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Abstract
The first part of this paper is devoted to analysis of the appli-

cability limit of Einstein’s Equivalence Principle (EP). It is noted
that a natural applicability limit of this Principle, associated with
the development of quantum-gravitational effects at Planck’s scales,
is absolute, its more accurate estimation being dependent on the
processes under study and on the sizes of the corresponding parti-
cles. It is shown that, neglecting the applicability limit of EP, one
can obtain senseless results on estimation of the relevant quantities
within the scope of the well-known Quantum Field Theory (QFT).
Besides, such neglect may be responsible for ultraviolet divergences
in this Theory. In the second part of the work the author presents the
general principles and mathematical apparatus for framing QFT in
terms of the measurability notion introduced by the author earlier.
In such QFT in the general case it is expedient to indicate the energy
regions, where EP is valid and where it loses its force, in an effort
to find a natural solution of the ultraviolet divergences problem in
this theory that at low energies is very close to the initial well-known
QFT.

1 Introduction

This paper is a continuation of previous works by the author [1]–[6]. The
first part is devoted to analysis of the applicability limit of Einstein’s Equiv-
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alence Principle (EP). It is noted that a natural applicability limit of this
Principle, associated with the development of quantum-gravitational effects
at Planck’s scales, is absolute, its more accurate estimation being depen-
dent on the processes under study and on the sizes of the corresponding
particles. It is shown that, neglecting the applicability limit of EP, one can
obtain senseless results on estimation of the relevant quantities within the
scope of the well-known Quantum Field Theory (QFT), in particular, of
the cosmological term λ in General Relativity (GR). Besides, neglect of the
applicability limit of EP may be responsible for ultraviolet divergences in
OFT.
The idea that all the processes studied in QFT should be considered sepa-
rately in two different energy ranges

E ≪ Ep

and

E ≈ Ep (1)

is substantiated. Then the results earlier obtained by the author [1]–[6] are
used. The principal idea of this works is as follows. The majority of the
researchers are of the opinion that at very high energies (Early Universe)
there is the minimal length ℓ presumed to be on the order of the Planck
length ℓ ∝ lp, though not necessarily. Consequently, at the corresponding
high energies the theory (understood as Quantum Theory of matter fields
and Gravity) is discrete.
It is obvious that, when ℓ exists, all variations in a physical system, irre-
spective of the energies, should be expressed in terms of ℓ. Though with
the use of new terms, at low energies a theory becomes discrete, it is very
close to the initial theory formulated in the continuous space-time. Actu-
ally, discreteness is revealed at high energies only. The main instrument for
realization of the idea put forward by the author is the notion of measur-
ability, initially defined in [2] and further developed in [5],[6].
In Section 4 the primary elements of the mathematical apparatus based on
this notion are recollected and elucidated.
Finally, in Sections 5,6 the general principles of framing QFT in terms of the
measurability notion are given. It is noted that, from the viewpoint of the
mathematical apparatus applicability, the condition (1) is quite natural for
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”measurable” QFT. It is shown that passage to higher or lower energies
in such QFT is also naturally formulated in terms of the basic (numerical)
parameters of the measurability notion. The main task is to convert the
mathematical apparatus of the well-known QFT to continuous space-time in
terms of measurable quantities. Provided this task be solved adequately,
we should have the possibility to solve successfully the ultraviolet divergence
in ”measurable” QFT and hence in QFT itself.

2 Equivalence Principle Applicability Bound-

ary in Canonical Theory

Einstein’s Equivalence Principle (EP) underlies not only General Relativity
(GR) [7]–[9] but also the fundamental physics as a whole. In the standard
formulation it is as follows: ([9],p.68):
¡¡at every space-time point in an arbitrary gravitational field it is possible
to choose a locally inertional coordinate system such that,within a
sufficiently small region of the point in question, the laws of nature take the
same form as in unaccelerated Cartesian coordinate systems in the absence
of gravitation¿¿.
Then in ([9],p.68) ¡¡...There is also a question, how small is ”sufficiently
small”. Roughly speaking, we mean that the region must be small enough
so that gravitational field in sensible constant throughout it...¿¿.
However, the statement ”sufficiently small” is associated with another
problem. Indeed, let x be a certain point of the space-time manifold M
(i.e. x ∈ M) with the geometry given by the metric gµν(x). Next, in
accordance with EP, there is some sufficiently small region V of the point
x so that, within V , we have

gµν(x) ≡ ηµν(x), (2)

where ηµν(x) is Minkowskian metric.
In essence, sufficiently small V means that the region V ′

, for which x ∈
V ′ ⊂ V , satisfies (2)as well. In this way we can construct the sequence

... ⊂ V ′′ ⊂ V ′ ⊂ V . (3)
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The problem arises, is there any lower limit for the sequence in formula (3)?
The answer is positive. Currently, there is no doubt that at very high en-
ergies (on the order of Planck’s energies E ≈ Ep), i.e. on Planck’s scales,
l ≈ lp quantum fluctuations of any metric gµν(x) are so high that in this case
the geometry determined by gµν(x) is replaced by the ”geometry” following
from space-time foam that is defined by great quantum fluctuations of
gµν(x),i.e. by the characteristic dimensions of the quantum-gravitational
region (for example, [10]–[15]). The above-mentioned geometry is drasti-
cally differing from the locally smooth geometry of continuous space-time
and EP in it is no longer valid [16]–[23].
From this it follows that the region Vr,t with the characteristic spatial di-
mension r ≈ lp (and hence with the temporal dimension t ≈p) is the lower
(approximate) limit for the sequence in (3).
It is difficult to find the exact lower limit for the sequence in formula (3)–it
seems to be dependent on the processes under study. Specifically, when
the involved particles are considered to be point, their dimensions may be
neglected in a definition of the EP applicability limit. When the charac-
teristic spatial dimension of a particle is r, the lower limit of the sequence
from formula (3) seems to be given by the region Vr′ containing the above-
mentioned particle with the characteristic dimensions r′ > r, i.e. the space
EP applicability limit should always be greater than dimensions of the parti-
cles considered in this region. By the present time, it is known that spatial
dimensions of gauge bosons, quarks, and leptons within the limiting ac-
curacy of the conducted measurements < 10−18m. Because of this, the
condition r′ ≥ 10−18m must be fulfilled.
Besides, it is assumed that the Equivalence Principle is valid for the locally
smooth space-time and this suggests that all the energies E of the particles
in the most general form meet the condition

E ≪ Ep. (4)

Then, if not stipulated otherwise, we can assume that the condition (4) is
valid.
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3 Quantum Field Theory,Ultraviolet Diver-

gences and Cosmological Term Estimation

in QFT

The canonical quantum field theory (QFT) is a local theory considered in
continuous space-time with a plane geometry, i.e with the Minkowskian
metric ηµν(x) [24]– [26].
Actually, any interaction introduces some disturbances, introducing an ad-
ditional local (little) curvature into the initially flat Minkowskian space M.
Then the metric ηµν(x) is replaced by the metric ηµν(x) + oµν(x), where
the increment oµν(x) is small. But, when it is assumed that EP is valid,
the increment oµν(x) in the local theory has no important role and, in a
fairly small neighborhood of the point x, formula (2)is valid and we have
ηµν(x) + oµν(x) ≡ ηµν(x).
Within the scope of the canonical QFT, the process of passage to more
higher energies without a change in the local curvature has no limits [24]–
[26], just this fact is the reason for ultraviolet divergences in QFT. But as
follows from the previous section, this is not the case. Actually, on passage
to the Planck energies E ≈ Ep (Planck scales l ≈ lp), the space in the Planck
neighborhood Vr,t of the point x one cannot consider flat even locally and
in this case (as noted above)EP is not valid.
Then we introduce the following assumption:

Assumption 3.1
In the canonical QFT in calculations of the quantities it is wrong to sum
(or same consider within a single sum) the contributions corresponding to
space-time manifolds with locally nonzero or zero curvatures since these con-
tributions are associated with different processes: (1) with the existence of
a gravitational field that, in principle, can hardly be excluded; (2) in the
absence of a gravitational field.

From the start, we can isolate the case when EP is valid (at sufficiently
low energies, specifically satisfying the condition (4)) from the cases when
EP becomes invalid (for example, Planck energies E ≈ Ep).
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Let us consider a widely known example when Assumption 3.1 is not ful-
filled leading to the senseless results.
In his popular lectures [27] at the Cornell University Steven Weinberg con-
sidered an example of calculating, within the scope of QFT, the expected
value for the vacuum energy density < ρ > that is proportional to the
cosmological term λ. To this end, zero-point energies of all normal modes
of some field with the mass m are summed up to the wave number cutoff
Λ ≫ m for the selected normalization ~ = c = 1 (formula (3.5) in [27]):

< ρ >=

∫ Λ

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ Λ4

16π2
. (5)

Assuming, similar to [27], that GR is valid at all the energy scales up to
the Planck’s, we have the cutoff Λ ≃ (8πG)−1/2 and hence (formula (3.6) in
[27]) leads to the following result:

< ρ >≈ 2 · 1071GeV 4, (6)

that by 10118 orders of magnitude differs from the well-known experimental
value for the vacuum energy density

< ρexp >≼ 10−29g/cm3 ≈ 10−47GeV 4. (7)

Here G is a gravitational constant.
It is clear that in this case Assumption 3.1 fails as Planck’s scales and
those close to them at lower energies are included into consideration. By
the author’s opinion, this is impermissible because for Planck’s scales the
quantum rather than classical gravity is true and the space even in a small
neighborhood of the point is hardly flat. But in formula (5) for the cutoff
Λ ≃ (8πG)−1/2 this fact is not included because all calculations in the
canonical QFT [26] are valid for the locally flat space and hence (5) in this
case leads to senseless results.
Of particular interest is the inverse problem: if the experimental value of
the vacuum energy density < ρexp > is known from (7), substituting it into
formula (5), we can estimate Λexp at the upper limit of integration by the
above formula

< ρexp >=

∫ Λexp

0

4πk2dk

(2π)3
1

2

√
k2 +m2 ≃ 10−47GeV 4. (8)
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Note that Λexp may be found in other way. Denoting by ΛUV the quantity
≃ (8πG)−1/2 from formula (5), corresponding to the cutoff at Planck’s scale
≈ 1, 6 ·10−33cm that is taken as the ultraviolet cutoff, denoting the required
quantity < ρ > by < ρUV >, by ΛIF denoting the quantity from the same
formula, that corresponds to the cutoff at the scale of a visible part of the
Universe ≈ 1028cm, and the corresponding quantity < ρ > denoting as
< ρIF > (infrared limit), in accordance with [28],[29], we obtain

< ρexp >=
√
< ρUV >< ρIF >. (9)

Obviously, Λexp derived from formulae (8), (9) satisfies the condition (4)
and in this case Assumption 3.1 is fulfilled.

Remark 3.2
In this work we, in fact, consider two extremes:
a)low energies E ≪ Ep and
b)very high (essentially maximal) energies E ≈ Ep.
Then it should be noted that, as all the experimentally involved energies E
are low, they satisfy condition a). Specifically, for LHC maximal energies
are ≈ 10TeV = 104GeV , that is by 15 orders of magnitude lower than the
Planck energy ≈ 1019GeV .
Moreover, the characteristic energy scales of all fundamental interactions
also satisfy condition a). Indeed, in the case of strong interactions this
scale is ΛQCD ∼ 200MeV ; for electroweak interactions this scale is deter-
mined by the vacuum average of a Higgs boson and equals υ ≈ 246GeV ;
finally, the scale of the (Grand Unification Theory (GUT)) MGUT lies in
the range of ∼ 1014GeV −−1016GeV . It is obvious that all the above figures
satisfy condition a).
Thus, only the expected characteristic energy scale of quantum gravity sat-
isfies condition b).

FromRemark 3.2 it directly follows that even very high energies arising on
unification of all the interaction typesMGUT ≈ 1014GeV− ∼ 1016GeV ,(except
of gravitational), Satisfy the condition (4).
At the same time, it is clear that the requirement of the Lorentz-invariant
QFT, due to the action of Lorentz boost (or same hyperbolic rotations)
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(formula (3) in [8]), results in however high momenta and energies. But it
has been demonstrated that unlimited growth of the momenta and energies
is impossible because in this case we fall within the energy region, where
the conventional quantum field theory [24]– [26] is invalid.
Note that at the present time there are experimental indications that Lorentz-
invariance is violated in QFT on passage to higher energies (for example,
[30]). Proceeding from the above, the requirement for Lorentz-invariance of
QFT is possible only within the scope of the condition (4).

4 Minimal Quantities and Measurability No-

tion

In this Section we briefly consider some of the results from [1]–[6] which are
necessary for further studies.
Presently, many researchers are of the opinion that at very high energies
(Plank’s and trans-Planck’s) the ultraviolet cutoff exists that is determined
by some minimal length.
Therefore, it is further assumed that there is a minimal (universal) unit
for measurement of the length ℓ corresponding to some maximal energy
Eℓ = ~c

ℓ
and a universal unit for measurement of time τ = ℓ/c. Without

loss of generality, we can consider ℓ and τ at Plank level, i.e. ℓ ∝ lp, τ = κtp,
where the numerical constant κ is on the order of 1. Consequently, we have
Eℓ ∝ Ep with the corresponding proportionality factor.
4.1. The primarily measurable space-time quantities (variations) are
understood as the quantities ∆xi and ∆t taking the form

∆xi = N∆xi
ℓ,∆t = N∆tτ, (10)

where N∆xi
, N∆t are integer numbers. Further in the text we use both

N∆xi
, N∆t and the equivalent Nxi

, Nt.

4.2. Similarly, the primarily measurable momenta are considered as
a subset of the momenta characterized by the property

pxi

.
= pNxi

=
~

Nxi
ℓ
, (11)
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where Nxi
is a nonzero integer number and pxi

is the momentum corre-
sponding to the coordinate xi.

4.3. Finally, let us define any physical quantity as primarily or ele-
mentary measurable when its value is consistent with point 4.1,4.2 and
formulae (10), (11).
Then we consider formula (11) with the addition of the momenta px0

.
=

pN0 = ~
Nx0ℓ

, where Nx0 is an integer number corresponding to the time co-

ordinate (N∆t in formula (10)).
For convenience, we denote Primarily Measurable Quantities satisfying
4.1–4.3 in the abbreviated form as PMQ. Also, for the Primarily Mea-
surable Momenta we use the abbreviation PMM.

First, we consider the case of Low Energies, i.e. E ≪ Eℓ (same E ≪ Ep.
It is obvious that all the nonzero integer numbers Nxi

, Nt (or same Nxµ ;µ =
0, ..., 3) from formulae (10),(11) should satisfy the condition |Nxµ| ≫ 1. It is
clear that all the momenta pi at low energies E ≪ Ep meet the condition
pi = ~/(Niℓ), where |Ni| ≫ 1 but is not necessarily an integer. With regard
for smallness of ℓ and for the condition |Ni| ≫ 1, we can easily show that
the difference 1/(Niℓ)− 1/([Ni]ℓ), (~/(Niℓ)− ~/([Ni]ℓ)) is negligible and in
this way all momenta in the region of low energies E ≪ Ep may be taken
as PMM with a high accuracy.
It is obviously that the case of Low Energies in this section is coincident
with the ”low energies” condition from Remark 3.2.
It is assumed that a theory we are trying to resolve is a deformation of the
initial continuous theory.

Remark 4.1
The deformation is understood as an extension of a particular theory by in-
clusion of one or several additional parameters in such a way that the initial
theory appears in the limiting transition [31].

Then it should be noted that PMQ is inadequate for studies of the physi-
cal processes. In fact, among PMQ, we have no quantities capable to give
the infinitesimal quantities dxµ, µ = 0, ..., 3 in the limiting transition in a
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continuous theory.
Therefore, it is reasonable to use notion of Generalized Measurability
We define any physical quantity at all energy scales as generalized mea-
surable or, for simplicity, measurable if any of its values may be obtained
in terms of PMQ specified by points 4.1–4.3.
The generalized measurable quantities will be denoted as GMQ.
Note that the space-time quantities

τ

Nt

= pNtc
ℓ2

c~
ℓ

Ni

= pNi

ℓ2

~
, 1 = 1, ..., 3, (12)

where pNi
, pNtc are Primarily Measurable momenta, up to the funda-

mental constants, are coincident with pNi
, pNtc and they may be involved at

any stage of the calculations but, evidently, they are not PMQ, but they
are GMQ.
So, in the proposed paradigm at low energies E ≪ Ep a set of the PMM
is discrete, and in every measurement of µ = 0, ..., 3 there is the discrete
subset Pxµ ⊂ PMM:

Pxµ

.
= {..., pNxµ−1, pNxµ

, pNxµ+1, ...}. (13)

In this case, as compared to the canonical quantum theory, in continuous
space-time we have the following substitution:

∆pµ 7→ dpµ,∆pNxµ
= pNxµ

− pNxµ+1 = pNxµ (Nxµ+1);

∆

∆pµ

7→ ∂

∂pµ

;
∆F(pNxµ

)

∆pµ

=
F(pNxµ

)− F(pNxµ+1)

pNxµ
− pNxµ+1

=
F(pNxµ

)− F(pNxµ+1)

pNxµ (Nxµ+1)

.(14)

And

ℓ

Nxµ

7→ dxµ;

∆

∆Nxµ

7→ ∂

∂xµ

,
∆F(xµ)

∆Nxµ

=
F(xµ + ℓ/Nxµ)− F(xµ)

ℓ/Nxµ

. (15)
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It is clear that for sufficiently high integer values of |Nxµ|, formulae (14),(15)
reproduce a continuous paradigm in the momentum space to any preas-
signed accuracy. However, at low energies E ≪ Eℓ a set of PMM clearly is
not a space. Considering this, the formulae at low energies offer the Cor-
respondence to Continuous Theory (CCT).

It is important to make the following remarks in medias res:

Remark 4.1.
In this way any point {xµ} ∈ M ⊂ R4 and any set of integer numbers high
in absolute values {Nxµ} are correlated with a system of the neighborhoods
for this point (xµ ± ℓ/Nxµ). It is clear that, with an increase in |Nxµ|, the
indicated system converges to the point {xµ}. In this case all the ingredi-
ents of the initial (continuous) theory the partial derivatives including are
replaced by the corresponding finite differences.

Remark 4.2.
As long as ℓ is a minimal measurable length and τ is a minimal measur-
able time, values of all observable quantities should agree with this condi-
tion, i.e., their expressions should not involve the lengths l < ℓ and the times
t < τ (and hence the momenta p > pℓ and the energies E > Eℓ). Because of
this, values of the length ℓ/Ni and of the time ℓ/Nt from formula (12) could
not appear in expressions for observable quantities, being involved only in
intermediate calculations, especially at the summation for replacement of
the infinitesimal quantities dt, dxi; i = 1, 2, 3 on passage from a continuous
theory to its measurable variant.
It is further assumed that at low energies E ≪ Eℓ all the observable
quantities are PMQ.

At High Energies, E ≈ Ep, the primary measurable momenta are
inadequate for studies of the theory at these energies.
Indeed, as it has been shown in [4]– [6], the Generalized Uncertainty Prin-
ciple (GUP) [32]–[39], that is generalization of the Heisenberg Uncertainty
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Principle (HUP) to High Energies

∆x ≥ ~
∆p

+ α′l2p
∆p

~
, (16)

where α′ is a constant on the order of 1, leading to the minimal length ℓ on
the order of the Planck length ℓ

.
= 2

√
α′lp, at high energies inevitably results

in the momenta ∆p(N∆x, GUP ) which are not primarily measurable [4]
–[6].

Remark 4.3
When at low energies E ≪ Ep we lift restrictions on integrality of Nxµ , from
formulae (14),(15) it directly follows that in this case we have a continuous
analog of the well-known theory with the only difference: all the used small
quantities become dependent on the existent energies and we can correlate
them. In this way formula (15) may be written as

dxµ ↔ ℓ

Nxµ

→ ℓ

[Nxµ ]
,

∂

∂xµ

↔ ∆

∆Nxµ

→ ∆

∆[Nxµ ]

(17)

where |Nxµ | ≫ 1 is a sufficiently large number that varies continuously. It
is clear that in formula (17) the first arrow corresponds to the continuous
theory with a specific selection of values of the infinitesimal quantities dxµ.
As noted above, the difference ℓ/Nxµ − ℓ/[Nxµ ] is negligible and hence the
second arrow corresponds to passage from the initial continuous theory to
a similar discrete theory. Of course, formula (14) may be rewritten in the
like manner. In what follows, formula (17) plays a crucial part in derivation
of the results and is greatly important for their understanding.
The main target of the author is to form a quantum theory and gravity only
in terms of PMQ.

5 QFT in Measurable Form.Origin

Considerations of Section 4 point to the fact that the Least Action Principle
at low energies E ≪ Eℓ are valid in ameasurable form with substitution of
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the measurable analogs defined in foregoing Section for all the components
involved in proof of these arguments. For the canonical (continuous) case
we use the notation of Section 3 in [24].
Let φ be a set of all the considered fields φ

.
= (φ1, φ2, ...). Then the action

S in the continuous case taking the form

S =

∫
L(φ, ∂µφ)d4x (18)

is replaced by the measurable action Smeas,N

Smeas,{N} =
∑

Lmeas,{N}(φ,
∆φ

∆Nxµ

)
∏ ℓ

Nxµ

, (19)

where Nxµ – integers with the property |Nxµ | ≫ 1,Lmeas,N–Lagrangian den-
sity of themeasurable fields φ and of theirmeasurable analogs for partial
derivatives in formula (15) ∆φ

∆Nxµ
. This means that all variations of these

functions are expressed in terms of only measurable quantities. In the
product

∏
the index µ takes the values µ = 0, ..., 3, and {N}–collection of

all Nxµ ,i.e. {N} .
= {Nxµ}. Further, where this causes no confusion, for the

measurable quantities corresponding to the set {N} we can equally use
both the lower index {N} and N .
According to Remarks 4.1.,4.3. for the integer numbers Nxµ sufficiently
high in absolute value we, to a high accuracy, have

S = Smeas,{N}. (20)

Then it is assumed that all the considered functions are measurable, i.e.
all variations of these functions are expressed in terms of only measurable
quantities. The paper [6] presents in detail a measurable form of the Least
Action Principle.
It is clear that in all the formulae, similar to formula (19), on passage
from QFT in continuous consideration to the measurable form of QFT, in
accordance with (14) and (15), the substitution is performed∫

7→
∑

; ∂µ 7→ ∆

∆Nxµ

; d4x 7→
∏ ℓ

Nxµ

, ... (21)
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Now we suppose that condition (4) (or equivalently E ≪ Eℓ) is satisfied,
i.e. the existent energies are low.
Then in general case as be noted in Sections 2,3, EP is valid and in the
well-known Quantum Field Theory (QFT) [24]– [26] and, specifically, in its
part used for the collider computations, space-time is assumed to be locally
flat, i.e. to be locally Minkowskian.
Besides, as noted in Remark 3.2, actually all the energies considered ex-
perimentally meet the condition E ≪ Eℓ,(or same E ≪ Ep) and hence
(see the end of Remark 4.2) in measurable consideration all observable
quantities are PMQ.
In this case in measurable picture we have a discrete QFT that is almost-
continuous due to Remark 4.3. As such a theory in the momentum rep-
resentation has the upper limit cut-off, it is not Lorentz-invariant from the
start. This is not surprising because it is known that, if a theory involves
the minimal length ℓ, in the general case Lorentz invariance is violated (for
example, see most known work of KMM [39]). As distinct from other works
involving ℓ, in the proposed approach the wave function is considered sep-
arately at high energies E ≈ Ep and at low energies E ≪ Ep, with the
imposed restriction that the first function is a high-energy deformation of
the second function [2]. In other works (for example, in [39]) the wave func-
tion is common for all the energy scales. But according to the Assumption
3.1, this is impossible because the indicated functions belong to spaces of
different geometries: curved and flat.
It is clear that the above-mentioned discrete (almost-continuous) (QFT),
with a cut-off at a certain upper limit of the momenta which are consider-
ably much lower than the Planck, should be ultraviolet-finite. In this case
passage to higher energies means going from the momenta pN , |N | ≫ 1 to
the momenta pN ′ , |N | > |N ′| ≫ 1 and, vice versa, passage to lower energies
is going in the last equality from the integers N

′
to the integers N .

For further resolution of the indicated QFT, along with formula (21), we
should ”translate” correctly the mathematical apparatus of the Fourier
transform and Dirac δ-function into the measurable form.
As already noted in Section 3 there is the experimental indication that
Lorentz-invariance is violated on passage to higher energies even for the
QFT without involvement of the minimal length ℓ, i.e. in the continuous
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space-time paradigm.

6 Conclusion Commentaries

6.1. In the proposed approach the mathematical apparatus of QFT in con-
tinuous space-time based on the use of the abstract infinitesimal quanti-
ties dxµ, dpi, dE is replaced by the apparatus based on the measurability
notion and involving the ordered small quantities dependent on the exis-
tent energies. All small space-time variations in the indicated theories are
generated by the momenta, (primarily measurable at low energies and
generalized measurable at high energies). Considering the involvement
of the minimal length ℓ ∝ lp, in this case the initial theory becomes discrete
but at low energies, far from the Planck energy E ≪ Ep, it is very close
to the initial theory in continuous space-time. Real discreteness is revealed
at high energies E ≪ Ep. Such an approach enables one to study the QFT
in the same terms at all the energy scales and in principle to construct this
theory without ultraviolet divergences.

6.2. In the present approach, within the scope of the measurability no-
tion, the terms classical and quantum considerations common for the con-
tinuous space-time paradigm, generally speaking, lose their initial meaning.
Indeed, the use of these terms is justified only at low energies E ≪ Ep but
at these energies all minimal variations in the coordinate space take the
form ℓ/{N}, |{N}| ≫ 1 and ℓ in its definition has all the three fundamen-
tal constants including ~, because ℓ ∝ lp. On the other hand, due to the
condition |{N}| ≫ 1, a quantum nature of the variations ℓ/{N} is not felt.
The same is true for the momentum representation.
In fact, in the proposed approach the classical consideration is associated
with the limiting transition |{N}| → ∞. However, as shown in [6], for real
physical systems at low energies E ≪ Ep is always |{N}| < ∞ and we have

N∗ ≥ |{N}| ≥ N∗ ≫ 1, (22)

where N∗, N
∗ – some lower and upper bounds.

As noted in Section 5, in this case passage to higher or to lower energies
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means going to consideration of a theory with higher or lower absolute values
of the numbers {N}, respectively, compared to the initial ones.
Apart from the problems indicated in the next to last paragraph of the
preceding section, the principal problem of framing QFT in themeasurable
form at low energies E ≪ Eℓ (or same E ≪ Ep) is the determination and
substantiation of maximally accurate estimates for the numbers N∗, N

∗ in
formula (22) for the specific processes and interaction types. Successful
solving of the indicated problems offers the possibility for solution of the
ultraviolet divergence problem in ”measurable” QFT and hence in the
well-known QFT that is very close to it.
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