equality (43)) than that of [Miy71] and [KV89]. The key ingredient
is the following Miyata’s lemma:

Lemma 8 ([Miy71, Lemma], cf. also [KV89, Lemme 1.1]). Let F be a field,

let z be a variable over F , and let H be a group that acts on F [z] by ring

automorphisms leaving F stable1. Then the subfield of F (z) generated by

F (z)H over F is, in fact, generated by a single element x ∈ F [z]H :

F (F (z)H ) = F (x). � (41)

Turning to the proof of Theorem 10, we first show that, in the notation
of Lemma 8,

F (z)H = FH(x). (42)

Indeed, F (x)H ⊆ F (z)H since F (x) ⊆ F (z). On the other hand, (41) entails
that F (z)H ⊆ F (x)H . Hence, F (z)H = F (x)H . Therefore, (42) would be
proved if the equality

F (x)H = FH(x) (43)

is established. To prove (43), consider two cases: (a) x ∈ F , (b) x /∈ F . If
(a) holds, then F (x) = F , hence, F (x)H = FH . On the other hand, (a)
and x ∈ F [z]H yield that x ∈ FH , hence, FH(x) = FH . This proves (43) if
(a) holds. Now assume that (b) holds. Then x is transcendental over F by
[vdW67, §73, Theorem]. Consider an element f ∈ F (x)H . It can be written
as f = p/q where

p =
s∑

i=0

aix
i, q =

r∑

j=0

bjx
j, ai, bj ∈ F, asbr 6= 0, (44)

and p and q are relatively prime polynomials in x with the coefficients in
F . Since F [x] is a factorial ring, the relative primeness of p and q and H-
invariance of f imply that there is a map γ : H → F ∗ (in fact, a 1-cocycle)
such that

h · p = γ(h)p, h · q = γ(h)q for every h ∈ H. (45)

Since x is H-invariant, (44) and (45) yield

h · ai = γ(h)ai, h · bj = γ(h)bj for all h ∈ H and i, j. (46)

1It is not assumed that F is pointwise fixed.
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From (46) we infer that f = a−1
s p/a−1

s q ∈ FH(x). Thus, F (x)H ⊆ FH(x).
Since x is H-invariant, the inverse inclusion is clear. This proves (43). Thus,
(42) holds and, moreover, either x ∈ FH or x is transcendental over F .

Now let G be a subgroup of Ĵ (t1, . . . , tn). We have Ki−1 = Ki(ti) and ti
is transcendental over Ki for every i = 1, . . . , n. By (40) and the definition

of Ĵ (t1, . . . , tn) the action of G on Ki−1 satisfies the conditions of Lemma 8
(with F = Ki, z = ti, H = G). Hence, as is proved above, there is an element
zi ∈ Ki[ti]

G such that KG
i−1 = Ki(ti)

G = KG
i (zi) and either zi ∈ KG

i or zi
is transcendental over Ki. Respectively, either KG

i−1 = KG
i or KG

i−1 is pure

over KG
i of transcendental degree 1. Since

k = KG
n ⊆ KG

n−1 ⊆ · · · ⊆ KG
1 ⊆ KG

0 = k(An)G,

this completes the proof. �

Corollary 10. Every torus in Ĵ (t1, . . . , tn) is conjugate in Cn to a subgroup

of Dn.

Proof. This follows from Theorems 4 and 10. �

Corollary 11. Let n > 6. Every (n− 3)-dimensional connected affine alge-

braic group can be realized as an algebraic subgroup of Cn such that

(i) G is not conjugate to a subgroup of Ĵ (t1, . . . , tn);
(ii) the natural rational action of G on An is locally free.

Proof. This follows from Theorems 5 and 10. �

Remark 2. The assumption that k is algebraically closed is not used in the
proof of Theorem 10.

Remark 3. In [Miy71], Lemma 8 is used for proving that k(An)G is pure
over k if G is a subgroup of GLn ∩ J (x1, . . . , xn). Note that in this case,
if G is finite, then purity of k(An)G over k follows from Corollary 7 and
Lemma 5.

Remark 4. A weakened version of Theorem 10 is the subject of [Vin92].

In it, G is an affine algebraic group and Ĵ (x1, . . . , xn) is replaced by J (x1, . . .
. . . , xn). However, the argument in [Vin92] does not amount to complete and
accurate proof. Indeed, it is based on the claim, left unproven, that if G is re-
ductive, then G is conjugate in J (x1, . . . , xn) to a subgroup of Dn. Further,
the claim that, for a one-dimensional unipotent algebraic group U , “every
point is U -equivalent to a unique point of the subspace S = {x ∈ kn : xm =
0}” is false because u · s may be not defined for u∈U and s∈S. Ditto for
the claim that Fi ∈ k(xi+1, . . . , xn) ⊗ k[t] (counterexample: n = 3 and the
action is given by t · x1 = x1 − t/x2(x2 + t), t · x2 = x2 + t, t · x3 = x3), so
the equality Fm(xm+1, . . . , xn; t) = tFm(xm+1, . . . , xn) remains unproven.

Remark 5. One cannot replace Ĵ (t1, . . . , tn) in Theorem 10 by the Cn-
stabilizer of the flag of subfields (20). Indeed, by [Tri80], for k = C, n = 3,
this stabilizer contains a subgroup G of order 2 such that k(An)G is not
pure over k.
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Combining the construction from [Tri80] with Corollary 3 and Lemma 5
we obtain the following

Theorem 11. Let k = C and let A be the union of all connected affine

algebraic subgroups of C∞. There exists an element g ∈ C3 of order 2 such

that g /∈ A. In particular, g is not stably linearizable.

Proof. Let X be the three-dimensional counterexample of Artin and Mum-
ford to the Lüroth problem ([AM72], see also [Del70]): X is a smooth pro-
jective unirational threefold such that

H3(X,Z)tors 6= 0. (47)

Since the torsion subgroup of the third integral cohomology group of a
smooth complex variety is a birational invariant and, in particular, is zero
if the variety is rational, (47) implies that X is not rational.

In [Tri80] is constructed a subgroup G of order 2 in C3 such that k(A3)G is
k-isomorphic to k(X). Let g be the generator of G. Arguing on the contrary,
assume that g is contained in a connected affine algebraic subgroup H of
C∞. Since the order of g is finite, g is a semisimple element of H. Hence,
g lies in a maximal torus T of H (see [Bor91, Theorems III.10.6(6) and
IV.11.10]). By Corollary 3 there exists a positive integer n0 such that T ⊂
Cn0

and T is conjugate in Cn0
to a subtorus of Dn0

. Fix an integer n >

max{n0, 3}. Then G ⊂ Cn and G is conjugate in Cn to a subgroup of Dn. This
and Lemma 5 yield that for the natural action of G on An the field k(An)G

is pure over k. Since G ⊂ C3, by [Ros612, Lemma 3], we have

An

--
-G ≈ A3

--
-G×An−3 ≈ X ×Pn−3 (48)

From (48) we infer that the smooth projective variety X × Pn−3 is ratio-
nal and therefore H3(X × Pn−3)tors = 0. On the other hand, the Künneth
formula and (47) yield that H3(X ×Pn−3)tors 6= 0 — a contradiction. �

We conclude by an example which shows that in the formulation of Corol-
lary 8 “unipotent” cannot be replaced by “connected solvable” (recall that
if G is connected solvable, then the existence of some rational cross-section
is ensured by [Ros56, Theorem 10]).

Example 7. Fix a choice of two integers d1 and d2 such that

d1 − d2 > 2, (49)

|d1| > 2, |d2| > 2, (50)

gcd(d1, d2) = 1. (51)

Consider the one-dimensional subtorus

T :=
{

diag
(
td1 , td2

)
| t ∈ k∗

}
(52)

of D2 and its rational linear action α on A2 defined by formula (4).
In view of (51), the T -stabilizer of every point a ∈ A2, a 6= (0, 0), is

trivial.

Claim. There is no affine subspace in A2 that is a rational cross-section

for α.



22 VLADIMIR L. POPOV

Proof. Assume that some affine subspace L of A2 is a rational cross-section
for α. Since T -orbits in general position are one-dimensional, L is a line.
Let

µ1x1 + µ2x2 + ν = 0, µ1, µ2, ν ∈ k. (53)

be its equation. Since L is a rational cross-section, there is a nonempty open
subset U of A2 such that for every point a = (a1, a2) ∈ U , the T -orbit of a
intersects L at a single point, i.e., by (52) and (53), the following equation
in t

µ1a1t
d1 + µ2a2t

d2 + ν = 0 (54)

has a single nonzero solution. Shrinking U , we may assume that a1a2 6= 0
for every a ∈ U .

If µ1µ2 = 0, then (54) becomes an equation of the form µtd +ν = 0 where
µ ∈ k, µ 6= 0, and |d| > 2 by (50). If ν = 0, it does not have nonzero
solutions; if ν 6= 0, there are at least two such solutions. So this case is
impossible.

If µ1µ2 6= 0 and ν = 0, then the solutions of (54) coincide with the roots
of µ1a1t

d1−d2 + µ2a2. In view of (49), there are at least two distinct roots,
so this case is impossible as well.

Let µ1µ2ν 6= 0 and d2 > 0. Denote by f be the right-hand side of (54). Set

h := d1f − t
df

dt
= (d1 − d2)µ2a2t

d2 + d1ν. (55)

By (54) and (55), for a fixed a2, there are only finitely many a1’s such that
the polynomials f and h have a common root. Since every multiple root of
f is also a root of h, this means that there are points a ∈ U such that f
does not have multiple roots. From (49), (50) it then follows that for such a
point a equation (54) has at least two nonzero solutions. Thus, this case is
also impossible.

Finally, let µ1µ2ν 6= 0 and d2 < 0. Then the solutions of equation (54)
coincide with the roots of the polynomial q := µ1a1t

d1−d2 + νt−d2 + µ2a2.
We have

p := (d1 − d2)q − t
dq

dt
= (d1 − d2)µ2a2 + d1νt

−d2 . (56)

Then the same argument as above with f and h replaced resp. by q and p
shows that this case is impossible as well.

This contradiction completes the proof. �
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